
CSC263 Week 10 



Announcements 
 
Problem Set 5 is out (today)! 
 
Due Tuesday (Dec 1) 
 



Minimum Spanning Trees 



The Graph of interest today 

A connected undirected weighted graph  
 
G = (V, E) with weights w(e) for each e ∈ E 
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Minimum Spanning Tree 

It’s a connected, 
acyclic subgraph 

It covers all vertices in G 

of graph G 

It has the smallest total weight 
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A Minimum Spanning Tree 

May NOT be unique 



Applications of MST 

Build a road network that connects all 
towns and with the minimum cost. 



Applications of MST 
Connect all components with the least 
amount of wiring. 



Other applications 

➔ Cluster analysis 

➔ Approximation algorithms for the “travelling 
salesman problem” 

➔ ... 



In order to understand  
minimum spanning tree 

we need to first understand  

tree 



Tree:  
undirected connected acyclic graph 

A tree T with n vertices has 
exactly _________ edges. n-1 

Adding one edge to T will 
___________________.  create a cycle 

Removing one edge from T 
will __________________ disconnect the tree 



The MST of a connected graph G = (V, E) 
has________________ vertices. |V| 

because “spanning” 

The MST of a connected graph G = (V, E) 
has________________ edges. |V| - 1 

because “tree” 



Now we are ready to talk about 
algorithms 



Idea #1 
Start with T = G.E, then keep deleting edges 
until an MST remains. 

Idea #2 
Start with empty T, then keep adding edges until 
an MST is built. 

Which sounds more efficient  
in terms of worst-case runtime? 



A undirected simple graph G with n  
vertices can have at most 
___________ edges. 

Hint 



Idea #1 
Start with T = G.E, then keep deleting edges until an MST 
remains. 

Idea #2 
Start with empty T, then keep adding edges until an MST is 
built. 

In worst-case, need to delete 
O(|V|²) edges  (n choose 2) - (n-1) 

In worst-case, need to 
add O(|V|) edges 

This is more efficient! 

Note: Here T is an edge set 



So, let’s explore more of Idea #2,  
i.e.,  

building an MST by adding edges 
one by one 

i.e., 
we “grow” a tree 



The generic growing algorithm 

GENERIC-‐MST(G=(V,	  E,	  w)):	  
	  	  	  T	  ←	  ∅	  
	  	  	  while	  T	  is	  not	  a	  spanning	  tree:	  
	  	  	  	  	  	  find	  a	  “safe”	  edge	  e	  
	  	  	  	  	  	  T	  ←	  T	  ∪	  {e}	  
	  	  	  return	  T	  

What is a “safe” edge? 

|T| < |V|-1 



“Safe” edge e for T 

GENERIC-‐MST(G=(V,	  E,	  w)):	  
	  	  	  T	  ←	  ∅	  
	  	  	  while	  T	  is	  not	  a	  spanning	  tree:	  
	  	  	  	  	  	  find	  a	  “safe”	  edge	  e	  
	  	  	  	  	  	  T	  ←	  T	  ∪	  {e}	  
	  	  	  return	  T	  

Assuming before adding e, T ⊆ some MST, 
edge e is safe if after adding e, still T ⊆ some MST  

If we make sure T is 
always a subset of 
some MST while we 
grow it, then 
eventually T will 
become an MST! 

“Safe” means it keeps the hope of T 
growing into an MST. 



If we make sure the pieces we put together is always a 
subset of the real picture while we grow it, then eventually 
it will become the real picture! 

Intuition 



The generic growing algorithm 

GENERIC-‐MST(G=(V,	  E,	  w)):	  
	  	  	  T	  ←	  ∅	  
	  	  	  while	  T	  is	  not	  a	  spanning	  tree:	  
	  	  	  	  	  	  find	  a	  “safe”	  edge	  e	  
	  	  	  	  	  	  T	  ←	  T	  ∪	  {e}	  
	  	  	  return	  T	  

How to find a “safe” edge? 

|T| < |V|-1 



Two major algorithms we’ll learn 

➔ Kruskal’s algorithm 
 
 
 
➔ Prim’s algorithm 

They are both based on 
one theorem... 



How to find a safe edge: The cut property 

Let G=(V,E) be a connected, undirected graph. 
 
X a subset of edges of G such that T contains X, where T is 
a minimum spanning tree of G. (So X is a forest and can be 
extended to a MST) 
 
Let S be a connected component of (V,X). (So no edge in X 
crosses the cut S, V-S) 
 
Among all edges crossing between S and V-S, let e be an 
edge of minimum weight. 
 
Then some MST T’ contains X+e (In other words, e is a 
safe edge.) 
 
