CSC263 Week 10

Announcements

Problem Set 5 is out (today)!
Due Tuesday (Dec 1)

Minimum Spanning Trees

The Graph of interest today

A connected undirected weighted graph
$\mathbf{G}=(\mathbf{V}, \mathbf{E})$ with weights $\mathbf{w}(\mathbf{e})$ for each $e \in E$

It has the smallest total weight

It covers all vertices in G

Minimum Spanning Tree

 of graph G(
It's a connected, acyclic subgraph

A Minimum Spanning Tree

May NOT be unique

Applications of MST

Build a road network that connects all towns and with the minimum cost.

Applications of MST

Connect all components with the least amount of wiring.

Other applications

\rightarrow Cluster analysis
\rightarrow Approximation algorithms for the "travelling salesman problem"
\rightarrow...

In order to understand minimum spanning tree we need to first understand tree

Tree: undirected connected acyclic graph

The MST of a connected graph $G=(V, E)$ has $\quad|\mathrm{V}|$ vertices.

because "spanning"

The MST of a connected graph $G=(V, E)$
has
$|\mathrm{V}|-1$ edges.
because "tree"

Now we are ready to talk about algorithms

Idea \#1

Start with $\mathbf{T}=\mathbf{G} . E$, then keep deleting edges until an MST remains.

Which sounds more efficient in terms of worst-case runtime?

Idea \#2

Start with empty T, then keep adding edges until an MST is built.

Hint

A undirected simple graph \mathbf{G} with \mathbf{n} vertices can have at most edges.

$$
\binom{n}{2}=\frac{n(n-1)}{2} \in \mathcal{O}\left(n^{2}\right)
$$

Idea \#1

Note: Here T is an edge set

Start with $T=G . E$, then keep deleting edges until an MST remains.

In worst-case, need to delete
$\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ edges (n choose 2)-(n-1)

Idea \#2

In worst-case, need to add $\mathrm{O}(|\mathrm{V}|)$ edges

Start with empty T, then keep adding edges until an MST is built.

This is more efficient!

So, let's explore more of Idea \#2,

$$
\begin{aligned}
& \text { i.e., } \\
& \text { building an MST by adding edges } \\
& \text { one by one }
\end{aligned}
$$

i.e.,
we "grow" a tree

The generic growing algorithm

GENERIC-MST(G=(V, E, w)):

$$
T \leftarrow \varnothing
$$

while T is not a spanning tree:
find a "safe" edge e
$\mathrm{T} \leftarrow \mathrm{T} U\{e\}$
return T

What is a "safe" edge?

"Safe" means it keeps the hope of T growing into an MST.

"Safe" edge e for T

Assuming before adding e, $\boldsymbol{T} \subseteq$ some MST, edge \mathbf{e} is safe if after adding \mathbf{e}, still $\boldsymbol{T} \subseteq$ some MST

> If we make sure T is always a subset of some MST while we grow it, then eventually T will become an MST!

```
GENERIC-MST(G=(V, E, w)):
    T}\leftarrow
    while T is not a spanning tree:
        find a "safe" edge e
        T}\leftarrowT\mp@code{U {e}
    return T
```


Intuition

If we make sure the pieces we put together is always a subset of the real picture while we grow it, then eventually it will become the real picture!

The generic growing algorithm

GENERIC-MST(G=(V, E, w)):
$T \leftarrow \varnothing$
while T is not a spanning tree:
find a "safe" edge e

$$
T \leftarrow T U\{e\}
$$

return T

How to find a "safe" edge?

Two major algorithms we'll learn

\rightarrow Kruskal's algorithm
\rightarrow Prim's algorithm

They are both based on one theorem...

How to find a safe edge: The cut property

Let $G=(V, E)$ be a connected, undirected graph.
X a subset of edges of G such that T contains X, where T is a minimum spanning tree of G. (So X is a forest and can be extended to a MST)

Let S be a connected component of (V, X). (So no edge in X crosses the cut $\mathrm{S}, \mathrm{V}-\mathrm{S}$)

Among all edges crossing between S and $V-S$, let e be an edge of minimum weight.

Then some MST T' contains $\mathrm{X}+\mathrm{e}$ (In other words, e is a safe edge.)

Basic outline of all MST algs:

Start with $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{w})$
Let X be a set of edges, initially X is empty
Repeat until $|\mathrm{X}|=|\mathrm{V}|-1$:

1. Pick a connected component S of (V, X)
2. Let e be a lightest edge in E that crosses between S and V -S
3. Add e to X

Basic outline of all MST algs:

Start with $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{w})$
Let X be a set of edges, initially E is empty
Repeat until $|\mathrm{X}|=|\mathrm{V}|-1$:

1. Pick a connected component S of (V, X)
2. Let e be a lightest edge in E that crosses between S and V-S
3. Add e to X

Prim: S starts off being a single vertex r, and in general S is the connected component containing r
Kruskal: choose S so that the length of e is minimum

Initially, \mathbf{T} (red) is a subgraph with no edge, each vertex is a connected component, all edges are crossing components, and the minimum weighted one is ...

Now b and cin one connected component, each of the other vertices is a component, i.e., 4 components.
All gray edges are crossing components.

Now b, c and d are in one connected component, a and e each is a component. (c, d) is NOT crossing components!

Now b, c, d and e are in one connected component, \mathbf{a} is a component.
(a, e) and (a, b) are crossing components.

MST grown!

