
CSC263 Week 12 



Announcements 

➔ No tutorial this week 
➔ No office hours today (but the usual ones on 

Friday and Monday) 
➔ Extra office hours for final exam 
 

 



Lower Bounds 



So far, we have mostly talked about upper-
bounds on algorithm complexity,  
i.e., O(n log n) means the algorithm takes at 
most cn log n time for some c. 
 
However, sometime it is also useful to talk 
about lower-bounds on algorithm 
complexity, i.e., how much time the algorithm 
at least needs to take. 



Scenario #1 You, implement a sorting 
algorithm with worst-case 
runtime O(n log log n) by 
next week. 

Okay Boss, I will 
try to do that ~ 

You try it for a week, cannot do it, 
then you are fired... 



Scenario #2 You, implement a sorting 
algorithm with worst-case 
runtime O(n log log n) by 
next week. 

No, Boss. O(n log log n) is 
below the lower bound on 
sorting algorithm complexity , I 
can’t do it, nobody can do it! 



Why learn about lower bounds 

➔ Know your limit 
◆ we always try to make algorithms faster, but if there 

is a limit that you cannot exceed, you want to know 

➔ Approach the limit 
◆ Once you have an understanding about of limit of 

the algorithm’s performance, you get insights about 
how to approach that limit. 



Lower bounds 
on sorting algorithms 



Upper bounds: We know a few sorting 
algorithms with worst-case O(n log n) runtime.  
 
Is O(n log n) the best we can do? 
 
Actually, yes, because the lower bound on 
sorting algorithms is Ω(n log n), i.e., a sorting 
algorithm needs at least cn log n time to finish 
in worst-case. 



actually, more precisely ... 

The lower bound n log n applies to only all 
comparison based sorting algorithms, with no 
assumptions on the values of the elements. 
 
It is possible to do faster than n log n if we 
make assumptions on the values. 



Example: sorting with assumptions 

Sort an array of n elements which are either 1 or 2. 
 
 2 1 1 2 2 2 1 

➔ Go through the array, count the number of 1’s, 
 namely, k 

➔ Then output an array with k 1’s followed by n-k 
 2’s 

➔ This takes O(n). 



Now prove it 
the worst-case runtime of comparison 

based sorting algorithms is in Ω(n log n) 



Sort {x, y, z} via comparisons 

x < y 

y < z 

x<y<z 

True 

True x < z 

False 

x<z<y 

True 

Assume x, y, z are 
distinct values, i.e., 
x≠y≠z 

A tree that is 
used to decide 
what the sorted 
order of x, y, z 
should be ... 



The decision tree for sorting {x, y, z} 
a tree that contains a complete set of decision sequences 

x < y 

y < z x < z 

y < z x < z x<y<z 

x<z<y z<x<y 

y<x<z 

y<z<x z<y<x 

True 

True True 

True True 

False 

False 

False 

False 

False 



x < y 

y < z x < z 

y < z x < z x<y<z 

x<z<y z<x<y 

y<x<z 

y<z<x z<y<x 

True 

True True 

True True 

False 

False 

False 

False 

False 

Each leaf node corresponds to a possible 
sorted order of {x, y, z}, a decision tree need 
to contain all possible orders. 

How many possible 
orders for n elements? 

          n! 
So number of 
leaves L ≥ n! 



Now think about the height of the tree 

x < y 

y < z x < z 

y < z x < z x<y<z 

x<z<y z<x<y 

y<x<z 

y<z<x z<y<x 

True 

True True 

True True 

False 

False 

False 

False 

False 

A binary tree with height h has at most 2h leaves 

So number of 
leaves L ≥ n! 

So number of 
leaves L ≤ 2^h 



So number of 
leaves L ≥ n! 

So,  
 
2h ≥ n! 
 
h ≥ log (n!) ∈ Ω(n log n) 

Not trivial, will 
show it later 

h ∈ Ω(n log n) 

So number of 
leaves L ≤ 2^h 



x < y 

y < z x < z 

y < z x < z x<y<z 

x<z<y z<x<y 

y<x<z 

y<z<x z<y<x 

True 

True True 

True True 

False 

False 

False 

False 

False 

What does h represent, really? 
The worst-case # of comparisons to sort! 

h ∈ Ω(n log n) 



What did we just show? 

The worst-case number of comparisons 
needed to sort n elements is in Ω (n log n) 

Lower bound proven! 



Appendix: the missing piece 

Show that log (n!) is in Ω (n log n) 

   log (n!)  

