CSC263 Week 11

Announcements

Problem Set 5 (the last one!!) is due this Tuesday (Dec 1)

Problem Set 4 is graded. Average=77\%

ADT: Disjoint Sets

\rightarrow What does it store?
\rightarrow What operations are supported?

What does it store?

The elements in the sets can change dynamically.

It stores a collection of (dynamic) sets of elements, which are disjoint from each other.

Each element belongs to only one set.

Harper

Bieber

Neymar

Each set has a representative

A set is identified by its representative.

Harper

Operations

MakeSet(x): Given an element \mathbf{x} that does
NOT belong to any set, create a new set $\{x\}$,
that contains only \mathbf{x}, and assign \mathbf{x} as the representative.

MakeSet("Newton")

Operations

FindSet(x): return the representative of the set that contains \mathbf{x}.

FindSet("Bieber") returns: Ford
FindSet("Oprah") returns: Obama
FindSet("Newton") returns: Newton

Operations

If \mathbf{x} and \mathbf{y} are already in the same set, then nothing happens.

Union(\mathbf{x}, y): given two elements \mathbf{x} and \mathbf{y}, create a new set which is the union of the two sets that contain \mathbf{x} and \mathbf{y}, delete the original sets that contains x and y.

Pick a representative of the new set, usually
(but not necessarily) one of the
representatives of the two original sets.

\checkmark Union("Gaga", "Harper")

Applications

KRUSKAL-MST(G(V, E, w)):
$1 \quad \mathrm{~T} \leftarrow\}$
2 sort edges so that $w(e 1) \leq w(e 2) \leq \ldots \leq w(e m)$
3 for each v in V :
MakeSet(v)
5 for $\mathrm{i} \leftarrow 1$ to m :
6 \# let (ui, vi) = ei
7
8
9
if FindSet(ui) != FindSet(vi):
Union(ui, vi)
$T \leftarrow T U\{e i\}$

Other applications

Finding connected components of a graph

Summary: the ADT

\rightarrow Stores a collection of disjoint sets
\rightarrow Supported operations

- MakeSet(x)
-FindSet(x)
-Union(x, y)

How to implement the Disjoint Sets ADT (efficiently) ?

Ways of implementations

1.Circularly-linked lists
2.Linked lists with extra pointer
3.Linked lists with extra pointer and with union-by-weight
4.Trees
5.Trees with union-by-rank
6.Trees with path-compression
7.Trees with union-by-weight and pathcompression

Circularly-linked list

Circularly-linked list

\rightarrow One circularly-linked list per set
\rightarrow Head of the linked list also serves as the representative.

Circularly-linked list

\rightarrow MakeSet(x): just a new linked list with a single element x

- worst-case: O(1)
\rightarrow FindSet(x): follow the links until reaching the head
- Θ (Length of list)
\rightarrow Union(x, y): ...

Circularly-linked list: Union(Bieber, Gaga)

First, locate the head of each linked-list by calling FindSet, takes Θ (L)

Circularly-linked list: Union... 1

Circularly-linked list: Union... 2

Exchange the two heads' "next" pointers, O(1)

Circularly-linked list: Union... 3

Keep only one representative for the new set.

Circularly-linked list: runtime

FindSet is the time consuming operation
Amortized analysis: How about the total cost of a sequence of m operations (MakeSet, FindSet, Union)?
\rightarrow A bad sequence: m/4 MakeSet, then m/4-1 Union, then m/2 +1 FindSet

- why it's bad: because many FindSet on a large set (of size m/4)
\rightarrow Total cost: $\Theta\left(\mathrm{m}^{2}\right)$
- each of the $\mathbf{m} / \mathbf{2}+1$ FindSet takes $\boldsymbol{\Theta}(\mathbf{m} / 4)$

Linked list with extra pointer (to head)

Linked list with pointer to head

\rightarrow MakeSet takes O(1)
\rightarrow FindSet now takes $\mathbf{O}(1)$, since we can go to head in 1 step, better than circular linked list
\rightarrow Union...

