
CSC263 Week 10

Announcements

Problem Set 5 is out (today)!

Due Tuesday (Dec 1)

Minimum Spanning Trees

The Graph of interest today

A connected undirected weighted graph

G = (V, E) with weights w(e) for each e ∈ E

8

10 5

5

3

2

12

Minimum Spanning Tree

It’s a connected,
acyclic subgraph

It covers all vertices in G

of graph G

It has the smallest total weight

8

10 5

5

3

2

12

A Minimum Spanning Tree

May NOT be unique

Applications of MST

Build a road network that connects all
towns and with the minimum cost.

Applications of MST
Connect all components with the least
amount of wiring.

Other applications

➔ Cluster analysis

➔ Approximation algorithms for the “travelling
salesman problem”

➔ ...

In order to understand
minimum spanning tree

we need to first understand

tree

Tree:
undirected connected acyclic graph

A tree T with n vertices has
exactly _________ edges. n-1

Adding one edge to T will
___________________. create a cycle

Removing one edge from T
will __________________ disconnect the tree

The MST of a connected graph G = (V, E)
has________________ vertices. |V|

because “spanning”

The MST of a connected graph G = (V, E)
has________________ edges. |V| - 1

because “tree”

Now we are ready to talk about
algorithms

Idea #1
Start with T = G.E, then keep deleting edges
until an MST remains.

Idea #2
Start with empty T, then keep adding edges until
an MST is built.

Which sounds more efficient
in terms of worst-case runtime?

A undirected simple graph G with n
vertices can have at most
___________ edges.

Hint

Idea #1
Start with T = G.E, then keep deleting edges until an MST
remains.

Idea #2
Start with empty T, then keep adding edges until an MST is
built.

In worst-case, need to delete
O(|V|²) edges (n choose 2) - (n-1)

In worst-case, need to
add O(|V|) edges

This is more efficient!

Note: Here T is an edge set

So, let’s explore more of Idea #2,
i.e.,

building an MST by adding edges
one by one

i.e.,
we “grow” a tree

The generic growing algorithm

GENERIC-‐MST(G=(V,	 E,	 w)):	
	 	 	 T	 ←	 ∅	
	 	 	 while	 T	 is	 not	 a	 spanning	 tree:	
	 	 	 	 	 	 find	 a	 “safe”	 edge	 e	
	 	 	 	 	 	 T	 ←	 T	 ∪	 {e}	
	 	 	 return	 T	

What is a “safe” edge?

|T| < |V|-1

“Safe” edge e for T

GENERIC-‐MST(G=(V,	 E,	 w)):	
	 	 	 T	 ←	 ∅	
	 	 	 while	 T	 is	 not	 a	 spanning	 tree:	
	 	 	 	 	 	 find	 a	 “safe”	 edge	 e	
	 	 	 	 	 	 T	 ←	 T	 ∪	 {e}	
	 	 	 return	 T	

Assuming before adding e, T ⊆ some MST,
edge e is safe if after adding e, still T ⊆ some MST

If we make sure T is
always a subset of
some MST while we
grow it, then
eventually T will
become an MST!

“Safe” means it keeps the hope of T
growing into an MST.

If we make sure the pieces we put together is always a
subset of the real picture while we grow it, then eventually
it will become the real picture!

Intuition

The generic growing algorithm

GENERIC-‐MST(G=(V,	 E,	 w)):	
	 	 	 T	 ←	 ∅	
	 	 	 while	 T	 is	 not	 a	 spanning	 tree:	
	 	 	 	 	 	 find	 a	 “safe”	 edge	 e	
	 	 	 	 	 	 T	 ←	 T	 ∪	 {e}	
	 	 	 return	 T	

How to find a “safe” edge?

|T| < |V|-1

Two major algorithms we’ll learn

➔ Kruskal’s algorithm

➔ Prim’s algorithm

They are both based on
one theorem...

How to find a safe edge: The cut property

Let G=(V,E) be a connected, undirected graph.

X a subset of edges of G such that T contains X, where T is
a minimum spanning tree of G. (So X is a forest and can be
extended to a MST)

Let S be a connected component of (V,X). (So no edge in X
crosses the cut S, V-S)

Among all edges crossing between S and V-S, let e be an
edge of minimum weight.

Then some MST T’ contains X+e (In other words, e is a
safe edge.)

Basic outline of all MST algs:

Start with G=(V,E,w)
Let X be a set of edges, initially X is empty
Repeat until |X| = |V|-1:

1.  Pick a connected component S of (V,X)
2.  Let e be a lightest edge in E that crosses

between S and V-S
3.  Add e to X

Basic outline of all MST algs:

Start with G=(V,E,w)
Let X be a set of edges, initially E is empty
Repeat until |X| = |V|-1:

1.  Pick a connected component S of (V,X)
2.  Let e be a lightest edge in E that crosses between S

and V-S
3.  Add e to X

Prim: S starts off being a single vertex r, and in general S

 is the connected component containing r
Kruskal: choose S so that the length of e is minimum

a	

e

b

d

c

8

10 5

5

3

2

12

Initially, T (red) is a subgraph with no edge,
each vertex is a connected component,
all edges are crossing components,
and the minimum weighted one is ...

