Week 8

HW3 Due Today!
HW4 (Last one!) out
Week 7 Summary (2 weeks ago!)

1. We saw \(D = \{ x \mid \exists y \exists z \exists \gamma (x) \text{ does not accept } y \} \)

 is not r.e. by diagonalization

2. Using reductions we proved

 \(K, \text{ Halt are not recursive} \)
Using Reductions to show other (more natural) languages/functions are not computable/recursive/r.e.

High Level:

1. Say we know L_1 not recursive
 To show L_2 not recursive, design a TM M_1
 always halts & $L(M_1) = L_1$, assuming a
 TM M_2 that always halts & $L(M_2) = L_2$

2. Suppose L_1 not r.e.
 To show L_2 not r.e., construct M_1 st $L(M_1) = L_1$
 assuming a TM M_2 st $L(M_2) = L_2$
The Halting Problem is Not Recursive

\[K^d = \{ x \mid \text{TM } \exists x \text{ halts on input } x \} \]

\[\text{HALT}^d = \{ \langle x, y \rangle \mid \text{TM } \exists x \text{ halts on input } y \} \]

Theorem. HALT, K are both r.e., neither are recursive.
The Halting Problem is Not Recursive

\[K = \{ x \mid \text{TM} \exists x \text{ halts on input } x \} \]

Theorem K is not recursive

If K recursive then D also recursive

Theorem Halt Not recursive

If Halt recursive then K recursive
Tips

(1.) Try obvious algorithms to see if you think language is recursive, re, or neither

(2.) To show L not r.e., sometimes it helps to work with \overline{L}

(3.) Get reduction in correct direction. Many times constructed TM M_1 will ignore its own input
\[L = \{ \{ x \} \mid \{ x \} \text{ accepts at least one input} \} \]
L = \{ x \mid \exists y^3(x) \text{ accepts at least one input}\}

- L is r.e. (Dovetailing)
- L is not recursive

L = K = \{ y \mid \exists y^3(y) \text{ halts}\}

Assume \(L_2 = L \) is recursive & let \(M_2 \) be TM \(L(M_2) = L \)
and \(M_2 \) always halts

\(M_1 \) on input \(y \):

- Construct encoding \(z \) of TM \(\exists y^3 \) where
- \(\{ \exists y^3 \} \) on input \(x \): Ignores \(x \) & runs \(\{ y^3 \} \) on \(y \)
- and accepts \(x \) if \(\exists y^3(y) \) halts

Run \(M_2 \) on \(z \) & accept \(y \) iff \(M_2(z) \) accepts

Claim \(L(M_1) = K \) & \(M_1 \) always halts

\(y \in K \Rightarrow \exists y^3(y) \text{ halts} \Rightarrow \exists y^3 \text{ accepts all inputs} \Rightarrow M_2(z) = 1 \Rightarrow M_1(y) = 1 \)

\(y \notin K \Rightarrow \exists y^3(y) \text{ doesn't} \Rightarrow \exists y^3 \text{ accepts no input} \Rightarrow M_2(z) \neq 1 \Rightarrow M_1(y) \neq 1 \)
Completeness

A set $A \subseteq \mathbb{N}$ is r.e.-complete if

1. A is r.e.
2. $\forall B \subseteq \mathbb{N}$, if B is r.e. then $B \leq_m A$.

So if A is recursive then B recursive.

B reduces to A.

\[N \xrightarrow{f} A \xrightarrow{g} N \]
Completeness

A set $A \subseteq \mathbb{N}$ is r.e.-complete if

1. A is r.e.
2. $\forall B \subseteq \mathbb{N}$, if B is r.e. then $B \leq_m A$

There exists a computable function $f: \mathbb{N} \Rightarrow \mathbb{N}$ such that

$\forall x \quad f(x) \in A \iff x \in B$
Hilbert's 10th Problem (1900)