Linked list with pointer to head

Union(Bieber, Pele)

Idea:

Append one list to the other, then update the pointers to head

Linked list with pointer to head

Update pointers take O(L of appending list)

Linked list with pointer to head

MakeSet and FindSet are fast, Union now becomes the time-consuming one, especially if appending a long list.

Amortized analysis: The total cost of a sequence of \mathbf{m} operations.
\rightarrow Bad sequence: m/2 MakeSet, then m/2-1 Union, then 1 whatever.

- Always let the longer list append, like 1 appd 1, 2 appd 1, 3 appd 1,, m/2-1 appd 1.
\rightarrow Total cost: $\Theta(1+2+3+\ldots+m / 2-1)=\boldsymbol{\Theta}\left(\mathrm{m}^{2}\right)$

Linked list with extra pointer to head with union-by-weight

Linked list with union-by-weight

Union(Bieber, Pele)

Here we have a choice, let's be a bit smart about it...

Append the shorter one to the longer one

Linked list with union-by-weight

Need to keep track of the size (weight) of each list, therefore called union-by-weight

Linked list with union-by-weight

Union-by-weight sounds like a simple heuristic, but it actually provides significant improvement.

For a sequence of \mathbf{m} operations which includes \mathbf{n} MakeSet operations, i.e., \mathbf{n} elements in total, the total cost is $\mathbf{O}(\mathbf{m}+\mathbf{n} \log \mathbf{n})$
i.e., for the previous sequence with $m / 2$ MakeSet and $m / 2$ 1 Union, the total cost would be \mathbf{O} (m log \mathbf{m}), as opposed to $\boldsymbol{\Theta}\left(\mathrm{m}^{2}\right)$ when without union-by-weight.

Linked list with union-by-weight

Proof: (assume there are \mathbf{n} elements in total)
\rightarrow Consider an arbitrary element \mathbf{x}, how many times does its head pointer need to be updated?
\rightarrow Because union-by-weight, when \mathbf{x} is updated, it must be in the smaller list of the two. In other words, after union, the size of list at least doubles.
\rightarrow That is, every time x is updated, set size doubles.
\rightarrow There are only n elements in total, so we can double at most $\mathbf{O}(\log \mathbf{n})$ times, i.e., \mathbf{x} can be updated at most O(log n).
\rightarrow Same for all n elements, so total updates $\mathbf{O}(\mathrm{n} \log \mathrm{n})$

Ways of implementing Disjoint Sets

1. Circularly-linked lists
2. Linked lists with extra pointer $\quad \boldsymbol{O}\left(\mathrm{m}^{2}\right)$
3. Linked lists with extra pointer and with union-by-weight
4. Trees
5. Trees with union-by-rank
6. Trees with path-compression
7. Trees with union-by-weight and path-compression

Benchmark:

Worst-case total cost of a sequence of m operations
(MakeSet or FindSet
or Union)

Trees

a.k.a. disjoint set forest

Each set is an "inverted" tree

\rightarrow Each element keeps a pointer to its parent in the tree
\rightarrow The root points to itself (test root by $\mathbf{x . p}=\mathbf{x}$)
\rightarrow The representative is the root
\rightarrow NOT necessarily a binary
 tree or balanced tree

Operations

\rightarrow MakeSet(x): create a single-node tree with root X

- O(1)
\rightarrow FindSet(x): Trace up the parent pointer until the root is reached
- O(height of tree)
\rightarrow Union(x, y)...

Union(Bieber, Gaga)

Union(Bieber, Gaga)

Union(Bieber, Gaga)

Could we have been smarter about this?