Two things that need to be worried about when actually implementing the algorithm
\rightarrow How to keep track of the connected components?
\rightarrow How to efficiently find the minimum weighted edge?

Kruskal's and Prim's basically use different data structures to do these two things.

Overview: Prim's and Kruskal's

	Keep track of connected components	Find minimum weight edge
Prim's	Keep "one tree plus verticolased	use priority queue ADT
Kruskal's	use "disjoint set" ADT	Sort all edges accorring to weight

Prim's

Kruskal's

wたW . combinatorica. com
wow . combinatorica. com
https://trendsofcode.files.wordpress.com/2014/09/dijkstra.gif

Prim's MST algorithm

Prim's algorithm: Idea

\rightarrow Start from an arbitrary vertex as root
\rightarrow Focus on growing one tree. This tree is one component; the cut is always ($\mathrm{T}, \mathrm{V}-\mathrm{T}$) where T is the tree so far.)
\rightarrow Choose a minimum weight edge among all edges that are incident to the current tree (edges crossing the cut)
\rightarrow How to get that minimum? Store all candidate vertices in a Min-Priority Queue whose key is the weight of the crossing edge (incident to tree).

Trace an example!

\mathbf{Q}	key	pi
a	0	NIL
b	∞	NIL
c	∞	NIL
d	∞	NIL
e	∞	NIL

ExtractMin (\#1) then update neighbours' keys
a: 0, NIL

ExtractMin (\#2)
then update neighbours' keys
e: 3 , a

ExtractMin (\#3)
then update neighbours' keys
b: 5, e

ExtractMin (\#4) then update neighbours' keys
c: 2, b

ExtractMin (\#4)
then update neighbours' keys
d: 5, e

Correctness of Prim's

The added edge is always a "safe" edge, i.e., the minimum weight edge crossing the cut (because of ExtractMin).

Runtime analysis: Prim's

\rightarrow Assume we use binary min heap to implement the priority queue.
\rightarrow Each ExtractMin take $\mathbf{O}(\log \mathbf{V})$
\rightarrow In total V ExtractMin's
\rightarrow In total, check at most $\mathbf{O}(E)$ neighbours, each check neighbour could lead to a DecreaseKey which takes $\mathbf{O}(\log \mathrm{V})$
\rightarrow TOTAL: $\mathrm{O}(\mathrm{V}+\mathrm{E}) \log \mathrm{V})=\mathrm{O}(\mathrm{E} \log \mathrm{V})$

In a connected graph $G=(V, E)$

$|\mathrm{V}|$ is in $\mathrm{O}(|\mathrm{E}|)$ because...
|E| has to be at least |V|-1

Also, $\log |E|$ is in $\mathrm{O}(\log |\mathrm{V}|)$ because ...
E is at most V^{2},
so $\log E$ is at most $\log V^{2}=2 \log V$, which is in $\mathbf{O}(\log \mathrm{V})$

Kruskal's MST algorithm

Kruskal's algorithm: idea

\rightarrow Sort all edges according to weight, then start adding to MST from the lightest one.
-This is "greedy"!
\rightarrow Constraint: added edge must NOT cause a cycle

- In other words, the two endpoints of the edge must belong to two different trees (components).
\rightarrow The whole process is like unioning small trees into a big tree.

Pseudocode

$$
m=|E|
$$

```
KRUSKAL-MST(G(V, E, w)):
\(1 \quad \mathrm{~T} \leftarrow\}\)
2 sort edges so that \(w(e 1) \leq w(e 2) \leq \ldots \leq w(e m)\)
3 for \(i \leftarrow 1\) to \(m\) :
4 \# let (ui, vi) = ei
    if ui and vi in different components:
        \(T \leftarrow T U\{e i\}\)
```


Example

Add (b, c), the lightest edge

Add (a, e), the 2nd lightest

Add (b, e), the 3rd lightest

Add (a, b), the 4th lightest ...
No! a, b are in the same component Add (d, e) instead!

Add (d, e) ...

MST grown!

Correctness of Kruskal's

The added edge is always a "safe" edge, because it is the minimum weight edge among all edges that cross components

Runtime ...

$$
m=|E|
$$

sorting takes $\mathbf{O}(\mathrm{E} \log \mathrm{E})$

```
KRUSKAL-MST(G(V, E, w)):
1 T \leftarrow {}
2 sort edges so that w(e1)\leqw(e2)\leq...\leqw(em)
3 for i \leftarrow 1 to m:
4 # let (ui, vi) = ei
    if ui and vi in different components:
6
```



``` How exactly do we do these two lines?
```


We need the Disjoint Set ADT

which stores a collections of nonempty disjoint sets S1, S2, ..., Sk, each has a "representative".
and supports the following operations
\rightarrow MakeSet(x): create a new set $\{x\}$
\rightarrow FindSet(x): return the representative of the set that x belongs to
\rightarrow Union(\mathbf{x}, \mathbf{y}): union the two sets that contain x and y, if different

Real Pseudocode

$$
m=|E|
$$

```
KRUSKAL-MST(G(V, E, w)):
1 T}\leftarrow{
    sort edges so that w(e1)\leqw(e2)\leq...\leqw(em)
    for each v in V:
        MakeSet(v)
        for i}\leftarrow1\mathrm{ to m:
            # let (ui, vi) = ei
            if FindSet(ui) != FindSet(vi):
        Union(ui, vi)
        T}\leftarrowTU{ei
```


Next week

\rightarrow More on Disjoint Set

