
CSC263 Week 11

Announcements

Problem Set 5 (the last one!!) is due this
Tuesday (Dec 1)

Problem Set 4 is graded. Average=77%

ADT: Disjoint Sets
➔ What does it store?
➔ What operations are supported?

What does it store?
It stores a collection of (dynamic) sets of
elements, which are disjoint from each other.

The elements in the sets
can change dynamically.

Each element belongs to
only one set.

Obama

Gaga

Oprah

Harper

Ford

Bieber

Regehr

Pele

Neymar

Each set has a representative

Obama

Gaga

Oprah

Harper

Ford

Bieber

Regehr

Pele

Neymar

A set is identified by its representative.

Operations

MakeSet(x): Given an element x that does
NOT belong to any set, create a new set {x},
that contains only x, and assign x as the
representative.

MakeSet(“Newton”)
Newton

Operations

FindSet(x): return the representative of the set
that contains x.

Obama

Gaga

Oprah

Harper

Ford

Bieber

Regehr

Pele

Neymar

Newton

FindSet(“Bieber”) returns: Ford

FindSet(“Oprah”) returns: Obama

FindSet(“Newton”)
returns: Newton

Operations

Union(x, y): given two elements x and y,
create a new set which is the union of the two
sets that contain x and y, delete the original
sets that contains x and y.

Pick a representative of the new set, usually
(but not necessarily) one of the
representatives of the two original sets.

If x and y are already in the same
set, then nothing happens.

Obama

Gaga

Oprah

Harper

Ford

Bieber

Regehr

Pele

Neymar

Newton

Obama

Gaga

Oprah

Harper

Ford

Bieber

Regehr

Pele

Neymar

Newton

Union(“Gaga”, “Harper”)

Applications

KRUSKAL-‐MST(G(V,	 E,	 w)):	
1	 	 	 T	 ←	 {}	
2	 	 	 sort	 edges	 so	 that	 w(e1)≤w(e2)≤...≤w(em)	
3	 	 	 for	 each	 v	 in	 V:	
4	 	 	 	 	 	 MakeSet(v)	
5	 	 	 for	 i	 ←	 1	 to	 m:	
6	 	 	 	 	 	 #	 let	 (ui,	 vi)	 =	 ei	
7	 	 	 	 	 	 if	 FindSet(ui)	 !=	 FindSet(vi):	
8	 	 	 	 	 	 	 	 	 Union(ui,	 vi)	
9	 	 	 	 	 	 	 	 	 T	 ←	 T	 ∪	 {ei}	

Other applications

Finding connected components of a graph

For each edge (u, v)
if FindSet(u) != FindSet(v),
then Union(u, v)

Summary: the ADT

➔ Stores a collection of disjoint sets

➔ Supported operations
◆ MakeSet(x)

◆ FindSet(x)

◆ Union(x, y)

How to implement the
Disjoint Sets ADT (efficiently) ?

Ways of implementations

1. Circularly-linked lists
2. Linked lists with extra pointer
3. Linked lists with extra pointer and with

union-by-weight
4. Trees
5. Trees with union-by-rank
6. Trees with path-compression
7. Trees with union-by-weight and path-

compression

Circularly-linked list

Circularly-linked list

Harper

Bieber

Ford

Regehr

head ➔ One circularly-linked list
per set

➔  Head of the linked list

also serves as the
representative.

Circularly-linked list

Harper

Bieber

Ford

Regehr

head
➔ MakeSet(x): just a new

linked list with a single
element x
◆  worst-case: O(1)

➔  FindSet(x): follow the

links until reaching the
head
◆  Θ(Length of list)

➔  Union(x, y): ...

Circularly-linked list: Union(Bieber, Gaga)

Harper

Bieber

Ford

Regehr

head
Obama

Gaga

Oprah

head

First, locate the head of each linked-list by calling
FindSet, takes Θ(L)

Circularly-linked list: Union… 1

Harper

Bieber

Ford

Regehr

head
Obama

Gaga

Oprah

head

Circularly-linked list: Union… 2

Harper

Bieber

Ford

Regehr

head
Obama

Gaga

Oprah

head

Exchange the two heads’ “next” pointers, O(1)

Circularly-linked list: Union… 3

Harper

Bieber

Ford

Regehr

head
Obama

Gaga

Oprah

Keep only one representative for the new set.