SAFE!

a

e

b

d

c

8

10 5

5

3

2

12

Now b and c in one connected component,
each of the other vertices is a component, i.e.,
4 components.
All gray edges are crossing components.

SAFE!

a

e

b

d

c

8

10 5

5

3

2

12

Now b, c and d are in one connected
component, a and e each is a component.
(c, d) is NOT crossing components!

ALSO SAFE!

SAFE!

a

e

b

d

c

8

10 5

5

3

2

12

Now b, c, d and e are in one connected
component, a is a component.
(a, e) and (a, b) are crossing components.

SAFE!

a

e

b

d

c

8

10 5

5

3

2

12

MST grown!

Two things that need to be worried about when
actually implementing the algorithm

➔ How to keep track of the connected

components?
➔ How to efficiently find the minimum

weighted edge?

Kruskal’s and Prim’s basically use different
data structures to do these two things.

Overview: Prim’s and Kruskal’s

Keep track of
connected

components

Find minimum
weight edge

Prim’s
Keep “one tree
plus isolated

vertices”

use priority
queue ADT

Kruskal’s use “disjoint set”
ADT

Sort all edges
according to

weight

https://trendsofcode.files.wordpress.com/2014/09/dijkstra.gif

https://www.projectrhea.org/rhea/images/4/4b/Kruskal_Old_Kiwi.gif

Prim’s Kruskal’s

Prim’s MST algorithm

Prim’s algorithm: Idea

➔  Start from an arbitrary vertex as root

➔  Focus on growing one tree. This tree is one
component; the cut is always (T,V-T) where T is the
tree so far.)

➔  Choose a minimum weight edge among all edges that
are incident to the current tree (edges crossing the
cut)

➔  How to get that minimum? Store all candidate vertices
in a Min-Priority Queue whose key is the weight of the
crossing edge (incident to tree).

PRIM-‐MST(G=(V,	 E,	 w)):	
	 1	 	 	 T	 ←	 {}	
	 2	 	 	 for	 all	 v	 in	 V:	
	 3	 	 	 	 	 	 key[v]	 ←	 ∞	
	 4	 	 	 	 	 	 pi[v]	 ←	 NIL	
	 5	 	 	 pick	 arbitrary	 vertex	 r	 as	 root;	 key[r]=0	
	 6	 	 	 initialize	 priority	 queue	 Q	 with	 all	 v	 in	 V	
	 7	 	 	 T	 ß	 {r}	
	 8	 	 	 while	 Q	 is	 not	 empty:	
	 9	 	 	 	 	 	 u	 ←	 EXTRACT-‐MIN(Q)	
10	 	 	 	 	 	 if	 pi[u]	 !=	 NIL:	
11	 	 	 	 	 	 	 	 	 T	 ←	 T	 ∪	 {(pi[u],	 u)}	
12	 	 	 	 	 	 for	 each	 neighbour	 v	 of	 u:	
13	 	 	 	 	 	 	 	 	 if	 v	 in	 Q	 and	 w(u,	 v)	 <	 key[v]:	
14	 	 	 	 	 	 	 	 	 	 	 	 DECREASE-‐KEY(Q,	 v,	 w(u,	 v))	
15	 	 	 	 	 	 	 	 	 	 	 	 pi[v]	 ←	 u	

key[v] keeps the “shortest distance”
between v and the current tree

pi[v] keeps who, in the tree, is v
connected to via lightest edge.

u is the next vertex to add to
current tree

add edge, pi[u] is lightest
vertex to connect to, “safe”

all u’s neighbours’ distances to the
current tree need update

Trace an example!

a	

e

b

d

c

8

3 5

5

10

2

12

Pick “a” as root Q key pi

a 0 NIL

b ∞ NIL

c ∞ NIL

d ∞ NIL

e ∞ NIL Next, ExtractMin !

Q key pi

b ∞ NIL

c ∞ NIL

d ∞ NIL

e ∞ NIL

ExtractMin (#1)
then update neighbours’ keys

a	

e

b

d

c

8

3 5

5

10

2

12

→8	

→3	

a: 0, NIL

→a

→a	

Q key pi

b 8 a

c ∞ NIL

d ∞ NIL

ExtractMin (#2)
then update neighbours’ keys

a	

e

b

d

c

8

3 5

5

10

2

12

→5	

e: 3, a

→e	

→5	 →e	

Q key pi

c ∞ NIL

d 5 e

ExtractMin (#3)
then update neighbours’ keys

a	

e

b

d

c

8

3 5

5

10

2

12

b: 5, e

→2	 →b	

Could also have extracted d
since its key is also 5 (min)

Q key pi

d 5 e

ExtractMin (#4)
then update neighbours’ keys

a	

e

b

d

c

8

3 5

5

10

2

12

c: 2, b

Q key pi

ExtractMin (#4)
then update neighbours’ keys

a	

e

b

d

c

8

3 5

5

10

2

12

d: 5, e

d

MST grown!

