1. Prove that a theory Σ is consistent if and only if Σ has a model.

2. (10 points) Prove that a unary function f is recursive iff $\text{graph}(f)$ is r.e. (Recall $\text{graph}(f)$ is the relation $R(x, y) = (y = f(x))$. Note that f may not be total.

3. Are each of the following languages (i) recursive, (ii) r.e. but not recursive, (iii) not r.e. Prove your answer. Do not use the S-m-n theorem.
 (a.) Let L be the set of all numbers x such that x codes a TM program, and 10 is in the range of the function computed by the program.
 (b.) Let L be the set of all numbers x such that x encodes a TM program, and where the program coded by x halts on only finitely many inputs.

4. (5 points) Let \mathcal{L} be a first order language with finitely many function symbols and predicate symbols. Prove that the set of unsatisfiable \mathcal{L} sentences is recursively enumerable.