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1 The model

Let X,Y, Z be arbitrary finite sets and let f : X × Y → Z be an arbitrary function. There are
two players, Alice and Bob, who wish to compute the function f(x, y). The main obstacle is that
Alice only knows x and Bob only knows y. Thus, to compute the value f(x, y), they will need
to communicate with each other. We are assuming that they both follow a fixed protocol agreed
upon beforehand. The protocol consists of the players sending bits to each other until the value of
f can be determined.

We are only interested in the amount of communication between Alice and Bob, and we wish
to ignore the question of the internal computations of each player. Thus, we assume that Alice
and Bob have unlimited computational power. The cost of a protocol P is the worst case cost of
P over all inputs (x, y). The complexity of f is the minimum cost of a protocol that computes f .

Formally how do we specify a protocol? In each step one of the players sends one bit of
information to the other player. The bit depends on the input of the player who sends it, and all
the previous bits communicated so far.

In every step, a protocol specifies:

1. Which player sends the next bit;

2. Value of this bit (as a function of that players’ input, and history so far).

Usually we set X = Y = {0, 1}n, and Z = {0, 1}. Without loss of generality, we can assume
that the players always alternate and also the last bit sent is the value of the function f(x, y).

Another view of a protocol which may be more convenient is the following:

Definition 1. A protocol P over X × Y with range Z is a binary tree where each internal node v
is labelled either by a function av : X → {0, 1} or by a function bv : Y → {0, 1}1, and each leaf is
labelled with an element of Z. The value of the protocol P on input (x, y) is the label of the leaf
reached by starting from the root, and traversing the tree. The cost of the protocol P on input (x, y)
is the length of the path on input (x, y). The cost of the protocol P is the height of the tree.

Next, we give some examples of functions that we will study in the up-coming lectures.

1If a node is labelled by av intuitively means that Alice is sending a bit at this point, similarly for bv and Bob.
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Example 1 (Parity). The parity function of (x, y) has value 1 if x, y have the same parity. A
simple protocol is the following: Alice sends the parity of x (1 if the number of 1’s in x is odd, and
0 otherwise). Then Bob replies 1 if and only if the parity of y is equal to the parity bit of b.

Example 2 (Set disjointness). DISJ(x, y) = 1 iff there exists i such that xi = yi = 1.

Example 3 (Equality). Equality function: EQ(x, y) = 1 iff x = y.

Example 4 (Inner product). The inner product function is defined as IP (x, y) =
∑n

i=1 xiyi
(mod 2).

A simple general protocol : Let any function f(x, y), with |x| = |y| = n. Alice sends x. Bob
sends f(x, y). The total communication is n+1 bits. Therefore, the (deterministic) communication
complexity of any boolean function is at most n+ 1. However, for many functions, we can develop
much more efficient protocols, i.e., protocols with poly-logarithmic communication bits for specific
functions.

2 Randomized vs. Deterministic CC

In the deterministic model, the protocol specifies for all x, y a value f(x, y). We say that a protocol
P computes a function f if ∀ x, y, f(x, y) = P (x, y). Given a protocol P the communication
complexity of a function f computed by P on inputs of length n is the maximum number of bits
communicated in any run of the protocol, as we range over all inputs of length n.

Definition 2. For a function f : X ×Y → Z, the (deterministic) communication complexity of f ,
denoted by D(f), is the minimum cost of P , over all protocols P that compute f .

In the probabilistic case, players can toss random bits. There are two models depending if the
coin tosses are public or private. In the public random string model the players share a common
random string, while in the private model each player has his/her own private random string.

Definition 3. Let P be a randomized protocol.

Zero-sided error: P computes a function f with zero-sided error if for every (x, y),

Pr[P (x, y) = f(x, y)] = 1.

Notice that in this case, the number of bits communicated is a random variable.

One-sided error: P computes a function f (with one sided error ε) if for every (x, y) such that
f(x, y) = 0,

Pr[P (x, y) = 0] = 1,

and for every (x, y) such that f(x, y) = 1,

Pr[P (x, y) = 1] ≥ 1− ε,

Two-sided error: P computes a function f (with error ε) if

∀ x ∈ X, y ∈ Y, Pr [P (x, y) = f(x, y)] ≥ 1− ε,
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Definition 4. Let f : X×Y → {0, 1} be a function. We consider the following complexity measures
for f :

• R0(f) is the minimum average case cost of a randomized protocol that computes f with zero
error.

• For 0 < ε < 1/2, Rε(f) is the minimum worst case cost of a randomized protocol that
computes f with error ε.

• For 0 < ε < 1/2, R1
ε(f) is the minimum worst case cost of a randomized protocol that

computes f with one-sided error ε.

Now, let’s give an example for the above two protocols for the equality function.

Example 5 (Equality Revisited). Recall that EQ(x, y) = 1 iff x = y. Let’s analyse the randomized
communication complexity in the public and private coin protocol for the function EQ:

Public Coin Let x ∈ X, y ∈ Y , X = Y = {0, 1}n be the input strings, and r ∈ {0, 1} the public
coin tosses. The protocol is the following: Alice computes the bit a = (

∑n
i=1 xiri) (mod 2)

and sends it to Bob. Then Bob computes b = (
∑n

i=1 yiri) (mod 2). The value of the protocol
is

P (x, y, r) = 1 iff
n∑

i=1

xiri =
n∑

i=1

yiri (mod 2).