A diophantine equation is of the form \(p(\bar{x}) = 0 \) where \(p \) is a polynomial over variables \(x_1, \ldots, x_n \) with integer coefficients

\[
\text{Ex: } 3x_1^5x_2^3 + (x_1 + 1)^8 - x_7^{10} = 0
\]

\(L_{\text{Dioph}} = \{ \langle p \rangle \mid p \text{ has a solution over } \mathbb{N}^3 \} \)

Theorem

\(L_{\text{Dioph}} \) is r.e.-complete
An Equivalent Characterization of RE Sets

Let \(f: \mathbb{N} \to \mathbb{N} \)

Then \(R_f \subseteq \mathbb{N} \times \mathbb{N} \)

is the set of all pairs \((x, y)\) such that \(f(x) = y \)

*Theorem \quad f \text{ computable \ if and only if } R_f \text{ is r.e.} \)
An Equivalent Characterization of RE Sets

Let \(f : \mathbb{N} \rightarrow \mathbb{N} \)

Then \(R_f \subseteq \mathbb{N} \times \mathbb{N} \)

is the set of all pairs \((x, y)\) such that \(f(x) = y \)

Theorem \(f \) computable if and only if \(R_f \) is r.e.

Proof \(\Rightarrow \): Suppose \(f \) computable.

TM for \(R_f \) on input \((x, y)\):

Run TM computing \(f \) on \(x \).

If it halts and outputs \(y \) then accept \((x, y)\).

Otherwise reject \((x, y)\)
An Equivalent Characterization of RE Sets

Let $f : \mathbb{N} \rightarrow \mathbb{N}$

Then $R_f = \mathbb{N} \times \mathbb{N}$ is the set of all pairs (x, y) such that $f(x) = y$

Theorem f computable if and only if R_f is r.e.

Proof \Leftarrow: Let R_f be r.e. with TM M

On x: Enumerate all $\mathbb{N} : y_1, y_2, \ldots$

For $i = 1, 2, \ldots$

For all $j \leq i$: simulate M on (x, y_j) for i steps

If simulation accepts (x, y_j), halt and output y_i.
A second characterization of RE sets

Theorem A relation $A \subseteq \mathbb{N}^k$ is r.e. if and only if there is a recursive relation $R \subseteq \mathbb{N}^{k+1}$ such that

$$\exists \bar{x} \in A \iff \exists y R(\bar{x}, y) \quad \forall \bar{x} \in \mathbb{N}^n$$

Note we defined A to be r.e. iff there is a TM M such that $\forall \bar{x} \in \mathbb{N}^n \ (M(\langle \bar{x} \rangle) \text{ accepts } \iff \exists \bar{x} \in A)$.
A Second Characterization of RE Sets

Theorem A relation $A \subseteq \mathbb{N}^k$ is r.e. if and only if there is a recursive relation $R \subseteq \mathbb{N}^{k+1}$ such that

$$\exists x \in A \iff \exists y R(x, y) \quad \forall x \in \mathbb{N}^n$$

Proof sketch

\Rightarrow: Let A be r.e., $L(M) = A$

$R(x, y)$: view y as encoding of an $m \times m$ tableaux for some $m \in \mathbb{N}$

$(x, y) \in R \iff M(x)$ halts in m steps and accepts and y is the $m \times m$ tableaux of $M(x)$
A second characterization of RE sets

Theorem A relation $A \subseteq \mathbb{N}^k$ is r.e. if and only if there is a recursive relation $R \subseteq \mathbb{N}^{k+1}$ such that

$$\exists \overline{x} \in A \iff \exists y \ R(\overline{x}, y) \quad \forall \overline{x} \in \mathbb{N}^n$$

Proof sketch

\Leftarrow Let $R \subseteq \mathbb{N}^{k+1}$ be recursive relation such that

$$\exists \overline{x} \in A \iff \exists y \ R(\overline{x}, y), \quad \text{and let } L(M) = R$$

on input \overline{x}:

For $i = 1, 2, \ldots$

For $j = 1$ to i

Run M on (\overline{x}, y_j)

halt & accept if $M(\overline{x}, y_j)$ accepts
Review of Definitions

$\mathcal{L}_A = \{ 0, 1, +, \cdot, j \}$ Language of arithmetic

$\Phi_0 = \text{all } \mathcal{L}_A - \text{sentences}$

$TA = \{ A \in \Phi_0 \mid \text{IN } \models A \}$ True Arithmetic

A theory Σ is a set of sentences (over \mathcal{L}_A) closed under logical consequence.

