CS438/2404

Lecture 3

- HW1: DUE THIS FRIDAY!
- OFFICE HOURS TODAY 5-6 and Wednesday
- HW2: OUT THIS FRIDAY, DUE OCT 18

Submit PDF to: noahfleming@cs.toronto.edu by deadline
OR: submit hardcopy at beginning of tutorial
TODAY

• First Order Logic
 Language/Syntax
 Semantics: Models

• Sound & Complete Proof Systems for FO Logic
 LK (extension of sequent calculus PK)
 FO Resolution (extension of Resolution)
FIRST ORDER LOGIC

Underlying language \(L \) specified by:

1. \(\forall n \in \mathbb{N} \) a set of \(n \)-ary function symbols (i.e., \(\cdot, f, g, h, +, \cdot \))

 0-ary function symbols are called constants

2. \(\forall n \in \mathbb{N} \) a set of \(n \)-ary predicate symbols (i.e., \(P, Q, R, <, \leq \))

Plus:
- Variables: \(x, y, z, \ldots a, b, c, \ldots \) \{ Built in symbols \}
- \(\neg, \lor, \land, \forall, \exists, \forall \)
- Parenthesis (,)
Example \(L_A \) (language of arithmetic)

\[L_A = \{ 0, s, +, \cdot; = \} \]

- **function symbols**: 0, s, +, \cdot
- **relation symbols**: =

- 0 constant (0-ary function symbol)
- s unary function symbol
- +, \cdot binary function symbols
- = binary predicate symbol
Terms over L

(1) Every variable is a term

(2) If f is an n-ary function symbol, and t_1, \ldots, t_n terms, then $f(t_1, \ldots, t_n)$ is a term
Terms over L

1. Every variable is a term.
2. If f is an n-ary function symbol, and t_1, \ldots, t_n terms, then $f(t_1, \ldots, t_n)$ is a term.

Examples of terms ($0, s, f, +, *$)

- $0, s, f, +, *$
- $f(s(s, s)), + f(y, z), * + a b s$
- $f(s(s, s)), + f(y, z), * + a b s$
FIRST ORDER FORMULAS OVER \(L \)

(1) \(P t_1 \ldots t_n \) is an atomic \(L \)-formula, where \(P \) is an \(n \)-ary predicate in \(L \), and \(t_1 \ldots t_n \) are terms over \(L \).

(2) If \(A, B \) are \(L \)-formulas, so are

\(\neg A \), \((A \land B) \), \((A \lor B) \), \(\forall x A \), \(\exists x A \).
Example: FO Formulas over \mathcal{L}_A

1) Existence of infinitely many primes

$$\forall x \exists y \ (y > x \text{ and } y \text{ is prime})$$
Example: FO Formulas over \mathcal{L}_A

1. Existence of infinitely many primes

Want to say: $\forall x \exists y \ (y > x \text{ and } y \text{ is prime})$

$y \text{ is prime} : \forall z, z' \ (z, z' \geq 2 \implies z \cdot z' \neq y)$
Example: FO Formulas over \mathbb{Z}_A

1. Existence of infinitely many primes

want to say: $\forall x \exists y \ (y > x \text{ and } y \text{ is prime})$

$y \text{ is prime} : \forall z, z' \ (z, z' > 2 \implies z \cdot z' \neq y)$

$(\star) \left[\forall z \forall z' \left((0 \leq z') \wedge (0 < z) \wedge (z \neq z') \wedge (0 < z') \right) \right] \implies \not \exists y$
Example: FO Formulas over \(\mathcal{L}_A \)

1. Existence of infinitely many primes

want to say: \(\forall x \exists y \ (y > x \text{ and } y \text{ is prime}) \)

\(y \text{ is prime} : \forall z, z' \ (z, z' \geq 2 \Rightarrow z \cdot z' \neq y) \)

\[(*) \left[\forall z \forall z' \ (z, z' \geq 2 \Rightarrow z \cdot z' \neq y) \right] \]

\[(*) (*) \left[y > x : \forall z, z' \ (z, z' \geq 2 \Rightarrow z \cdot z' \neq y) \right] \]
The existence of infinitely many primes:

Let x be a prime number. Then there exists a prime number y such that $y > x$.