 
 
 



Basic outline of all MST algs: 

Start with G=(V,E,w) 
Let X be a set of edges, initially X is empty 
Repeat until |X| = |V|-1: 
 
1.  Pick a connected component S of (V,X) 
2.  Let e be a lightest edge in E that crosses 

between S and V-S 
3.  Add e to X 

 



Basic outline of all MST algs: 

Start with G=(V,E,w) 
Let X be a set of edges, initially E is empty 
Repeat until |X| = |V|-1: 
 
1.  Pick a connected component S of (V,X) 
2.  Let e be a lightest edge in E that crosses between S 

and V-S 
3.  Add e to X 
 
Prim: S starts off being a single vertex r, and in general S 

 is the connected component containing r 
Kruskal: choose S so that the length of e is minimum 
 



a	  

e 

b 

d 

c 

8 

10 5 

5 

3 

2 

12 

Initially, T (red) is a subgraph with no edge, 
each vertex is a connected component, 
all edges are crossing components, 
and the minimum weighted one is ... 

SAFE! 
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Now b and c in one connected component, 
each of the other vertices is a component, i.e., 
4 components.  
All gray edges are crossing components. 

SAFE! 
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Now b, c and d are in one connected 
component, a and e each is a component.  
(c, d) is NOT crossing components! 

ALSO SAFE! 

SAFE! 
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Now b, c, d and e are in one connected 
component, a is a component.  
(a, e) and (a, b) are crossing components. 

SAFE! 
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MST grown! 



Two things that need to be worried about when 
actually implementing the algorithm 
 
➔ How to keep track of the connected 

components? 
➔ How to efficiently find the minimum 

weighted edge? 
 
Kruskal’s and Prim’s basically use different 
data structures to do these two things. 



Overview: Prim’s and Kruskal’s 

Keep track of 
connected 

components 

Find minimum 
weight edge 

Prim’s 
Keep “one tree 
plus isolated 

vertices”  

use priority 
queue ADT 

Kruskal’s  use “disjoint set” 
ADT 

Sort all edges 
according to 

weight 



https://trendsofcode.files.wordpress.com/2014/09/dijkstra.gif 

https://www.projectrhea.org/rhea/images/4/4b/Kruskal_Old_Kiwi.gif 

Prim’s Kruskal’s 



Prim’s MST algorithm 



Prim’s algorithm: Idea 

➔  Start from an arbitrary vertex as root 

➔  Focus on growing one tree. This tree is one 
component; the cut is always (T,V-T) where T is the 
tree so far.) 

➔  Choose a minimum weight edge among all edges that 
are incident to the current tree (edges crossing the 
cut) 

➔  How to get that minimum? Store all candidate vertices 
in a Min-Priority Queue whose key is the weight of the 
crossing edge (incident to tree). 



PRIM-‐MST(G=(V,	  E,	  w)):	  
	  1	  	  	  T	  ←	  {}	  
	  2	  	  	  for	  all	  v	  in	  V:	  
	  3	  	  	  	  	  	  key[v]	  ←	  ∞	  
	  4	  	  	  	  	  	  pi[v]	  ←	  NIL	  
	  5	  	  	  pick	  arbitrary	  vertex	  r	  as	  root;	  key[r]=0	  
	  6	  	  	  initialize	  priority	  queue	  Q	  with	  all	  v	  in	  V	  
	  7	  	  	  T	  ß	  {r}	  
	  8	  	  	  while	  Q	  is	  not	  empty:	  
	  9	  	  	  	  	  	  u	  ←	  EXTRACT-‐MIN(Q)	  
10	  	  	  	  	  	  if	  pi[u]	  !=	  NIL:	  
11	  	  	  	  	  	  	  	  	  T	  ←	  T	  ∪	  {(pi[u],	  u)}	  
12	  	  	  	  	  	  for	  each	  neighbour	  v	  of	  u:	  
13	  	  	  	  	  	  	  	  	  if	  v	  in	  Q	  and	  w(u,	  v)	  <	  key[v]:	  
14	  	  	  	  	  	  	  	  	  	  	  	  DECREASE-‐KEY(Q,	  v,	  w(u,	  v))	  
15	  	  	  	  	  	  	  	  	  	  	  	  pi[v]	  ←	  u	  

key[v] keeps the “shortest distance” 
between v and the current tree 

pi[v] keeps who, in the tree, is v 
connected to via lightest edge. 

u is the next vertex to add to 
current tree 

add edge, pi[u] is lightest 
vertex to connect to, “safe” 

all u’s neighbours’ distances to the 
current tree need update  



Trace an example! 
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Pick “a” as root Q key pi 

a 0 NIL 

b ∞ NIL 

c ∞ NIL 

d ∞ NIL 

e ∞ NIL Next, ExtractMin ! 