1. Call FindSet(x) and FindSet(y) to locate the representatives, O(h)
2. Let one tree's root point to the other tree's root, $\mathbf{O}(1)$

Benchmarking: runtime

The worst-case sequence of m operations. (with FindSet being the bottleneck)
m/4 MakeSets, m/4-1 Union, m/2 + 1 FindSet

Total cost in worst-case sequence :
$\Theta\left(m^{2}\right)$
(each FindSet would take up to m/4 steps)

Trees with union-by-rank

Intuition

\rightarrow FindSet takes $\mathbf{O}(\mathbf{h})$, so the height of tree matters
\rightarrow To keep the unioned tree's height small, we should let the taller tree's root be the root of the unioned tree

So, we need a way to keep track of the height of the tree

Each node keeps a rank

For now, a node's rank is the same as its height, but it will be different later.

Each node keeps a rank

When Union, let the root with
lower rank point to the root with higher rank

Each node keeps a rank

If the two roots have the same rank, choose either root as the

Benchmarking: runtime

It can be proven that, a tree of \mathbf{n} nodes formed by union-by-rank has height at most $\log \mathrm{n}$, which means FindSet takes $\mathbf{O}(\log \mathbf{n})$

So for a sequence of m/4 MakeSets, m/4-1 Union, m/2 + 1 FindSet operations, the total cost is $\mathrm{O}(\mathrm{m} \log \mathrm{m})$

Rank of a tree with \mathbf{n} nodes is at most $\log \mathbf{n}$, i.e., $r(n) \leq \log n$

Proof:
Equivalently, prove $n(r) \geq 2^{r}$
Use induction on \mathbf{r}
Base step: if $r=0$ (single node), $n(0)=1$, TRUE
Inductive step: assume $n(r) \geq 2^{r}$
\rightarrow a tree with root rank $r+1$ is a result of unioning two trees with root rank r, so
$\rightarrow \mathrm{n}(\mathrm{r}+1)=\mathrm{n}(\mathrm{r})+\mathrm{n}(\mathrm{r}) \geq 2 \times 2^{\mathrm{r}}=2^{\mathrm{r}+1}$
\rightarrow Done.

Trees with path compression

Make B, C and D directly point to A

In other words, the path $\mathrm{D} \rightarrow \mathrm{C} \rightarrow \mathrm{B} \rightarrow \mathrm{A}$ is "compressed".
Extra cost to FindSet: at most twice the cost, so does not affect the order of complexity

Benchmark: runtime

Can be prove: for a sequence of operations with \mathbf{n} MakeSet (so at most $\mathbf{n - 1}$ Union), and \mathbf{k} FindSet, the worst-case total cost of the sequence is in

$$
\Theta\left(n+k \cdot\left(1+\log _{2+\frac{k}{n}} n\right)\right)
$$

So for a sequence of m/4 MakeSets, m/4-1 Union, m/2 + 1 FindSet, the worst-case total cost is in Θ ($\mathrm{m} \log \mathrm{m}$)

Ways of implementing Disjoint Sets

1. Circularly-linked lists $\theta\left(\mathrm{m}^{2}\right)$

Benchmark:

2. Linked lists with extra pointer $\quad \Theta\left(m^{2}\right)$
3. Linked lists with extra pointer and with union-by-weight $\theta(m \log m)$
4. Trees $\quad \Theta\left(\mathrm{m}^{2}\right)$
5. Trees with union-by-rank $\theta(\mathrm{m} \log \mathrm{m})$

Worst-case total cost of a sequence of m operations
(MakeSet or FindSet
or Union)
6. Trees with path-compression
$\theta(\mathrm{m} \log \mathrm{m})$

Can we do better than $\Theta(m \log m) ?$

U. B. R.

P. C.

Trees with union-by-rank and
 path compression

How to combine union-by-rank and path compression?

\rightarrow Path compression happens in the FindSet operation
\rightarrow Union-by-rank happens in the Union operation (outside FindSet)
\rightarrow So they don't really interfere with each other, simply use them both!