= log 1 + log 2 + … + log n/2 + … + log n 

≥ log n/2 + … + log n   (n/2 + 1 of them) 

≥ log n/2 + log n/2 + … + log n/2   (n/2 + 1 of them) 

≥ n/2 · log n/2 

∈ Ω (n log n) 



 
 

Often the number of possible solutions is 
small so we can’t use the previous easy 

strategy.  
 

A more general lower bound tool: 
The Adversary Method 



How does your opponent smartly cheat in this game? 
➔ While you ask questions, the opponent alters their ships’ 

positions so that they can “miss” whenever possible, 
i.e., construct the worst possible input (layout) based 
on your questions. 

➔  They won’t get caught as long as their answers are 
consistent with one possible input. 



If we can prove that, no matter what sequence 
of questions you ask, the opponent can always 
craft an input such that it takes at least 42 
guesses to sink a ship. 
 
Then we can say the lower bound on the 
complexity of the “sink-a-ship” problem is 42 
guesses, no matter what “guessing algorithm” 
you use. 



more formally ... 

To prove a lower bound L(n) on the complexity 
of problem P,  
 
we show that for every algorithm A and arbitrary 
input size n, there exists some input of size n 
(picked by an imaginary adversary) for which A 
takes at least L(n) steps. 



Example: search unsorted array 

Problem: 
Given an unsorted array of n elements, return 
the index at which the value is 42. 
(assume that 42 must be in the array) 

3 5 2 42 7 9 8 



Possible algorithms 

➔ Check through indices 1, 2, 3, …, n 
➔ Check from n, n-1, n-2, …., to 1 
➔ Check all odd indices 1, 3, 5, …, then check 

all even indices 2, 4, 6, … 
➔ Check in the order 3, 1, 4, 1, 5, 9, 2, 6, ... 

3 5 2 42 7 9 8 

Prove: the lower bound on this problem is 
n-1, no matter what algorithm we use. 



Proof: (using adversarial argument) 

➔ Let A be an arbitrary algorithm in which the 
first n-1 indices checked are i1, i2, …, in-1 

➔ Construct (adversarially) an input array L 
such that L[i1], L[i2], …, L[in-1] are not 42, 
and L[in] is 42. 

➔ Because A is arbitrary, therefore the lower 
bound on the complexity of solving this 
problem is n, no matter what algorithm is 
used. 



The problem 

Given n elements, determine the maximum 
element. 
 
How many comparisons are needed at least? 



The problem 

Given n elements, determine the maximum 
element. 
 
How many comparisons are needed at least? 

Answer: Need at least n-1 comparisons 



Insight: upper bound for max 
How to design a maximum-finding algorithm that reaches 
the lower bound n-1 ? 

➔ Make every comparison count, i.e., every comparison 
should guarantee to eliminate a possible candidate 
for maximum/champion. 

➔  No match between losers, because neither of them is a 
candidate for champion. 

➔  No match between a candidate and a loser, because if 
the candidate wins, the match makes no contribution 
(not eliminating a candidate) 



These algorithms reach the lower bound 

Linear scanning Tournament 



Adversary strategy for Max 
Suppose Algorithm A claims to find the max of n elements 
using < n-1 comparisons (on some path) 

Construct a graph in which we join two elements by an 
edge if they are compared (along this path) by A. 

Since < n-1 comparisons on this path, the underlying graph 
has at least 2 components, C1 and C2 

Suppose A outputs u in component C1 (as max) 

Then we can fix values for elements in C1, C2 to be 
consistent with the comparisons, and where every element 
in C2 is larger than u. Contradiction!   



Challenge question 

Given n elements, what is the lower bound on 
the number of comparisons needed to 
determine both the maximum element and the 
minimum element? 

Hint: it is smaller than 2(n-1) 



proving lower bounds 
using Reduction 



The idea 

➔ Proving one problem’s lower bound using 
another problem’s known lower bound. 

➔ If we know problem B can be solved by 
solving an instance of problem A, i.e., A is 
“harder” than B 

➔ and we know that B has lower bound L(n) 

➔ then A must also be lower-bounded by L(n) 



Example: 
Prove: ExtractMax on a binary heap is lower bounded by 
Ω(log n). 
 