- We can specify a theory by a subset of sentences that logically implies all sentences in Σ

Σ is consistent iff $\Phi_0 \not\models \Sigma$ (iff $\forall A \in \Phi_0$, either A or $\neg A$ not in Σ)

Σ is complete iff Σ is consistent and $\forall A$ either A or $\neg A$ is in Σ
Σ is **sound** iff $\Sigma \subseteq TA$

Let M be a model/structure over \mathcal{L}_A

$Th(M) = \{ A \in \Phi_\sigma \mid M \models A \}$

$Th(M)$ is **complete** (for all structures M)

Note: $TA = Th(IN)$ is complete, consistent, & sound

$VALID = \{ A \in \Phi_\sigma \mid \models A \}$ ← smallest theory
Let Σ be a theory

Σ is axiomatic if there exists a set $\Gamma \subseteq \Sigma$ such that

1. Γ is recursive
2. $\Sigma = \{ A \in \Phi_0 | \Gamma \vdash A \}$

Theorem Σ is axiomatizable iff Σ is r.e.

(P. 76 of Notes)
Let Σ be a theory

Σ is axiomatizable if there exists a set $\Gamma \subseteq \Sigma$

such that

1. Γ is recursive
2. $\Sigma = \{ \text{A} \in \mathcal{B} \mid \Gamma \vdash A \}$

Theorem Σ is axiomatizable iff Σ is r.e.

Proof \Rightarrow. Suppose Σ is axiomatizable, Γ recursive

Define $R(x,y) = \text{true}$ iff y encodes a Γ-LK proof of (the formula encoded by y) x

R is recursive, so by previous *Theorem*, Σ is r.e.
Let \(\Sigma \) be a theory

\(\Sigma \) is axiomatic if there exists a set \(\Gamma \subseteq \Sigma \) such that

1. \(\Gamma \) is recursive
2. \(\Sigma = \{ A \in \Sigma : \Gamma \vdash \neg A \} \)

Theorem \(\Sigma \) is axiomatizable iff \(\Sigma \) is r.e.

Proof \(\Rightarrow \). Suppose \(\Sigma \) is axiomatizable, \(\Gamma \) recursive

Define \(R(x, y) = \text{true} \) iff \(y \) encodes a \(\Gamma \)-LK proof of \((\text{the formula encoded by} y) \times \)

\(\Gamma \) is recursive, so by previous *Theorem, \(\Sigma \) is r.e.

\(\Leftarrow \) By *Theorem, \(\Sigma = \text{range of total computable function } f \)

\(\therefore \Sigma = \{ f(0), f(1), f(2), \ldots \} \)
Incompleteness - Introduction

1. TA is not r.e. (so by previous theorem, not axiomatizable)

First Incompleteness Theorem Every sound axiomatizable theory is incomplete
\[\Phi_0 : \]

all \(L_A \) sentences

\[\exists \text{ sound and axiomatizable} \Rightarrow \exists A, \forall A, \exists \]
Incompleteness - Introduction

1. TA is not r.e. (so by previous theorem, not axiomatizable)
 First Incompleteness Theorem: Every sound axiomatizable theory is incomplete

2. Define PA - Peano arithmetic
 Sound, axiomatizable
 So by Tarski's Thm, PA is incomplete

3. Gödel's second Incompleteness Thm:
 A specific sentence asserting "PA is consistent" is not a theorem of PA
First Incompleteness Theorem

We define a predicate \(\text{Truth} \in \mathbb{N} \)

\[
\text{Truth} = \{ m \mid m \text{ encodes a sentence } \langle m \rangle \in \Phi_0 \text{ that is in TA} \}
\]

We will show that \(\text{Truth} \) is not r.e.
FIRST INCOMPLETENESS THEOREM

We define a predicate $\text{Truth} = \mathbb{N}$

$\text{Truth} = \exists \ m \mid m \text{ encodes a sentence } \langle m \rangle \in \bar{\Phi}$

that is in TA.