This can be formulated as:

$$\exists x \forall y (y > x \land y \text{ is prime})$$

Example: For formulas over \forall
Example: FO Formulas over \mathcal{L}_A

2 Twin Prime Conjecture

There exists infinitely many pairs of numbers, (x, x') such that $x' = x + 2$ and both x and x' are prime.
Example: 50 Formulas in $L_{\mathcal{A}}$

(3) Fermat's Last Theorem

$$\forall n \geq 3 \forall a, b, c \ (n > 2 \Rightarrow a^n + b^n \neq c^n)$$
Example: If \(a \), \(b \), \(c \) are positive integers such that

\[a^3 + b^3 = c^3, \]

then it is impossible to have

\[A_n = 3 A_{a, b, c}. \]

Fermat’s Last Theorem

Ancient Greek text, 3rd century AD
Fermat's Last Theorem

Example: Fo Formulas in

$V_2 \neq 3$

conjectured by Fermat 1637

in margin of his copy of

Arithmetic
Fermat's Last Theorem

Fermat's equation:

$$x^n + y^n = z^n$$

This equation has no solutions in integers for $n \geq 3$.

Finally proven by Andrew Wiles.
Example: Fo Formulas in LaTeX

3 Fermat’s Last Theorem (actually Andrew Wiles’ theorem)

\[\forall n \geq 3 \ (\forall a, b, c \ a^n + b^n \neq c^n) \]

Problem: How to say \(a^n \)?

(we’ll see later how to do this!)
FREE/BOUND VARIABLES

• An occurrence of x in A is bound if x is in a subformula of A of the form $\forall xB$, or $\exists xB$ (otherwise x is free in A)

 Example: $\exists y (x = y + y)$
 $P \land \forall x (\neg (x + 5x = x))$

• A formula/term is closed if it contains no free variables

• A closed formula is called a sentence
SEMANTICS OF FO LOGIC

An \(\mathcal{L} \)-structure \(M \) (or model) consists of:

1. A nonempty set \(M \) called the universe (variables range over \(M \))

2. For every \(n \)-ary function symbol \(f \) in \(\mathcal{L} \), an associated function \(f^M : M^n \rightarrow M \)

3. For each \(n \)-ary relation symbol \(P \) in \(\mathcal{L} \), an associated relation \(P^M \subseteq M^n \)

* Equality predicate \(= \) is always true equality relation on \(M \).
Example

\[L_A = \{ 0, s, +, \cdot, \} \]

0. \underline{IN}: standard model of \(L_A \)

\[M = \mathbb{N} \]
\[0 = 0 \in \mathbb{N} \]
\([+, \cdot, s]\) are usual plus, times, successor functions

Jumping ahead a bit: Evaluation of a formula in \(\mathbb{N} \)

\[\forall x \forall z (\exists \bar{z} \forall \bar{z} \bar{z} = x + z) \rightarrow \exists \bar{z}'' (\bar{z}'' + \bar{z}'' = x) \]
Example

\[L_A = \{0, s, t, \cdot, i\} = \{0, 1, 2, 3\} \]

1. \[M = \mathbb{N} \quad \text{O} = 0 \in \mathbb{N} \]
 - \(s \): successor. i.e., \(s(0) = 1 \), \(s(1) = 2 \), etc.
 - \(t \): plus. i.e., \(t(0) = 1 \), \(t(2, 3) = 5 \), etc.
 - \(\cdot \): times

2. \[M = \{\text{□}, \text{●}, \text{★}\} \quad \text{O} = \text{□} \]

\[s(\text{□}) = \text{●} \]
\[s(\text{●}) = \text{★} \]
\[s(\text{★}) = \text{★} \]
How to evaluate formulas that contain free variables?

Defn An object assignment σ for a model M is a mapping from variables to M.
Definition: Evaluation of terms/formulas on M, s

Let M be an L-structure, s an object assignment for M.

