Gödel's Incompleteness Theorems

In the early 1900's there was a drive to find adequate axiomatic foundations for mathematics. Russell's paradox (If S is the set of all sets that do not contain themselves, does S contain itself?) helped to point out how difficult it is to find a good axiom system for set theory. David Hilbert, the most prominent mathematician of the time, proposed a program of finding axiom systems, and proving them consistent by "finitary" means; that is finite combinatorial methods that do not involve questionable set-theoretic constructions. Gödel's 1931 paper effectively destroyed hopes for the success of this program. Gödel proved that **PA** cannot even prove its own consistency, let alone the consistency of a more powerful system such as set theory.

In his 1931 paper Gödel proved two results (his two "incompleteness theorems"). The second incompleteness theorem states that the consistency of **PA** cannot be proved in **PA**. Here we prove the first incompleteness theorem, and outline the proof of the second. (In fact, Gödel did not include a complete proof of his second theorem, but complete proofs now appear in text and reference books.)

Here we consider only the theory **PA**, although the first incompleteness theorem applies to any consistent extension of **RA**, and the second incompleteness theorem applies to "nice" theories of arithmetic, which in general must include some form of induction among their axioms.

The first theorem formulates a sentence G which asserts "I am not provable", and the theorem states that indeed G is not provable in **PA**, so G is true. By soundness of **PA**, $\neg G$ is also not provable in **PA**. The method of constructing G follows the method of constructing the sentence "I am false" in the proof of Tarski's Theorem. (Historically, Gödel's theorems came first.)

Let Γ be the set of axioms of **PA**. Thus Γ consists of P1,...,P6, together with the induction axioms. Let Proof(x, y) be the recursive relation "y codes an $LK - \Gamma$ proof of the sentence coded by x". Thus $\exists y Proof(n, y)$ holds iff n = #A, where A is a sentence provable in **PA**. Let d(x) be the diagonal substitution function (defined on page 89). Recall that d(n) = $sub(n, n) = \#A(s_n)$ when #A(x) = n. Then d(x) is total and computable, so the relation S(x) is r.e., where

$$S(x) = \exists y Proof(d(x), y)$$

Let A(x) be an $\exists \Delta_0$ formula which represents S(x) in **RA** (and hence in **PA**). Then for all $n \in \mathbb{N}$,

$$\exists y Proof(d(n), y) \quad \Leftrightarrow \quad \mathbf{PA} \vdash A(s_n) \tag{1}$$

Let $e = \# \neg A(x)$, so

$$d(e) = \# \neg A(s_e) \tag{2}$$

Let

$$G =_{syn} \neg A(s_e)$$

so #G = d(e). Since A(x) represents the relation $\exists y Proof(d(x), y)$, it follows that the formula $\neg A(s_e)$ asserts that the formula whose number is d(e) is not provable in **PA**. But that formula is $\neg A(s_e)$, so this formula, i.e. the formula G, asserts "I am not provable".

Gödel's First Incompleteness Theorem: If \mathbf{PA} is consistent, then \mathbf{PA} does not prove G.

Remark: Note that in this course we take for granted that **PA** is consistent. The reason that Gödel did not, is that there is no known "finitary" proof that **PA** is consistent. Our proof of consistency involves the assertion that **PA** is sound. That is, all of the axioms of **PA** are true in the standard model $\underline{\mathbb{N}}$, and hence all logical consequences of these axioms are true in $\underline{\mathbb{N}}$. But this proof is not finitary, because it involves an induction on a statement mentioning the infinite set \mathbb{N} .

Proof: We prove the contrapositive. Suppose that $\mathbf{PA} \vdash G$, i.e. $\mathbf{PA} \vdash \neg A(s_e)$. Then sentence number d(e) is provable, so $\exists y Proof(d(e), y)$ holds. Hence $\mathbf{PA} \vdash A(s_e)$, by the left-to-right direction of (1). Thus \mathbf{PA} proves both a formula and its negation, so it is inconsistent. \Box

The above proof is finitary, in that it involves only finite objects. Later we will argue, as Gödel did, that the proof can be formalized in **PA**. It is important that the proof only uses the left-to-right direction of (1), since this direction is finitary: From a proof of the sentence whose number is d(n) one can construct a proof of the sentence $A(s_n)$. Our proof of the converse direction of (1) is not finitary, since it involves the soundness of **PA**. It is not clear that **PA** can prove this converse direction. However, using the right-to-left direction we can prove the following:

Proposition: If **PA** is sound, then **PA** does not prove $\neg G$.