We will show that Truth is not r.e.

Defn A predicate is arithmetical if it can be represented by a formula over \mathcal{L}_A.

We'll show:

1. Every r.e. predicate/language is arithmetical
2. Truth is not arithmetical

\therefore Truth is not r.e.
Since *Truth* is not r.e.,
there is no r.e. TM that accepts exactly the sentences in TA

\[\therefore TA \text{ is not axiomatizable} \]

\[\therefore \text{Any sound, axiomatizable theory } \Sigma \text{ is incomplete} \]

(There is a sentence \(A \in \Phi \), such that neither \(A \) or \(\neg A \) are in \(\Xi \).)
FIRST INCOMPLETENESS THEOREM

We define a predicate \(\text{Truth} \in \mathbb{N} \)

\[
\text{Truth} = \{ m \mid m \text{ encodes a sentence } \langle m \rangle \in \Phi \}
\]
that is in TA.

We will show that \(\text{Truth} \) is not r.e.:

Defn
A predicate is arithmetical if it can be represented by a formula over \(\mathcal{L}_A \)

Show

1. Every r.e. predicate/language is arithmetical
2. \(\text{Truth} \) is not arithmetical

\[\therefore \text{Truth} \text{ is not r.e.}\]

Exists-Delta Theorem PP 68-71
Tarski Theorem PP 73-74
1. Every R.E. predicate is arithmetical

Definition Let \(s_0 = 0, s_1 = s_0, s_2 = s_0 s_0, \) etc.

Let \(R(x_1, \ldots, x_n) \) be an \(n \)-ary relation \(R \subseteq \mathbb{N}^n \). Let \(A(x_1, \ldots, x_n) \) be an \(\mathcal{L}_A \) formula, with free variables \(x_1, \ldots, x_n \).

\(A(x) \) **represents** \(R \) iff \(\forall \bar{a} \in \mathbb{N}^n \ R(\bar{a}) \iff \mathbb{N} \models A(s_{a_1}, s_{a_2}, \ldots, s_{a_n}) \)

Example \(R \subseteq \mathbb{N} \) \(R = \{ a \in \mathbb{N} \mid a \text{ is even} \} \)

\(A : \exists y \ (y + y = x) \)

3 \(\in R \) and \(\mathbb{N} \models A(s_{s_0}) = \exists y \ (y + y = s_{s_0}) \)

4 \(\in R \) and \(\mathbb{N} \models A(s_{s_{s_0}}) = \exists y \ (y + y = s_{s_{s_{s_0}}}) \quad y = s_{s_0} \)
1. Every R.e. predicate is arithmetical

Definition. Let \(s_0 = 0, s_1 = s_0, s_2 = s_{s_0}, \text{ etc.} \)

Let \(R(x_1, \ldots, x_n) \) be an \(n \)-ary relation \(R \subseteq \mathbb{N}^n \)

Let \(A(x_1, \ldots, x_n) \) be an \(\mathcal{L}_A \) formula, with free variables \(x_1, \ldots, x_n \)

\(A(x) \) represents \(R \) iff \(\forall \bar{a} \in \mathbb{N}^n \ R(\bar{a}) \iff \mathbb{N} = A(s_{a_1}, s_{a_2}, \ldots, s_{a_n}) \)

\(R \) is arithmetical iff there is a formula \(A \in \mathcal{L}_A \) that represents \(R \)