Suppose ExtractMax can be done faster than log n, 
then HeapSort can be done faster than n log n, because 
HeapSort is basically ExtractMax n times 
 
But HeapSort, as a comparison based sorting algorithm, 
has been proven to be lower bounded by Ω(n log n). 
Contrdiction, so ExtractMax must be lower bounded by 
Ω(log n) 





Final thoughts 



what did we learn in 
CSC263 



Data structures are the underlying skeleton of 
a good computer system. 
 
If you will get to design such a system yourself 
and make fundamental decisions, what you 
learned from CSC263 should give you some 
clues on what to do. 



➔  Understand the nature of the system / problem, and 
model them into structured data 

➔  Investigate the probability distribution of the input 
➔  Investigate the real cost of operations 
➔ Make reasonable assumptions and estimates where 

necessary 
➔  Decide what you care about in terms of performance, 

and analyse it 
◆  “No user shall experience a delay more than 500 

milliseconds” -- worst-case analysis 
◆ “It’s ok some rare operations take a long time” -- 

average-case analysis 
◆ “what matter is how fast we can finish the whole 

sequence of operations” -- amortized analysis 



In CSC263, we learned to be  
a computer scientist,  

not just a programmer. 

Original words from lecture notes of Michelle Craig 



what we did NOT learn 
but are now ready to learn 



Other (even better!) kinds of heaps 

➔ Sometimes we want to be able to merge 
two heaps into one heap, with binary heap 
we can do it in O(n) time worst-case. 

➔ Using binomial heap, we can do merge in 
O(log n) time worst-case 

➔ Using Fibonacci heap, we can do merge 
(as well as Max/Insert/IncreaseKey) in O(1) 
time amortized. 



Even better kinds of search trees 

➔ We learned BST and AVL tree, and there 
are others called red-black tree, 2-3 tree, 
splay tree, AA tree, scapegoat tree, etc. 

➔ There is B-tree, optimized for accessing  
big blocks of data (like in a hard drive) 

➔ There is B+ tree, which is even better than 
B-tree (widely used in database systems). 

➔ You’ll learn about these in CSC443. 



Amazing applications  of hashing 

 
➔ Perfect hashing guarantees worst-case 

O(1) time for searching, instead of average-
case O(1) time 

➔ Cuckoo hashing (coolest thing ever) 



Shortest paths in a graph 

➔ We learned how to get shortest paths using 
BFS on a graph 

 
➔ We did NOT learn how to get shortest 

(weighted) paths on a weighted graph. 
◆ Dijkstra, Bellman-Ford, ... 

 
➔ You’ll learn about them in CSC 373 



Greedy algorithms 

➔ We learned that Kruskal’s and Prim’s MST 
algorithms are greedy 

 
➔ What property is satisfied by the problems 

that can be perfectly solved by greedy 
algorithms? 

 
➔ Will learn in CSC373 



Dynamic programming 

➔ Pick an interesting algorithm design 
problem, very likely it involves dynamic 
programming 

 
➔ Will learn in CSC373 



P vs NP, approximation algorithms 

➔ We learned a bit about lower bounds. 

➔ There are some problems, we can prove 
they cannot be perfectly solved in polynomial 
time. 

➔ For these problems, we have to design 
some approximation algorithms. 

➔ Will learn in CSC373 / 463 



As our circle of knowledge 
expands, so does the 
circumference of darkness 
surrounding it. 



Final Exam Prep 



Topics covered: all of them 

➔ Heaps 
➔ BST, AVL tree, augmentation 
➔ Hashing 
➔ Randomized algorithms, Quicksort 
➔ Graphs, BFS, DFS, MST 
➔ Disjoint sets 
➔ Lower bounds 
➔ Analysis: worst-case, average-case, 

amortized.  



Types of questions 
➔  Short-answer questions testing basic understanding. 

➔  Trace operations we learned on a data structure 

➔  Implement an ADT using a data structure 

➔  Analysis runtimes 

◆ best / worst-case 

◆ average-case 

◆ amortized cost 

➔ Given a real-world problem, design data structures / 
algorithms to solve it. 



Study for the exam 

➔ Review lecture notes/slides 

➔ Review tutorial problems 

➔ Review all problem sets / assignments 

➔ Practice with past exams (available at  

 exam repository) 

➔ Come to office hours whenever 

confused. 



Toni’s pre-exam office hours  

➔ Monday Dec 7, 3-4pm 

➔ Wednesday Dec 9, 1-2pm 

 



Exam Time & Location 

Friday, Dec 11, 2:00 - 5:00 pm 
 
 
 

Go to the right location. 

No aid sheet 



All the best! 