Circularly-linked list: runtime
FindSet is the time consuming operation

Amortized analysis: How about the total cost of a
sequence of m operations (MakeSet, FindSet, Union)?

➔  A bad sequence: m/4 MakeSet, then m/4 - 1 Union,

then m/2 +1 FindSet
◆ why it’s bad: because many FindSet on a large set

(of size m/4)

➔  Total cost: Θ(m²)
◆ each of the m/2 + 1 FindSet takes Θ(m/4)

Linked list
with extra pointer

(to head)

Linked list with pointer to head

Harper Bieber Ford Regehr

head tail

➔ MakeSet takes O(1)
➔  FindSet now takes O(1), since we can go to head

in 1 step, better than circular linked list
➔  Union…

Linked list with pointer to head

Union(Bieber, Pele)

Harper Bieber Ford Regehr

head tail

Pele Neymar

head tail
Idea:
Append one list to the
other, then update the
pointers to head

Pele Neymar

head
Harper Bieber Ford Regehr

tail

Linked list with pointer to head

Pele Neymar

head
Harper Bieber Ford Regehr

tail
Append takes O(1) time

Update pointers take O(L of appending list)

Linked list with pointer to head
MakeSet and FindSet are fast, Union now becomes the
time-consuming one, especially if appending a long list.

Amortized analysis: The total cost of a sequence of m
operations.
➔  Bad sequence: m/2 MakeSet, then m/2 - 1 Union, then

1 whatever.
◆  Always let the longer list append, like 1 appd 1, 2

appd 1, 3 appd 1,, m/2 -1 appd 1.

➔  Total cost: Θ(1+2+3+...+m/2 - 1) = Θ(m²)

Linked list
with extra pointer to head

with union-by-weight

Linked list with union-by-weight

Union(Bieber, Pele)

Harper Bieber Ford Regehr

head tail

Pele Neymar

head tail

Append the shorter one to
the longer one

Here we have a
choice, let’s be a bit
smart about it…

Harper Bieber

head
Ford Regehr Pele Neymar

tail

Linked list with union-by-weight

Harper Bieber

head
Ford Regehr Pele Neymar

tail

Need to keep track of the size (weight) of each
list, therefore called union-by-weight

Linked list with union-by-weight

Union-by-weight sounds like a simple heuristic, but it
actually provides significant improvement.

For a sequence of m operations which includes n MakeSet
operations, i.e., n elements in total,
the total cost is O(m + n log n)

i.e., for the previous sequence with m/2 MakeSet and m/2 -
1 Union, the total cost would be O(m log m), as opposed to
Θ(m²) when without union-by-weight.

Linked list with union-by-weight
Proof: (assume there are n elements in total)
➔  Consider an arbitrary element x, how many times does

its head pointer need to be updated?
➔  Because union-by-weight, when x is updated, it must

be in the smaller list of the two. In other words, after
union, the size of list at least doubles.

➔  That is, every time x is updated, set size doubles.
➔  There are only n elements in total, so we can double at

most O(log n) times, i.e., x can be updated at most
O(log n).

➔  Same for all n elements, so total updates O(n log n)

Ways of implementing Disjoint Sets

1.  Circularly-linked lists

2.  Linked lists with extra pointer

3.  Linked lists with extra pointer and

with union-by-weight

4.  Trees

5.  Trees with union-by-rank

6.  Trees with path-compression

7.  Trees with union-by-weight and

path-compression

Benchmark:

Worst-case
total cost of a
sequence of m
operations
(MakeSet or FindSet
or Union)

Θ(m²)

Θ(m²)

Θ(mlog m)

Trees
a.k.a. disjoint set forest

Each set is an “inverted” tree

Harper

Bieber Ford

Regehr

➔  Each element keeps a
pointer to its parent in the
tree

➔  The root points to itself
(test root by x.p = x)

➔  The representative is the
root

➔  NOT necessarily a binary
tree or balanced tree

Operations

Harper

Bieber Ford

Regehr

➔ MakeSet(x): create a
single-node tree with root
x

◆  O(1)

➔  FindSet(x): Trace up the
parent pointer until the
root is reached

◆  O(height of tree)

➔  Union(x, y)... Trees with small heights
would be nice.