Exists-\(\Delta \)-Theorem. Every R.e. relation is arithmetical. In fact every R.e. relation is represented by a \(\exists \Delta \) \(\mathcal{L}_A \)-formula.
\[t_1 \leq t_2 \] stands for \(\exists z (t_1 + z = t_2) \)

\[\exists x \leq t \ A \] stands for \(\exists x (x \leq t \land A) \)

\[\forall x \leq t \ A \] stands for \(\forall x (x \leq t \supset A) \)

Definition A formula is a \(\Delta_0 \)-formula if it has the form \(\forall x_1 \leq t_1 \exists x_2 \leq t_2 \forall x_3 \leq t_3 \ldots \exists x_k \leq t_k A(x_1 \ldots x_k \bar{y}) \)

Definition A relation \(R(\bar{x}) \) is a \(\Delta_0 \)-relation iff some \(\Delta_0 \)-formula represents it.
Example: \(\text{Prime} = \{ x \in \mathbb{N} \mid x \text{ is prime} \} \) is a \(\Delta_0 \) -relation, represented by the following \(\Delta_0 \) -formula:

\[
(x = 2 \lor 1 = 2) \land \forall z \leq x \forall y \exists a (x - 2 = y \land y < 0) \land x > 0 \land \forall z \leq 2 \forall x \leq y \forall a \leq z \forall x \leq y
\]
$\exists \Delta_0$ Formulas

$t_1 \leq t_2$ stands for $\exists w (t_1 + w = t_2)$

$\exists z \leq t A$ stands for $\exists z (z \leq t \land A)$

$\forall z \leq t A$ stands for $\forall z (z \leq t \supset A)$

$\{ \text{Bounded} \}$

Definition A formula is a Δ_0-formula if it has

the form $\forall z_1 \leq t, \exists z_2 \leq t_2 \forall z_3 \leq t_3 \ldots \exists z_k \leq t_k A(z_1, z_2, z_3, \ldots, z_k, t)$

Definition $\exists \Delta_0$ formula has the form $\exists \eta B_{\Delta_0}$

Definition A relation $R(\bar{x})$ is a Δ_0-relation iff

some Δ_0-formula represents it

Definition $R(\bar{x})$ is a $\exists \Delta_0$-relation iff some $\exists \Delta_0$-formula represents it
Every Δ_0 relation is recursive.

Every $\exists \Delta_0$ relation is r.e.

$\exists \Delta_0$ (Exists-Delta) Theorem: Every r.e. relation is represented by a $\exists \Delta_0$ formula.
Main Lemma

Let $f : \mathbb{N}^n \rightarrow \mathbb{N}$ be a total computable function.

Let $R_f = \{(x, y) \in \mathbb{N}^{n+1} \mid f(x) = y\}$

Then R_f is a $\exists \Delta_0$-relation.
Main Lemma \(\text{Let } f : \mathbb{N}^n \rightarrow \mathbb{N} \text{ be total, computable.} \) Then \(R_f = \{ (x, y) \mid f(x) = y \} \) is an \(\exists \Delta_0 \) relation.

Proof of \(\exists \Delta_0 \) Theorem from Main Lemma

Let \(R(x) \) be an r.e. relation. Then \(R(x) = \exists y \exists z (x, y, z) \) where \(S \) is recursive. Since \(S \) is recursive, \(f_S(x, y) = 1 \) if \((x, y) \in S \). This is total computable. By the main lemma, \(R_{fs} \) is represented by a \(\exists \Delta_0 \) relation. So \(R(x) = \exists y \exists z R_{fs} \) is represented by a \(\exists \Delta_0 \) relation.
Proof of Main Lemma (see pp 70-71)

Main idea: is a way of representing sequences of numbers by numbers using Ω_2 formulas.