Q is empty now.

Correctness of Prim’s

The added edge is always a “safe” edge, i.e.,
the minimum weight edge crossing the cut
(because of ExtractMin).

a	

e

b

d

c

8

3 5

5

10

2

12 d

Runtime analysis: Prim’s

➔ Assume we use binary min heap to
implement the priority queue.

➔ Each ExtractMin take O(log V)
➔ In total V ExtractMin’s
➔ In total, check at most O(E) neighbours, each

check neighbour could lead to a DecreaseKey
which takes O(log V)

➔ TOTAL: O((V+E)log V) = O(E log V)

In a connected graph G = (V, E)

|V| is in O(|E|) because…
|E| has to be at least |V|-1

Also, log |E| is in O(log |V|) because …
E is at most V²,
so log E is at most log V² = 2 log V, which is
in O(log V)

Kruskal’s MST algorithm

Kruskal’s algorithm: idea

➔ Sort all edges according to weight, then
start adding to MST from the lightest one.
◆ This is “greedy”!

➔ Constraint: added edge must NOT cause a
cycle
◆ In other words, the two endpoints of the edge must

belong to two different trees (components).
➔ The whole process is like unioning small

trees into a big tree.

Pseudocode

KRUSKAL-‐MST(G(V,	 E,	 w)):	
1	 	 	 T	 ←	 {}	
2	 	 	 sort	 edges	 so	 that	 w(e1)≤w(e2)≤...≤w(em)	
3	 	 	 for	 i	 ←	 1	 to	 m:	
4	 	 	 	 	 	 #	 let	 (ui,	 vi)	 =	 ei	
5	 	 	 	 	 	 if	 ui	 and	 vi	 in	 different	 components:	
6	 	 	 	 	 	 	 	 	 T	 ←	 T	 ∪	 {ei}	

m = |E|

Example

a	

e

b

d

c

6

3 5

9

10

2

12

Add (b, c), the lightest edge

a	

e

b

d

c

6

3 5

9

10

2

12

Add (a, e), the 2nd lightest

a	

e

b

d

c

6

3 5

9

10

2

12

Add (b, e), the 3rd lightest

a	

e

b

d

c

6

3 5

9

10

2

12

a	

e

b

d

c

6

3 5

9

10

2

12

No! a, b are in the same component
Add (d, e) instead!

Add (a, b), the 4th lightest ...

a	

e

b

d

c

6

3 5

9

10

2

12

Add (d, e) ...
MST grown!

Correctness of Kruskal’s

The added edge is always a “safe” edge,
because it is the minimum weight edge among
all edges that cross components

a	

e

b

d

c

6

3 5

9

10

2

12

Runtime ...

KRUSKAL-‐MST(G(V,	 E,	 w)):	
1	 	 	 T	 ←	 {}	
2	 	 	 sort	 edges	 so	 that	 w(e1)≤w(e2)≤...≤w(em)	
3	 	 	 for	 i	 ←	 1	 to	 m:	
4	 	 	 	 	 	 #	 let	 (ui,	 vi)	 =	 ei	
5	 	 	 	 	 	 if	 ui	 and	 vi	 in	 different	 components:	
6	 	 	 	 	 	 	 	 	 T	 ←	 T	 ∪	 {ei}	

m = |E|

How exactly do we do these two lines?

sorting takes O(E log E)

We need the Disjoint Set ADT
which stores a collections of nonempty disjoint
sets S1, S2, …, Sk, each has a
“representative”.

and supports the following operations
➔ MakeSet(x): create a new set {x}
➔ FindSet(x): return the representative of the

set that x belongs to
➔ Union(x, y): union the two sets that contain

x and y, if different

Real Pseudocode

KRUSKAL-‐MST(G(V,	 E,	 w)):	
1	 	 	 T	 ←	 {}	
2	 	 	 sort	 edges	 so	 that	 w(e1)≤w(e2)≤...≤w(em)	
3	 	 	 for	 each	 v	 in	 V:	
4	 	 	 	 	 	 MakeSet(v)	
5	 	 	 for	 i	 ←	 1	 to	 m:	
6	 	 	 	 	 	 #	 let	 (ui,	 vi)	 =	 ei	
7	 	 	 	 	 	 if	 FindSet(ui)	 !=	 FindSet(vi):	
8	 	 	 	 	 	 	 	 	 Union(ui,	 vi)	
9	 	 	 	 	 	 	 	 	 T	 ←	 T	 ∪	 {ei}	

m = |E|

Next week

➔ More on Disjoint Set