Union(Bieber, Gaga)

Harper

Bieber Ford

Regehr

Obama

Oprah Gaga

1.  Call FindSet(x) and
FindSet(y) to locate the
representatives, O(h)

2.  Then …

Union(Bieber, Gaga)

Harper

Bieber Ford

Regehr

Obama

Oprah Gaga

1.  Call FindSet(x) and
FindSet(y) to locate the
representatives, O(h)

2.  Then …

Union(Bieber, Gaga)

Harper

Bieber Ford

Regehr

Obama

Oprah Gaga

1.  Call FindSet(x) and
FindSet(y) to locate the
representatives, O(h)

2.  Let one tree’s root point to
the other tree’s root, O(1)

Could we have
been smarter
about this?

Benchmarking: runtime
The worst-case sequence of m operations.
(with FindSet being the bottleneck)

m/4 MakeSets, m/4 - 1 Union, m/2 + 1 FindSet

Total cost in worst-case
sequence :
Θ(m²)

(each FindSet would take
up to m/4 steps)

Trees with
union-by-rank

Intuition
➔  FindSet takes O(h), so the height of tree matters
➔  To keep the unioned tree’s height small, we should let

the taller tree’s root be the root of the unioned tree

YES NO

So, we need a way to keep track of
the height of the tree

Each node keeps a rank

Harper

Bieber Ford

Regehr

Obama

Oprah Gaga

For now, a node’s rank is the
same as its height, but it will be
different later.

0 0 0

1 1 0

2

Each node keeps a rank

Harper

Bieber Ford

Regehr

Obama

Oprah Gaga

When Union, let the root with
lower rank point to the root with
higher rank

0 0 0

1 1 0

2

Each node keeps a rank

Harper

Bieber Ford

Regehr

Obama

Oprah Gaga

If the two roots have the same
rank, choose either root as the
new root and increment its rank

1 0 0

2 1 0

2+1=3

Gates
0

Benchmarking: runtime

It can be proven that, a tree of n nodes formed by union-
by-rank has height at most log n,
which means FindSet takes O(log n)

So for a sequence of m/4 MakeSets, m/4 - 1 Union, m/2 +
1 FindSet operations,
the total cost is O(m log m)

Rank of a tree with n nodes is at most log n,
i.e., r(n) ≤ log n

Proof:
Equivalently, prove n(r) ≥ 2r

Use induction on r
Base step: if r = 0 (single node), n(0) = 1, TRUE
Inductive step: assume n(r) ≥ 2r

➔  a tree with root rank r+1 is a result of unioning two trees
with root rank r, so

➔  n(r+1) = n(r) + n(r) ≥ 2 ⨉ 2r = 2r+1
➔  Done.

Trees with
path compression

Intuition A

B

C

D

E

Now I do a
FindSet(D)

Intuition A

B

C

D

E

Now I do a
FindSet(D)

On the way of finding A, you
visit D, C, B and A.

that is, now you have access to B,
C, D and the root A.
What nice things can you do for
future FindSet operations?

You can make B, C and D super close to A!

A

B CD

E

Make B, C and D
directly point to A

In other words, the path D→C→B→A is “compressed”.

Extra cost to FindSet: at most twice the cost, so does not
affect the order of complexity

Benchmark: runtime

Can be prove: for a sequence of operations with n MakeSet
(so at most n-1 Union), and k FindSet, the worst-case total
cost of the sequence is in

So for a sequence of m/4 MakeSets, m/4 - 1 Union, m/2 +
1 FindSet, the worst-case total cost is in Θ(m log m)

Ways of implementing Disjoint Sets

1.  Circularly-linked lists

2.  Linked lists with extra pointer

3.  Linked lists with extra pointer and

with union-by-weight

4.  Trees

5.  Trees with union-by-rank

6.  Trees with path-compression

Benchmark:

Worst-case
total cost of a
sequence of m
operations
(MakeSet or FindSet
or Union)

Θ(m²)

Θ(m²)

Θ(m log m)

Θ(m²)

Θ(m log m)

Θ(m log m)

Can we do better than Θ(m log m) ?

U. B. R. P. C.

Trees with
union-by-rank

and
path compression

How to combine union-by-rank and
path compression?