Note that the communication is only one bit! Now let’s analyse this protocol. If x = y,then
∀r, the protocol is correct, i.e., P (x, y, r) = 1. If x 6= y, then with probability 1/2 (over the
public coin tosses) P (x, y, r) = 1, i.e., our protocol is wrong. If we repeat the above random
experiment c times independently, then the probability that our protocol is wrong on all of the
executions is 1/2c.

Private Coin In this setting, encode the input sets X,Y as X = Y = {1, 2, . . . , 2n}.
The protocol is the following:

1. Alice samples uniformly at random a prime from the set {1, 2, . . . , 2n}.
2. Then she computes v = x (mod p) and sends to Bob the prime p and the value v.

3. Bob sends 1 if and only if v = y (mod p).

Notice that p, v are integers from [1, 2n], hence the above protocol has complexity O(log n).

Analysis: If x = y, then for every p, x (mod p) = y (mod p), so our protocol is sound.

In the case where x 6= y: Let p1, p2, . . . , pk be the set of “bad” primes with respect to x, y, i.e.,

x (mod pi) = y (mod pi), i = 1, 2, . . . , k.

If p1, p2, . . . , pk satisfy the above equation, then

x = y (mod P ),

where P = p1 · p2 . . . pk. Since pi ≥ 2, P ≥ 2k. However, P < 2n since x 6= y, which implies
that 2k < 2n. It follows that k < n, which means that our protocol is correct with probability
greater than 1/2.
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3 Nondeterministic/co-Nondeterministic CC

In the non-deterministic model of communication complexity, players share nondeterministic bits
z. Now a protocol is a function of x, y, z, and we say that a protocol P computes a function f if
for all x, y:

f(x, y) = 1 =⇒ ∃z P (x, y, z) = 1

f(x, y) = 0 =⇒ ∀z P (x, y, z) = 0.

The communication complexity in this model is defined as the maximum length of z plus the
number of bits exchanged over all x, y. Similarly, exchanging the position of the existential and
for all quantifier we can define co-nondeterministic CC. The basic example is set disjointness (see
Example ??). If the players share logn nondeterministic bits, they guess i and check if xi = yi = 1.

4 Communication Complexity Classes

We can define the following communication complexity classes:

PCC , RPCC , BPPCC , NPCC , coNPCC

as the set of functions f(x, y) that can be solved with poly-logarithmic communication complexity.
Remark: Unlike the computational complexity classes where NO non-trivial relationship is

known, here we know almost everything, i.e.,

PCC ( RPCC ( BPPCC ( NPCC ( coNPCC .

5 Applications

Communication complexity arguments have found numerous application to a large number of
different areas. Applications include the following.

1. Bisection width of networks

2. VLSI

3. Decision tree lower bounds

4. Data structures – cell probe model and dynamic data structures

5. Boolean circuit complexity. This includes Depth 2 threshold circuits, and the circuit class
ACC.

6. Turing machine time-space trade-offs

7. Streaming algorithms

8. Game theory (truthfulness vs. accuracy)

9. Differential privacy

10. Proof complexity
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6 Course Outline

The main topics that we will discuss in this course can be summarized as follows:

• 2 player protocol, upper bounds, lower bounds methods (Fooling set method, rank method,
discrepancy method);

• Public/private coin protocols;

• The number-on-forehead model (NOF). Upper bounds and Lower bounds.

• Applications.

7 Basics

The success in proving good lower bounds on the communication complexity comes from the
combinatorial view of protocols. The idea is to view protocols as a way to partition the space of
all possible input pairs, X × Y , into sets. Let P be a protocol and v be a node of the protocol
tree. We denote by Rv is the set of inputs (x, y) that reach node v. Let L be the set of leaves of
the protocol P . It is easy to see that the set {Rl}l∈L is a partition of X ×Y . This discussion leads
to the following fundamental element in the combinatorics of protocols.

Definition 5 (Rectangle). A rectangle in X × Y is a subset R ⊆ X × Y such that R = A×B for
some A ⊆ B and B ⊆ Y .

The connection between rectangles and protocols is implicit in the following proposition.

Proposition 1. For all l ∈ L, the set Rl is a rectangle.

Proof. By induction on the depth of the protocol tree.

Moreover, by the definition of the protocol in the above rectangles the function f has a fixed
value, i.e., monochromatic.

Definition 6 (f-monochromatic). A subset R ⊆ X × Y is f -monochromatic if f is fixed2 on R.

The following two statement are immediate from the above definitions.

Fact 2. Any protocol P for f induces a partition of X × Y into f -monochromatic rectangles. The
number of (f -monochromatic) rectangles equals the number of leaves of P .

Fact 3. If any partition of X × Y into f -monochromatic rectangles requires at least t rectangles,
then D(f) ≥ log2 t.

