CSC263 Week 12

Announcements

\rightarrow No tutorial this week
\rightarrow No office hours today (but the usual ones on Friday and Monday)
\rightarrow Extra office hours for final exam

Lower Bounds

So far, we have mostly talked about upperbounds on algorithm complexity, i.e., $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ means the algorithm takes at most cn $\log \mathbf{n}$ time for some \mathbf{c}.

However, sometime it is also useful to talk about lower-bounds on algorithm complexity, i.e., how much time the algorithm at least needs to take.

Scenario \#1

> You, implement a sorting algorithm with worst-case runtime $O(n \log \log n)$ by next week.

Okay Boss, I will try to do that ~

You try it for a week, cannot do it, then you are fired...

Scenario \#2

You, implement a sorting algorithm with worst-case runtime $O(n \log \log n)$ by next week.

Why learn about lower bounds

\rightarrow Know your limit

- we always try to make algorithms faster, but if there is a limit that you cannot exceed, you want to know
\rightarrow Approach the limit
- Once you have an understanding about of limit of the algorithm's performance, you get insights about how to approach that limit.

Lower bounds on sorting algorithms

Upper bounds: We know a few sorting algorithms with worst-case O(n log n) runtime.

Is $\mathbf{O}(\mathbf{n} \log \mathrm{n})$ the best we can do?

Actually, yes, because the lower bound on sorting algorithms is $\Omega(n \log n)$, i.e., a sorting algorithm needs at least cn log \mathbf{n} time to finish in worst-case.

actually, more precisely ...

The lower bound $\mathbf{n} \log \mathbf{n}$ applies to only all comparison based sorting algorithms, with no assumptions on the values of the elements.

It is possible to do faster than $\mathbf{n} \log \mathbf{n}$ if we make assumptions on the values.

Example: sorting with assumptions

Sort an array of \mathbf{n} elements which are either $\mathbf{1}$ or $\mathbf{2}$.

\rightarrow Go through the array, count the number of 1 's, namely, k
\rightarrow Then output an array with $\mathbf{k} 1$'s followed by $\mathbf{n}-\mathbf{k}$ 2's
\rightarrow This takes $\mathrm{O}(\mathrm{n})$.

Now prove it
 the worst-case runtime of comparison based sorting algorithms is in $\Omega(\mathrm{n} \log \mathrm{n})$

Sort $\{x, y, z\}$ via comparisons

Assume $\mathbf{x , ~ y , ~ z ~ a r e ~}$ distinct values, i.e., $\mathrm{x} \neq \mathrm{y} \neq \mathrm{z}$

The decision tree for sorting $\{x, y, z\}$
a tree that contains a complete set of decision sequences

Each leaf node corresponds to a possible sorted order of $\{x, y, z\}$, a decision tree need to contain all possible orders.

Now think about the height of the tree
A binary tree with height \mathbf{h} has at most $\mathbf{2}^{\boldsymbol{h}}$ leaves

So,

$2^{h} \geq n!$

So number of leaves L $\leq \mathbf{2 A h}^{\wedge}$

So number of leaves $\mathrm{L} \geq \mathrm{n}$!

$\mathbf{h} \in \boldsymbol{\Omega}(\mathbf{n} \log \mathbf{n})$

What does h represent, really?
The worst-case \# of comparisons to sort!

$\mathbf{h} \in \boldsymbol{\Omega}(\mathbf{n} \log \mathbf{n})$

What did we just show?

The worst-case number of comparisons needed to sort \mathbf{n} elements is in $\Omega(\mathbf{n} \log \mathbf{n})$

Appendix: the missing piece

Show that $\log (n!)$ is in $\Omega(n \log n)$
$\log (n!)$
$=\log 1+\log 2+\ldots+\log n / 2+\ldots+\log n$
$\geq \log n / 2+\ldots+\log n \quad(n / 2+1$ of them)
$\geq \log n / 2+\log n / 2+\ldots+\log n / 2 \quad(n / 2+1$ of them)
$\geq \mathbf{n} / 2 \cdot \log n / 2$
$\in \Omega(\mathbf{n} \log \mathbf{n})$

Often the number of possible solutions is small so we can't use the previous easy strategy.