Note: Prime power decomposition not useful here since we only have s, t, e

(i.e. represent (a_1, a_2, a_3, a_4) by $2^a \cdot 3^b \cdot 5^c \cdot 7^d$)

Definition β-function

$\beta(c, d, i) = \text{rm}(c, d(i+1)+1)$

where $\text{rm}(x, y) = x \text{mod} y$
Proof of Main Lemma (see pp 70-71)

Definition β-function

$$\beta(c, d, i) = \text{rm}(c, d(i+1) + 1) \quad \text{where} \quad \text{rm}(x, y) = x \mod y$$

Lemma 0. $\forall n, r_0, r_1, \ldots, r_n \exists c, d$ such that

$$\beta(c, d, i) = r_i \quad \forall i, 0 \leq i \leq n$$

So the pair (c, d) represents the sequence c, r_0, r_1, \ldots, r_n using β
Proof of Main Lemma (see pp 70-71)

Definition β - function

$$\beta(c, d, i) = \text{rm}(c, d(i+1)+1)$$

where $\text{rm}(x, y) = x \mod y$

Lemma 0

$$\forall \eta, r_0, r_1, \ldots, r_n \exists c, d \text{ such that }$$

$$\beta(c, d, i) = r_i \quad \forall i, 0 \leq i \leq n$$

ERT (Chinese Remainder Theorem)

Let $r_0, \ldots, r_n, m_0, \ldots, m_n$ be such that

$$0 \leq r_i \leq m_i \quad \forall i, 0 \leq i \leq n \quad \text{and} \quad \gcd(m_i, m_j) = 1 \quad \forall i, j$$

Then $\exists r$ such that $\text{rm}(r, m_i) = r_i \quad \forall i, 0 \leq i \leq n$
Proof of Main Lemma (see pp 70-71)

Lemma 0 \forall n, r_0, r_1, \ldots, r_n \exists c, d \text{ such that }
\beta(c, d, i) = r_i \quad \forall i, 0 \leq i \leq n \quad \beta(c, d, i) = r_m(c, d(i+1)+1)
\text{ where } \text{mod } y

Chinese Remainder Theorem

Let \(r_0, \ldots, r_n, m_0, \ldots, m_n \) be such that
0 \leq r_i \leq m_i \text{ and } \text{gcd}(m_i, m_j) = 1. \text{ Then } \exists r \text{ such that } \text{mod } y \text{ and } \beta(r, c, i) = r \quad \forall i

Proof of Lemma 0

Let \(d = (n! + r_0 + \ldots + r_n + 1)! \)
Let \(m_i = d(i+1)+1 \)
Claim \(\forall i, j \text{ such that } \text{gcd}(m_i, m_j) = 1 \text{ (see notes) } \)
By CRT \(\exists r = c \text{ such that } \beta(c, d, i) = \text{mod } y \text{ and } \beta(c, d, i) = r_i \quad \forall i \in [n] \)
Proof of Main Lemma (see pp. 10-71)

Lemma 0 \(\forall n, r_0, r_1, \ldots, r_n \exists c, d \text{ such that} \)
\[\beta(c, d, i) = r_i \quad \forall i, 0 \leq i \leq n \]

Lemma 1 \(R_p \) is a \(\Delta_0 \) relation

\[Pf: \quad y = \beta(c, d, i) \iff \left[\exists q \leq c (c = q(d(i+1) + y) \land y < d(i+1) + 1) \right] \]

Lemma 2 If \(R(x, y) \) is a \(\exists \Delta_0 \) relation, \(R_p \) is a \(\exists \Delta_0 \) relation

then \(S(x) = \exists y \left(R_p(x, y) \land R(x, y)\right) \) is a \(\exists \Delta_0 \) relation
Proof of Main Lemma (see pp 70-71)

Let \(f: \mathbb{N} \rightarrow \mathbb{N} \) be unary, total computable function, and let \(M_f \)
be TM computing \(f \)

\(R(x, y) \) will be a \(\exists \delta_0 \) relation saying:

- \(\exists m, c, d \) such that
 - \(m, c, d \) describe the tableaux given by \(\tau, \ldots, \tau_m, \ldots, \tau_{m^2} \)
 - \(\tau, \ldots, \tau_m \) encode start config of \(M_f \) on \(x \)
 - \(\tau_{m+1}, \ldots, \tau_{m^2} \) encode last config, containing \(y \) in first cells then \(B \), and \(state \ is \ q_2 \)
 - For all other configs, state is not \(q_2 \)
 - all \(2 \times 3 \) local cells are consistent with transition function of \(M_f \)
Recap: We wanted to prove

\[\exists \Delta_0 \text{ (Exists-Delta) Theorem } \quad \text{every r.e. relation is represented by a } \exists \Delta_0 \text{ formula} \]

which followed by **Main Lemma**:

\[f \text{ total, computable } \Rightarrow R_f \text{ is a } \exists \Delta_0 \text{ relation} \]
We define a predicate \(\text{Truth} = \mathbb{N} \)
\[
\text{Truth} = \{ m \mid m \text{ encodes a sentence } <m> \in \Phi \text{ that is in } TA \}\]

We will show that \(\text{Truth} \) is not r.e.

Defn A predicate is arithmetical if it can be represented by a formula over \(\mathcal{L}_A \)

1. Every r.e. predicate/language is arithmetical
2. \(\text{Truth} \) is not arithmetical

\[\therefore \text{Truth is not r.e.} \]
Tarski Theorem

Define the predicate \(\text{Truth} \subseteq \mathbb{N} \)

\[
\text{Truth} = \{ m \mid m \text{ encodes a sentence } \langle m \rangle \in \text{TA} \}
\]

Then \(\text{Truth} \) is not arithmetical.
Define the predicate $\text{Truth} = \mathbb{N}$

$$\text{Truth} = \{ m \mid m \text{ encodes a sentence } \langle m \rangle \in TA \}$$

Then Truth is not arithmetical.

High Level Idea:
Formulate a sentence "I am false" which is self-contradictory.
Let \(\text{sub}(m,n) = \begin{cases} 0 & \text{if } m \text{ is not a legal encoding of a formula} \\ \text{otherwise say } m \text{ encodes the formula } A(x) \text{ with free variable } x. \\ \text{Then } \text{sub}(m,n) = m' \text{ where } m' \text{ encodes } A(s_n) \end{cases} \)

Let \(d(n) = \text{sub}(n,n) \)
\[
\begin{cases}
\quad d(n) = 0 & \text{if } n \text{ not a legal encoding.} \\
\text{otherwise say } n \text{ encodes } A(x), \text{ then } d(n) = n' \text{ where } n' \text{ encodes } A(s_n)
\end{cases}
\]

clearly \(\text{sub, d} \) are both computable
Proof of Tarski's Thm

Suppose that Truth is arithmetical. Then define $R(x) = \neg \text{Truth}(d(x))$.

Since d, Truth both arithmetical, so is R

Let $\overline{R(x)}$ represent $R(x)$, and let e be the encoding of $R(x)$.

Let $d(e) = e'$ so e' encodes $R(\overline{e})$ encodes "I am false".

Then $\overline{R(\overline{e})} \in TA \iff \neg \text{Truth}(d(e))$

since \overline{R} represents R by defn of truth

TA contains exactly one of A, \overline{A}

\[\iff \neg \overline{R(\overline{e})} \in TA \]

\[\iff \overline{R(\overline{e})} \notin TA \]

\[\iff \overline{R(\overline{e})} \notin TA \]

\[\iff \text{this is a contradiction}. \therefore \text{Truth is not arithmetical} \]
FIRST INCOMPLETENESS THEOREM

FINALLY WE HAVE PROVEN:

1. Every r.e. predicate/language is arithmetical
2. Truth is not arithmetical

∴ Truth is not r.e.

Truth not r.e. ⇒ TA not axiomatizable

∴ Any sound, axiomatizable theory is incomplete
Φ_0:

all L_A sentences

\[\Gamma \text{ sound and axiomatizable } \Rightarrow \exists A, \forall A \in \Gamma \]
2nd Incompleteness Theorem

- We will define PA (Peano Arithmetic), an axiomatizable sound theory.
- Most of number theory provable in PA
- We will see that PA cannot prove its own consistency (2nd Incompleteness Thm)