2There exists z ∈ {0, 1} such that for all (x, y) ∈ R, f(x, y) = z.
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7.1 Fooling Set

Consider the following 2n × 2n matrix associated with equality function EQ(x, y), |x| = |y| = n.

MEQ :=


1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1


Each “1” has to be in its own 1-monochromatic rectangle. Thus the number of monochromatic

rectangles is greater than 2n. This observation motivates the following definition of a “fooling set”.

Definition 7. Let f : X × Y → {0, 1}. A subset S ⊆ X × Y is a fooling set for f if there exists
z ∈ {0, 1} such that

(i) ∀ (x, y) ∈ S, f(x, y) = z;

(ii) for any two distinct (x1, y1), (x2, y2) ∈ S, either f(x1, y2) 6= z or f(x2, y1) 6= z.

Lemma 4. If f has a fooling set S of size t, then D(f) ≥ log2 t.

7.2 Rank lower bound method

Given any boolean function f : {0, 1}n × {0, 1}n → {0, 1} we can associate a 2n × 2n matrix
Mf , where Mf (x, y) = f(x, y). In words, Mf specifies the values of the function f on any input
(x, y) ∈ X × Y . The rank lower bound method is an algebraic method to give lower bounds on
D(f) by computing the rank of Mf .

Definition 8. For any function f , rank(f) is the linear rank of Mf over R.

The following lemma gives a lower bound on the deterministic communication complexity of f
through the rank of Mf .

Lemma 5. Let a function f . Then D(f) ≥ log2 rank(f).

Proof. Let L1 be the set of leaves of any protocol tree that gives output 1. For each l ∈ L1, let Ml

be a 2n × 2n matrix which is 1 on all (x, y) ∈ Rl and 0 otherwise. It is clear that

Mf =
∑
l∈L1

Ml.

Fact : The rank function is a sub-additive function, i.e., rank(A+B) ≤ rank(A) + rank(B) for
any matrix A,B. Therefore,

rank(Mf ) ≤
∑
l∈L1

rank(Ml).

Notice that rank(Ml)1 for any l ∈ L1 since Ml can be expressed as an outer-product of two vectors3.
Therefore rank(Mf ) ≤ |L1| ≤ |L|, which implies that

3These vectors are the characteristic vectors for the rectangle that reaches l.
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D(f) ≥ log2 rank(f).

7.3 Covers

Basic definition:

Definition 9. Let f : X × Y → {0, 1} be a function:

1. CP (f) = minimum number of leaves in a protocol tree for f .

2. CD(f) = minimum number of monochromatic rectangles in a (rectangular disjoint) partition
of X × Y .

3. C(f) = minimum number of monochromatic rectangles that covers X × Y .

4. Cz(f) = minimum number of monochromatic rectangles needed to cover the z-inputs4 of f .

Proposition 6. For all f : X × Y → {0, 1}:

• C(f) ≤ CD(f) ≤ CP (f) ≤ 2D(f).

• C(f) = C0(f) + C1(f).

Lemma 7 (Balancing Protocols). Let f a function. Then

logCP (f) ≤ D(f) ≤ 2 log3/2C
P (f)

Proof. The lower bound on D(f) is immediate. For the upper bound, it suffices to show that given
any deterministic protocol P that computes f with s leaves, we are able to create a new protocol
P ′ for f with deterministic communication complexity O(log s).

By hypothesis, we know that the protocol tree T has s leaves. The proof relies heavily on the
following claim.

Claim 8. For any tree T with s leaves, |T | = s, there exists a node v of T , such that for the
sub-tree Tv rooted at v the following inequality holds,

s

3
≤ |Tv| ≤

2s

3
.

The input of the new protocol P ′ is the protocol tree T , the input pair (x, y), and the number
of leaves s.

1. Alice and Bob determine a node v such that s
2 ≤ |Tv| ≤ 2s

3 .

2. Both decide if (x, y) ∈ Rv
5, by sending one bit each of them, in total 2 bits.

3. If yes, recurse on the rectangle Rv.

4The z-inputs of a function f is the set {(x, y) | f(x, y) = z}.
5Rv is the rectangle that corresponds to the sub-tree Tv
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4. If no, recurse on the tree Tnew, where Tnew is the same tree as T , except that the sub-tree Tv

is replaced by a single node/leave with value 0.

Let’s analyse the above protocol. Let Q(s) be the number of bits that are communicated by the
above protocol when the input tree has s leaves. It is easy to see that the following recursion on
Q(s) holds,

Q(s) ≤ 2 + Q(
2s

3
),

where 2 is the bits that are communicated at the current step and Q(2s/3) the number of bits
that will be communicated in the next (recursive) step in worst case. Also note that Q(1) = 0.
Applying the above inequality repeatedly we get

Q(s) ≤ 2 + 2 + · · ·+ 2︸ ︷︷ ︸
i

+Q(
2is

3i
), by setting i = log3/2 s,

= 2 log3/2 s.

Setting s = CP (f), i.e., the minimum number of leaves for a protocol that computes f , and notice
that D(f) = Q(CP (f)), gives the lemma.
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