Pseudocodes

Complete code using both union-by-rank and path compression

FindSet(x):
if $x \neq x . p$: \# if not root $x . p \leftarrow$ FindSet(x.p)
return x.p

Union(x, y):
Link(FindSet(x), \}
FindSet(y))

Link(x, y):

if x.rank > y.rank:
$y \cdot p \leftarrow x$
else:
$x . p \leftarrow y$
if x.rank = y.rank:
y.rank += 1

Exercise

Draw the result after Union(Oprah, Ford). using both union-by-rank and path compression

Note: rank $\boldsymbol{\neq}$ height

because path compression does NOT maintain height info

Benchmark: runtime

Can be proven: for a sequence of \mathbf{m} operations with \mathbf{n} MakeSet (so at most n-1 Union), worst-case total cost of the sequence is $O\left(m \log ^{*} n\right)$

Note: $\log ^{*} \mathrm{n}$ is equal to the number of times the log function must be iteratively applied so that the result is at most 1

Example: $\log _{2}\left(2^{256}\right)=256$
$\log _{2}(256)=8$
$\log _{2}(8)=3$
$\log _{2}(3)<1.6$
$\log _{2}(1.6)<1$
So $\log ^{*}\left(2^{256}\right)=5$, and $\log ^{*}\left(2^{m}\right)=6$, where $m=2^{256}$
Since $\log ^{*} \mathbf{n}$ is so slowly growing it is like a constant.

Sketch of Analysis

Lemma: A node v which is the root of a subtree of rank r has at least 2^{r} nodes
(We already proved this.)
Lemma: If there are n nodes, the maximum number of nodes of rank r is $n / 2^{r}$

Each node which is the root of a subtree with rank r has at least 2^{r} nodes. So maximum is $n / 2^{r}$ rank r root notes, each with 2^{r} children

Sketch of Analysis

Group the nodes into at most log*n buckets:

Bucket 0: nodes of rank 0
Bucket 1: nodes of rank 1
Bucket 2: nodes of rank 2-3
Bucket 3: nodes of rank 4-16

Bucket B: nodes of rank [r, $\left.2^{r}-1\right]=[r, R-1]$
Bucket $B+1$: nodes of rank [R, $\left.2^{R}-1\right]$
Note: the maximum number of elements in bucket containing nodes of rank $\left[R, 2^{R}-1\right]$ is at most $n / 2^{R}+n / 2^{R+1}+\ldots+n / 2^{2^{\wedge} R-1} \leq 2 n / 2^{R}$

Sketch of Analysis

Let F be the list of all m FindSet operations performed
Then total cost of m finds is $T_{1}+T_{2}+T_{3}$
Where $T_{1}=$ links pointing to root that are traversed
$T_{2}=$ links traversed between nodes in different buckets
$\mathrm{T}_{3}=$ links traversed between nodes in same bucket

- $T_{1} \leq m$ since each FindSet traverses one link to root
- $T_{2} \leq m \log ^{*} n$ since there are only $\log ^{*} n$ buckets
- It is left to bound T_{3}

Sketch of Analysis

It is left to bound T_{3}
Suppose we are traversing from u to v , where u, v are both in the bucket of nodes with rank [B, $\left.2^{B}-1\right]$
Since the rank is always increasing as we follow a path to a root, the number of links going from u to v is at most $2^{B}-1-B \leq 2^{B}$

Thus $T_{3} \leq \Sigma_{B} 2^{B} 2 n / 2^{B} \leq 2 n \log ^{*} n$

Thus $\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}=\mathrm{O}\left(\mathrm{m} \log ^{*} \mathrm{n}\right)$

Summary of worst case runtime for m operations, n elements)

1. Circularly-linked lists

$$
\Theta\left(m^{2}\right)
$$

2. Linked lists with extra pointer $\quad \Theta\left(m^{2}\right)$
3. Linked lists with extra pointer and with union-by-weight $\Theta(m \log m)$
4. Trees $\quad \Theta\left(m^{2}\right)$
5. Trees with union-by-rank $\boldsymbol{\Theta}(\mathrm{m} \log \mathrm{m})$
6. Trees with path compression $\quad \Theta(m \log m)$
7. Trees with union-by-rank and
path compression
$O\left(m \log ^{*} n\right)$

Next week

\rightarrow Lower bounds

\rightarrow Review for final exam