A more general lower bound tool: The Adversary Method

How does your opponent smartly cheat in this game?
\rightarrow While you ask questions, the opponent alters their ships' positions so that they can "miss" whenever possible, i.e., construct the worst possible input (layout) based on your questions.
\rightarrow They won't get caught as long as their answers are consistent with one possible input.

If we can prove that, no matter what sequence of questions you ask, the opponent can always craft an input such that it takes at least 42 guesses to sink a ship.

Then we can say the lower bound on the complexity of the "sink-a-ship" problem is 42 guesses, no matter what "guessing algorithm" you use.

more formally ...

To prove a lower bound $\mathbf{L}(\mathbf{n})$ on the complexity of problem \mathbf{P},
we show that for every algorithm \mathbf{A} and arbitrary input size \mathbf{n}, there exists some input of size \mathbf{n} (picked by an imaginary adversary) for which \mathbf{A} takes at least $\mathbf{L}(\mathbf{n})$ steps.

Example: search unsorted array

Problem:

Given an unsorted array of \mathbf{n} elements, return the index at which the value is 42 .
(assume that 42 must be in the array)

Possible algorithms

\rightarrow Check through indices $1,2,3, \ldots, n$
\rightarrow Check from $\mathrm{n}, \mathrm{n}-1, \mathrm{n}-2, \ldots$, to 1
\rightarrow Check all odd indices $1,3,5, \ldots$, then check all even indices $2,4,6, \ldots$
\rightarrow Check in the order $3,1,4,1,5,9,2,6, \ldots$

Prove: the lower bound on this problem is

 $\mathrm{n}-1$, no matter what algorithm we use.| 3 | 5 | 2 | 42 | 7 | 9 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Proof: (using adversarial argument)

\rightarrow Let \mathbf{A} be an arbitrary algorithm in which the first n -1 indices checked are $\mathrm{i} 1, \mathrm{i} 2, \ldots$, in-1
\rightarrow Construct (adversarially) an input array \mathbf{L} such that L[i1], L[i2], ..., L[in-1] are not 42, and $\mathrm{L}[\mathrm{in}]$ is 42.
\rightarrow Because \mathbf{A} is arbitrary, therefore the lower bound on the complexity of solving this problem is \mathbf{n}, no matter what algorithm is used.

The problem

Given \mathbf{n} elements, determine the maximum element.

How many comparisons are needed at least?

The problem

Given \mathbf{n} elements, determine the maximum element.

How many comparisons are needed at least?

Answer: Need at least n-1 comparisons

Insight: upper bound for max

How to design a maximum-finding algorithm that reaches the lower bound $\mathbf{n - 1}$?
\rightarrow Make every comparison count, i.e., every comparison should guarantee to eliminate a possible candidate for maximum/champion.
\rightarrow No match between losers, because neither of them is a candidate for champion.
\rightarrow No match between a candidate and a loser, because if the candidate wins, the match makes no contribution (not eliminating a candidate)

These algorithms reach the lower bound

Linear scanning

Tournament

Adversary strategy for Max

Suppose Algorithm A claims to find the max of n elements using < $\mathrm{n}-1$ comparisons (on some path)

Construct a graph in which we join two elements by an edge if they are compared (along this path) by A.

Since $<\mathrm{n}-1$ comparisons on this path, the underlying graph has at least 2 components, C1 and C2

Suppose A outputs u in component C1 (as max)
Then we can fix values for elements in C1, C2 to be consistent with the comparisons, and where every element in C 2 is larger than u . Contradiction!

Challenge question

Given \mathbf{n} elements, what is the lower bound on the number of comparisons needed to determine both the maximum element and the minimum element?

Hint: it is smaller than 2(n-1)

proving lower bounds using Reduction

The idea

\rightarrow Proving one problem's lower bound using another problem's known lower bound.
\rightarrow If we know problem \mathbf{B} can be solved by solving an instance of problem \mathbf{A}, i.e., \mathbf{A} is "harder" than B
\rightarrow and we know that B has lower bound $L(n)$
\rightarrow then A must also be lower-bounded by L(n)

Example:

Prove: ExtractMax on a binary heap is lower bounded by $\Omega(\log n)$.

Suppose ExtractMax can be done faster than $\log \mathbf{n}$, then HeapSort can be done faster than $\mathbf{n} \log \mathbf{n}$, because HeapSort is basically ExtractMax \mathbf{n} times

But HeapSort, as a comparison based sorting algorithm, has been proven to be lower bounded by $\Omega(\mathbf{n} \log \mathbf{n})$. Contrdiction, so ExtractMax must be lower bounded by $\Omega(\log n)$

Final thoughts

what did we learn in CSC263

Data structures are the underlying skeleton of a good computer system.