Evaluation of terms over M, s:

1. $x^M \in M$ is $s(x)$ for all variables x.
2. $(f t_1 \ldots t_n)^M \in_M [s] = f^M(t_1^M[s], \ldots, t_n^M[s])$.
Evaluation of formulas over \mathcal{M}, σ

Let A be an \mathcal{L}-formula. $\mathcal{M} \models A[\sigma]$

(M satisfies A under σ) iff

(a) $\mathcal{M} \models \Pi t_1, \ldots, t_n[\sigma]$ iff $\langle t_1^\mathcal{M}[\sigma], \ldots, t_n^\mathcal{M}[\sigma] \rangle \in P^\mathcal{M}$

(b) $\mathcal{M} \models (s = t)[\sigma]$ iff $s^\mathcal{M}[\sigma] = t^\mathcal{M}[\sigma]$

(c) $\mathcal{M} \models \neg A[\sigma]$ iff not $\mathcal{M} \models A[\sigma]$

(d) $\mathcal{M} \models (A \lor B)[\sigma]$ iff $\mathcal{M} \models A[\sigma]$ or $\mathcal{M} \models B[\sigma]$

(e) $\mathcal{M} \models (A \land B)[\sigma]$ iff $\mathcal{M} \models A[\sigma]$ and $\mathcal{M} \models B[\sigma]$

(f) $\mathcal{M} \models \forall x A[\sigma]$ iff $\forall m \in M \mathcal{M} \models A[\sigma(\sigma x)]$

(g) $\mathcal{M} \models \exists x A[\sigma]$ iff $\exists m \in M \mathcal{M} \models A[\sigma(\sigma x)]$
Example \(\mathcal{L} = \{ ; \, \wedge, = \} \)

\[M = (\mathbb{N}^\ast; \leq, =) \]

\[R^M(m,n) \text{ iff } m \leq n \]

Then

\[M \models \forall x \exists y \, R(x, y) \]

\[M \not\models \exists y \, \forall x \, R(x, y) \]

\[\text{satisfiable by } M \]

\[\exists y \, \forall x \, R(x, y) \]

is also satisfiable.
IMPORTANT DEFINITIONS

0. A is **satisfiable** if there exists a model M and an object assignment g such that $M \models A[g]$.

2. A set of formulas Φ is **satisfiable** if $\exists M, g$ such that $M \models \Phi[g]$ [for all $A \in \Phi$].

3. $\Phi \models A$ (A is a logical consequence of Φ) if $\forall M, g$ if $M \models \Phi[g]$ then $M \models A[g]$.

ΔA (A is valid) if $\forall M, g$ $M \models A[g]$.
4. $A \iff B$ (A and B are logically equivalent)
 iff $\forall M \forall \phi M \models A$ iff $M \models B$
Examples

1. \((\forall x P_x \lor \forall x Q_x) \Longleftrightarrow \forall x (P_x \lor Q_x)\)

2. \(\forall x (A_x \lor B_x) \not\Longleftrightarrow \forall x A_x \lor \forall x B_x\)

\(\mathcal{L} = \{\emptyset, P, Q, A, B\}\)
Example

Earlier formula \(A : \)

\[
\forall x \forall z \exists z' \
\left(x = z' + z \land (z' = 0 \lor z' = -x) \right) \supset
\exists z'' \left(sz + z'' = x \right)
\]

says for every \(x,z \) if \(x \geq z \) then
we can write \(x \) as \((z+1)+z''\) for some \(z'' \)

- true when \(M = \emptyset \) so \(A \) is satisfiable
- false when \(M = \left(M = \{0,1,2\} \right. \left. \left. \begin{array}{c}
0+0 = 0 \\
1+0 = 1 \\
2+0 = 2 \\
\forall \text{ all others}
\end{array}
\right) \right) \)

\[
\begin{align*}
x &= 2 \\
z &= 0 \\
z' &= 2
\end{align*}
\]
Example

\[\forall x \forall y \ (f(x) = f(y)) \implies x = y \]

No

Let \(M = [0, 1] \)

\(M: \quad f(0) = 0 \)
\(f(1) = 0 \)

Then \(M = \forall x \forall y \ (f(x) = f(y)) \)
but \(M \not\subseteq x = y \) (since \(0 \not= 1 \))
Substitution

Let s, t be L-terms.

$t(s/x)$: substitute x everywhere by s

$A(s/x)$: substitute all free occurrences of x in A by s

$t = \text{\texttt{+ s s o} x}

\text{\texttt{t(+) y z)}: + ss o + y z

\text{\texttt{s s o} + (y +)}
Substitution

Let s, t be L-terms.