Proof: Suppose **PA** proves $\neg G$; i.e. **PA** proves $A(s_e)$. By the right-to-left direction of (1), this implies $\exists y Proof(d(e), y)$; that is, **PA** proves sentence number d(e), so **PA** proves $\neg A(s_e)$, so **PA** proves G. Thus **PA** is inconsistent, and hence unsound. \Box

Remark: We say that a theory Σ is ω -consistent provided that for each formula C(x), if Σ proves $\neg C(s_n)$ for each $n \in \mathbb{N}$, then Σ does not prove $\exists x C(x)$. Every sound theory is ω -consistent, but not conversely. It is not hard to see the assumption that **PA** is ω -consistent is sufficient to prove the right-to-left direction in (1), and hence this assumption can replace the stronger assumption that **PA** is sound, in the above Proposition.

Exercise 1 Show that there is a consistent extension of PA which is not ω -consistent.

Formulating consistency in PA

Let B(x, y) be an $\exists \Delta_0$ formula which represents Proof(x, y) in **RA** (and hence in **PA**).

Thus for each sentence C,

$$\mathbf{PA} \vdash C \quad \Leftrightarrow \quad \mathbf{PA} \vdash \exists y B(\#C, y) \tag{3}$$

where here (and below) we write B(#C, y) for $B(s_{\#C}, y)$.

We require that the formula B(x, y) represent the relation Proof(x, y) in a straightforward way, so that Lemma 2 and Lemma 3 below both hold.

Recall that A(x) represents the relation $\exists y Proof(d(x), y)$ in **PA**. By constructing the formula A(x) from B(x, y) in a straightforward manner, we can insure that for each $n \in \mathbb{N}$

$$\mathbf{PA} \vdash A(s_n) \supset \exists y B(s_{d(n)}, y) \tag{4}$$

Note that **PA** is consistent iff **PA** does not prove $0 \neq 0$. Thus we make the definition

$$con(PA) =_{syn} \neg \exists y B (\#0 \neq 0, y)$$

Gödel's Second Incompleteness Theorem: If PA is consistent, then PA does not prove con(PA).

This follows from the following Lemma:

Lemma 1: (Gödel) $\mathbf{PA} \vdash con(PA) \supset G$

The Second Incompleteness Theorem follows immediately from the Lemma and the First Incompleteness Theorem.

The Lemma is proved by formalizing in **PA** the proof of the First Incompleteness Theorem. To see that " $con(PA) \supset G$ " is an accurate translation of the First Incompleteness Theorem, note that G is $\neg A(s_e)$, which asserts that formula number d(e) is not provable in **PA**; i.e. G asserts that G is not provable in **PA**.

Now we formalize the proof of the First Incompleteness Theorem in **PA**. Thus we must show that **PA** proves the contrapositive of the formula in Lemma 1; that is we must show

$$\mathbf{PA} \vdash A(s_e) \supset \exists y B(\#0 \neq 0, y) \tag{5}$$

We need to formalize the left-to-right direction of (1), which involves formalizing the proof of Corollary 2 to the MAIN LEMMA, page 84. This corollary states that every true $\exists \Delta_0$ sentence *C* is provable in **RA** (and hence in **PA**). Thus we must show

Lemma 2: For each $\exists \Delta_0$ sentence C,

$$\mathbf{PA} \vdash C \supset \exists z B(\#C, z)$$

The proof of this Lemma is the main work in the proof of the Second Incompleteness Theorem, and will not be given here. However we note that Lemma 2 is immediate for the case in which C is true, since then by Corollary 2 (to the MAIN LEMMA) C has a proof π in **RA**, and hence

$$\mathbf{RA} \vdash B(\#C, \#\pi)$$

because B(x, y) represents Proof(x, y) in **RA**. Despite this easy argument, the proof of Lemma 2 for the case in which C is false requires formalizing the proof of Corollary 2 (and the MAIN LEMMA itself), as mentioned above. (Note that there are false $\exists \Delta_0$ formulas C such that $\neg C$ is not provable in **PA**.)

If we take $C =_{syn} A(s_e)$ in Lemma 2 we obtain

$$\mathbf{PA} \vdash A(s_e) \supset \exists z B(\#A(s_e), z) \tag{6}$$

Now from (4) with n = e and (2) we obtain

$$\mathbf{PA} \vdash A(s_e) \supset \exists z B(\# \neg A(s_e), z) \tag{7}$$

Finally, (5) follows from (7), (6), and the following lemma:

Lemma 3: For any sentence C,

$$\mathbf{PA} \vdash \forall x \forall z [(B(\#C, x) \land B(\#\neg C, z)) \supset \exists y B(\#0 \neq 0, y)]$$