Q key pi 

b ∞ NIL 

c ∞ NIL 

d ∞ NIL 

e ∞ NIL 

ExtractMin (#1) 
then update neighbours’ keys 
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→8	  

→3	  

a: 0, NIL 

→a 

→a	  



Q key pi 

b 8 a 

c ∞ NIL 

d ∞ NIL 

ExtractMin (#2) 
then update neighbours’ keys 
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→5	  

e: 3, a 

→e	  

→5	   →e	  



Q key pi 

c ∞ NIL 

d 5 e 

ExtractMin (#3) 
then update neighbours’ keys 
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b: 5, e 

→2	   →b	  

Could also have extracted d 
since its key is also 5 (min) 



Q key pi 

d 5 e 

ExtractMin (#4) 
then update neighbours’ keys 
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c: 2, b 



Q key pi 

ExtractMin (#4) 
then update neighbours’ keys 
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d: 5, e 

d 

MST grown! 

Q is empty now. 



Correctness of Prim’s 

The added edge is always a “safe” edge, i.e., 
the minimum weight edge crossing the cut 
(because of ExtractMin). 
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Runtime analysis: Prim’s 

➔ Assume we use binary min heap to 
implement the priority queue. 

➔ Each ExtractMin take O(log V) 
➔ In total V ExtractMin’s 
➔ In total, check at most O(E) neighbours, each 

check neighbour could lead to a DecreaseKey 
which takes O(log V) 

 
➔ TOTAL: O( (V+E)log V ) = O(E log V) 



In a connected graph G = (V, E) 
 
|V| is in O(|E|) because… 
|E| has to be at least |V|-1 
 
Also, log |E| is in O(log |V|) because … 
E is at most V², 
so log E is at most log V² = 2 log V, which is 
in O(log V) 



Kruskal’s MST algorithm 



Kruskal’s algorithm: idea 

➔ Sort all edges according to weight, then 
start adding to MST from the lightest one. 
◆ This is “greedy”! 

➔ Constraint: added edge must NOT cause a 
cycle 
◆ In other words, the two endpoints of the edge must 

belong to two different trees (components). 
➔ The whole process is like unioning small 

trees into a big tree. 



Pseudocode 

KRUSKAL-‐MST(G(V,	  E,	  w)):	  
1	  	  	  T	  ←	  {}	  
2	  	  	  sort	  edges	  so	  that	  w(e1)≤w(e2)≤...≤w(em)	  
3	  	  	  for	  i	  ←	  1	  to	  m:	  
4	  	  	  	  	  	  #	  let	  (ui,	  vi)	  =	  ei	  
5	  	  	  	  	  	  if	  ui	  and	  vi	  in	  different	  components:	  
6	  	  	  	  	  	  	  	  	  T	  ←	  T	  ∪	  {ei}	  

m = |E| 



Example 
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Add (b, c), the lightest edge 
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Add (a, e), the 2nd lightest 
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Add (b, e), the 3rd lightest 
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No! a, b are in the same component 
Add (d, e) instead! 

Add (a, b), the 4th lightest ... 
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Add (d, e) ... 
MST grown! 



Correctness of Kruskal’s 

The added edge is always a “safe” edge, 
because it is the minimum weight edge among 
all edges that cross components 
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Runtime ... 

KRUSKAL-‐MST(G(V,	  E,	  w)):	  
1	  	  	  T	  ←	  {}	  
2	  	  	  sort	  edges	  so	  that	  w(e1)≤w(e2)≤...≤w(em)	  
3	  	  	  for	  i	  ←	  1	  to	  m:	  
4	  	  	  	  	  	  #	  let	  (ui,	  vi)	  =	  ei	  
5	  	  	  	  	  	  if	  ui	  and	  vi	  in	  different	  components:	  
6	  	  	  	  	  	  	  	  	  T	  ←	  T	  ∪	  {ei}	  

m = |E| 

How exactly do we do these two lines? 

sorting takes O(E log E) 



We need the Disjoint Set ADT 
which stores a collections of nonempty disjoint 
sets S1, S2, …, Sk, each has a 
“representative”. 
 
and supports the following operations 
➔ MakeSet(x): create a new set {x} 
➔ FindSet(x): return the representative of the 

set that x belongs to 
➔ Union(x, y): union the two sets that contain 

x and y, if different 



Real Pseudocode 

KRUSKAL-‐MST(G(V,	  E,	  w)):	  
1	  	  	  T	  ←	  {}	  
2	  	  	  sort	  edges	  so	  that	  w(e1)≤w(e2)≤...≤w(em)	  
3	  	  	  for	  each	  v	  in	  V:	  
4	  	  	  	  	  	  MakeSet(v)	  
5	  	  	  for	  i	  ←	  1	  to	  m:	  
6	  	  	  	  	  	  #	  let	  (ui,	  vi)	  =	  ei	  
7	  	  	  	  	  	  if	  FindSet(ui)	  !=	  FindSet(vi):	  
8	  	  	  	  	  	  	  	  	  Union(ui,	  vi)	  
9	  	  	  	  	  	  	  	  	  T	  ←	  T	  ∪	  {ei}	  

m = |E| 



Next week 

➔ More on Disjoint Set 