$t(s/x)$: substitute x everywhere by s

$A(s/x)$: substitute all free occurrences of x in A by s

Lemma: $(t(s/x))^M[G] = t^M[G(x \stackrel{s^M[G]}{\mapsto} x)]$

- substitute x for s
- obtain new object assignment G' where $G'(x) = s^M$
- then evaluate t under M, G'
- then evaluate t' under M, G'

substitute x for s

obtain new object assignment G' where $G'(x) = s^M$

Then evaluate t under M, G'
Substitution Cont’d

Need to be more careful when making substitutions into formulas

Example: $A : \forall y \varphi (x = y + y)$

$A(\frac{x+y}{x}) : \forall y \varphi (x + y = y + y)$

Defn term t is freely substitutable for x in A iff there is no subformula in A of the form $\forall y \varphi B$ or $\exists y \varphi B$ where y occurs in t
Substitution Theorem

If \(t \) is freely substitutable for \(x \) in \(A \) then \(\forall M \forall a \)

\[M \models A(t/x)[a] \text{ iff } M \models A[a](t^m/x) \]
Easy way to avoid this problem (of making a “bad” substitution):

2 types of variables
free variables a, b, c, \ldots
bound variables x, y, z, \ldots

Proper formula: every free variable occurrence is of type free, and every bound variable occurrence is of type bound

Proper term: no variables of type bound
Lines are again sequents

\[A_1, \ldots, A_k \rightarrow B_1, \ldots, B_e \]

where each \(A_i \), \(B_j \) is a proper \(L \)-formula

\[A_s : A_1 \land A_2 \land \ldots \land A_k \rightarrow B_1 \lor \ldots \lor B_e \]
First order sequent calculus LK

Lines are again sequents

\[A_1, \ldots, A_k \rightarrow B_1, \ldots, B_L \]

where each \(A_i \), \(B_j \) is a proper \(L \)-formula.

Rules

Old rules of PK

Plus new rules for \(\forall, \exists \)

like a large AND

Large OR
New Logical Rules for \forall, \exists

\forall-left

\[
\frac{A(t), \Gamma \Rightarrow \Delta}{\forall x \ A(x), \Gamma \Rightarrow \Delta}
\]

\forall-right

\[
\frac{\Gamma \Rightarrow \Delta, \ A(b)}{\Gamma \Rightarrow \Delta, \ \forall x \ A(x)}
\]

\exists-left

\[
\frac{A(b), \Gamma \Rightarrow \Delta}{\exists x \ A(x), \Gamma \Rightarrow \Delta}
\]

\exists-right

\[
\frac{\Gamma \Rightarrow \Delta, \ A(t)}{\Gamma \Rightarrow \Delta, \ \exists x \ A(x)}
\]

* A, t are proper
* b is a free variable not appearing in lower sequent of rule
Example of an LK proof

\[
\begin{align*}
\text{Pa} & \Rightarrow \text{Pa} \\
\text{Pa, Qa} & \Rightarrow \text{Pa} \\
\text{Pa} \land \text{Qa} & \Rightarrow \text{Pa} \\
\text{Pa} \land \text{Qa} & \Rightarrow \exists x \ P x \\
\exists (P x \land Q x) & \Rightarrow \exists x \ P x \\
\exists (P x \land Q x) & \Rightarrow \exists x \ P x \land \exists x \ Q x
\end{align*}
\]
SOUNDNESS

Defn A first order sequent \(A_1, \ldots, A_k \to B_1, \ldots, B_e \) is valid if and only if its associated formula \((A_1 \land \ldots \land A_k) \to (B_1 \lor \ldots \lor B_e)\) is valid.

Soundness Theorem for LK Every sequent provable in LK is valid.
Proof of Lemma

Go through each rule.

Example: \forall-right rule

Let $\Gamma' = B_1 \ldots B_e$
$\Delta = C_1 \ldots C_{l'}$

$A : B_1 \land \ldots \land B_e \Rightarrow \exists v \ldots \exists C_{l'} \land A(x)$

$A_L : B_1 \land \ldots \land B_e \Rightarrow \exists v \ldots \exists C_{l'} \land A(x)$

Note: A cannot occur in lower sequent $\Gamma' \Rightarrow \Delta$, thus A cannot occur in any sequent $\Gamma' \Rightarrow \Delta$.
Theorem (LK Soundness)

Every sequent provable in LK is valid

Proof by induction on the number of sequents in proof.

Axiom $A \rightarrow A$ is valid

Induction step: use previous soundness lemma.