If you will get to design such a system yourself and make fundamental decisions, what you learned from CSC263 should give you some clues on what to do.
\rightarrow Understand the nature of the system / problem, and model them into structured data
\rightarrow Investigate the probability distribution of the input
\rightarrow Investigate the real cost of operations
\rightarrow Make reasonable assumptions and estimates where necessary
\rightarrow Decide what you care about in terms of performance, and analyse it

- "No user shall experience a delay more than 500 milliseconds" -- worst-case analysis
- "It's ok some rare operations take a long time" --average-case analysis
- "what matter is how fast we can finish the whole sequence of operations" -- amortized analysis

In CSC263, we learned to be a computer scientist, not just a programmer.

what we did NOT learn
 but are now ready to learn

Other (even better!) kinds of heaps

\rightarrow Sometimes we want to be able to merge two heaps into one heap, with binary heap we can do it in $\mathbf{O}(\mathbf{n})$ time worst-case.
\rightarrow Using binomial heap, we can do merge in $\mathbf{O}(\log n)$ time worst-case
\rightarrow Using Fibonacci heap, we can do merge (as well as Max/Insert/IncreaseKey) in O(1) time amortized.

Even better kinds of search trees

\rightarrow We learned BST and AVL tree, and there are others called red-black tree, 2-3 tree, splay tree, AA tree, scapegoat tree, etc.
\rightarrow There is B-tree, optimized for accessing big blocks of data (like in a hard drive)
\rightarrow There is $\mathbf{B +}$ tree, which is even better than B-tree (widely used in database systems).
\rightarrow You'll learn about these in CSC443.

Amazing applications of hashing

\rightarrow Perfect hashing guarantees worst-case $\mathrm{O}(1)$ time for searching, instead of averagecase $O(1)$ time
\rightarrow Cuckoo hashing (coolest thing ever)

Shortest paths in a graph

\rightarrow We learned how to get shortest paths using BFS on a graph
\rightarrow We did NOT learn how to get shortest (weighted) paths on a weighted graph.
-Dijkstra, Bellman-Ford, ...
\rightarrow You'll learn about them in CSC 373

Greedy algorithms

\rightarrow We learned that Kruskal's and Prim's MST algorithms are greedy
\rightarrow What property is satisfied by the problems that can be perfectly solved by greedy algorithms?
\rightarrow Will learn in CSC373

Dynamic programming

\rightarrow Pick an interesting algorithm design problem, very likely it involves dynamic programming
\rightarrow Will learn in CSC373

P vs NP, approximation algorithms

\rightarrow We learned a bit about lower bounds.
\rightarrow There are some problems, we can prove they cannot be perfectly solved in polynomial time.
\rightarrow For these problems, we have to design some approximation algorithms.
\rightarrow Will learn in CSC373 / 463

As our circle of knowledge expands, so does the circumference of darkness surrounding it.

Final Exam Prep

Topics covered: all of them

\rightarrow Heaps
\rightarrow BST, AVL tree, augmentation
\rightarrow Hashing
\rightarrow Randomized algorithms, Quicksort
\rightarrow Graphs, BFS, DFS, MST
\rightarrow Disjoint sets
\rightarrow Lower bounds
\rightarrow Analysis: worst-case, average-case, amortized.

Types of questions

\rightarrow Short-answer questions testing basic understanding.
\rightarrow Trace operations we learned on a data structure
\rightarrow Implement an ADT using a data structure
\rightarrow Analysis runtimes

- best / worst-case
- average-case
- amortized cost
\rightarrow Given a real-world problem, design data structures / algorithms to solve it.

Study for the exam

\rightarrow Review lecture notes/slides
\rightarrow Review tutorial problems
\rightarrow Review all problem sets / assignments
\rightarrow Practice with past exams (available at exam repository)
\rightarrow Come to office hours whenever confused.

Toni's pre-exam office hours

\rightarrow Monday Dec 7, 3-4pm
\rightarrow Wednesday Dec 9, 1-2pm

Exam Time \& Location

Friday, Dec 11, 2:00-5:00 pm

No aid sheet

Go to the right location.

All the best!