➔ Path compression happens in the FindSet
operation

➔ Union-by-rank happens in the Union
operation (outside FindSet)

➔ So they don’t really interfere with each
other, simply use them both!

Pseudocodes

MakeSet(x):	
	 	 x.p	 ←	 x	
	 	 x.rank	 ←	 0	

FindSet(x):	
	 	 if	 x	 ≠	 x.p:	 # if not root
	 	 	 	 	 x.p	 ←	 FindSet(x.p)	
	 	 return	 x.p	

Union(x,	 y):	
	 	 Link(FindSet(x),	 \	
	 	 	 	 	 	 	 FindSet(y))	

Link(x,	 y):	
	 	 if	 x.rank	 >	 y.rank:	
	 	 	 	 y.p	 ←	 x	
	 	 else:	
	 	 	 	 x.p	 ←	 y	
	 	 	 	 if	 x.rank	 =	 y.rank:	
	 	 	 	 	 	 y.rank	 +=	 1	

Complete code using both union-by-rank
and path compression

Exercise

Harper

Bieber Ford

Regehr

Obama

Oprah

Gaga

1

0
0

2

1

2

Draw the result after Union(Oprah, Ford).
using both union-by-rank and path compression

0

Harper

Bieber Ford

Regehr

Obama

Oprah Gaga

1 0 0

2 1 0

3

Note: rank ≠ height
because path compression does NOT maintain height info

a node’s rank is an
upper-bound on its
height

Benchmark: runtime

Can be proven: for a sequence of m operations with n
MakeSet (so at most n-1 Union), worst-case total cost of
the sequence is O(m log*n)

Note: log* n is equal to the number of times the log function
must be iteratively applied so that the result is at most 1

 Example: log2(2256) = 256
 log2 (256) = 8
 log2 (8) = 3
 log2 (3) < 1.6
 log2 (1.6) < 1

 So log* (2256) = 5, and log* (2m) = 6, where m=2256

Since log* n is so slowly growing it is like a constant.

Sketch of Analysis
Lemma: A node v which is the root of a subtree of rank r
has at least 2r nodes

(We already proved this.)

Lemma: If there are n nodes, the maximum number of
nodes of rank r is n/2r

Each node which is the root of a subtree with rank r has at
least 2r nodes. So maximum is n/2r rank r root notes, each
with 2r children

Sketch of Analysis
Group the nodes into at most log*n buckets:

 Bucket 0: nodes of rank 0
 Bucket 1: nodes of rank 1
 Bucket 2: nodes of rank 2-3
 Bucket 3: nodes of rank 4-16
 ...
 Bucket B: nodes of rank [r, 2r -1] = [r, R-1]
 Bucket B+1: nodes of rank [R, 2R -1]

Note: the maximum number of elements in bucket
containing nodes of rank [R, 2R -1] is at most
n/2R + n/2R+1 + … + n/22^R -1 ≤ 2n/2R

Sketch of Analysis
Let F be the list of all m FindSet operations performed

Then total cost of m finds is T1 + T2 + T3
Where T1 = links pointing to root that are traversed
 T2 = links traversed between nodes in different buckets
 T3 = links traversed between nodes in same bucket

•  T1 ≤ m since each FindSet traverses one link to root
•  T2 ≤ m log* n since there are only log*n buckets
•  It is left to bound T3

Sketch of Analysis
It is left to bound T3

Suppose we are traversing from u to v, where u,v are both in the bucket
of nodes with rank [B, 2B -1]
Since the rank is always increasing as we follow a path to a root, the
number of links going from u to v is at most 2B -1 –B ≤ 2B

Thus T3 ≤ ΣB 2B 2n/2B ≤ 2n log* n

Thus T1 + T2 + T3 = O(m log* n)

Summary of worst case runtime for m operations,
 n elements)

1.  Circularly-linked lists

2.  Linked lists with extra pointer

3.  Linked lists with extra pointer and

with union-by-weight

4.  Trees

5.  Trees with union-by-rank

6.  Trees with path compression

7.  Trees with union-by-rank and

path compression

Θ(m²)

Θ(m²)

Θ(m log m)

Θ(m²)

Θ(m log m)

Θ(m log m)

 O(m log* n)

Next week

➔ Lower bounds

➔ Review for final exam

