CSC263 Week 10

Announcements
Problem Set 5 is out (today)!

Due Tuesday (Dec 1)

Minimum Spanning Trees

The Graph of interest today

A connected undirected weighted graph

G = (V, E) with weights w(e) foreach e e E

12

It has the smallest total weight

It covers all vertices in G

\pd

Minimum Spanning Tree

of graph G /_

It's a connected,
acyclic subgraph

A Minimum Spanning Tree

S

May NOT be unique

Applications of MST

Build a road network that connects all
towns and with the minimum cost.

Oxford

Swindon

Bristol London

Reading

Southampton

Applications of MST

Connect all components with the least
amount of wiring.

-

Other applications

->Cluster analysis

->Approximation algorithms for the “travelling
salesman problem”

In order to understand
minimum spanning tree
we need to first understand

tree

Tree:
undirected connected acyclic graph

A tree T with n vertices has
exactly n-1 edges.

Removing one edge from T
will _disconnect the tree

Adding one edge to T will
create a cycle

The MST of a connected graph G = (V, E)
has V] vertices.

EAN

because “spanning”

The MST of a connected graph G = (V, E)
has__ |V]-1 edges.

N~

because “tree”

Now we are ready to talk about
algorithms

Idea #1

Start with T = G.E, then keep deleting edges
until an MST remains.

5 e Which sounds more efficient
. in terms of worst-case runtime?

Idea #2

Start with empty T, then keep adding edges until
an MST is built.

Hint

A undirected simple graph G with n
vertices can have at most
edges.

n\ nn-1)
,) =5 €0

Note: Here T is an edge set

Idea #1

Start with T = G.E, then keep deleting edges until an MST

remains. /

In worst-case, need to delete
O(|V|2) edges (n choose 2) - (n-1)

) In worst-case, need to
Idea #2 add O(|V|) edges
Start with empty T, then keep adding edges until an MST is

This is more efficient!

So, let’'s explore more of Idea #2,
l.e.,
building an MST by adding edges
one by one

il

l.e.,
we “grow” a tree

The generic growing algorithm

GENERIC-MST(G=(V, E, w)): |

T e o 7] < V|-

while T is not a spanninéz%gée:
find a “safe” edge e
T « T U {e}

return T

What is a “safe” edge?

“Safe” edge e for T

“Safe” means it keeps the hope of T
growing into an MST.

Assuming before adding e, T € some MST,
edge e is safe If after adding e, still T € some MST

If we make sure T is
always a subset of
some MST while we
grow it, then
eventually T will
become an MST!

GENERIC-MST(G=(V, E, w)):
T« O
while T is not a spanning tree:
find a “safe” edge e
T« TU {e}
return T

Intuition

If we make sure the pieces we put together is always a
subset of the real picture while we grow it, then eventually
It will become the real picture!

The generic growing algorithm

GENERIC-MST(G=(V, E, w)): T| < V|-
T « @ 22;/
while T is not a spanning tree:

find a “safe” edge e
T« T U {e}
return T

How to find a “safe” edge?

Two major algorithms we’ll learn

->Kruskal's algorithm

->Prim’s algorithm

They are both based on
one theorem...

How to find a safe edge: The cut property

Let G=(V,E) be a connected, undirected graph.

X a subset of edges of G such that T contains X, where T is
a minimum spanning tree of G. (So X is a forest and can be
extended to a MST)

Let S be a connected component of (V,X). (So no edge in X
crosses the cut S, V-S)

Among all edges crossing between S and V-S, let e be an
edge of minimum weight.

Then some MST T’ contains X+e (In other words, e is a
safe edge.)

Basic outline of all MST algs:

Start with G=(V,E,w)
Let X be a set of edges, initially X is empty
Repeat until | X| = |V|-1:

1. Pick a connected component S of (V,X)

2. Let e be a lightest edge in E that crosses
between S and V-S

3. Addeto X

Basic outline of all MST algs:

Start with G=(V,E,w)
Let X be a set of edges, initially E is empty
Repeat until [X| = |V|-1:

1. Pick a connected component S of (V,X)
Let e be a lightest edge in E that crosses between S
and V-S

3. Addeto X

Prim: S starts off being a single vertex r, and in general S
IS the connected component containing r
Kruskal: choose S so that the length of e is minimum

Initially, T (red) is a subgraph with no edge,
each vertex is a connected component,

all edges are crossing components,

and the minimum weighted one is ...

@S@Z/SAFE!
o e ®
© @ -

Now b and c in one connected component,
each of the other vertices is a component, i.e.,

4 components.
All gray edges are crossing components.

Now b, ¢ and d are in one connected
component, a and e each is a component.
(c, d) is NOT crossing components!

@ b

SAFE!L10_° 3)

© @

ALSO SAFE!

Now b, ¢, d and e are in one connected
component, a is a component.
(a, e) and (a, b) are crossing components.

SAFE!

Two things that need to be worried about when
actually implementing the algorithm

->How to keep track of the connected
components?

->How to efficiently find the minimum
weighted edge?

Kruskal’s and Prim’s basically use different
data structures to do these two things.

Overview: Prim’s and Kruskal’s

Keep track of : ..
Find minimum
connected :
weight edge
components

Keep “one tree

Prim’s plus isolated
vertices”

use priority
queue ADT

use “disjoint set” Sort all edges

Kruskal’s ADT according to
weight

Prim’s Kruskal’s

L]
. o o g) '
. L
¢+t '
L] + R
. +
L L
. . . . + ¢ % .
~» ¢ . . . 0
*
*
* ® * * e ¢ L e +
B * B »
® + B 0.‘. b *
+ + *
. ¢ . * Q‘ *e t‘ “‘
. + + ¢t *s
. . .t B B + + . >
‘ L = + N . + AP
.. ' + * t .
. .
® ® ‘»‘ + * + ¢
Y B * . +
B . +* + *
® ¢ * ot
-
+
.
4 A .
-
® ® [B
[] ® +
®
L
L
®
®

W . conbinatorica.com

Wy . conbinatorica. com

https://trendsofcode.files.wordpress.com/2014/09/dijkstra.qif

https://www.projectrhea.org/rhea/images/4/4b/Kruskal Old Kiwi.qif

Prim’s MST algorithm

Prim’s algorithm: Idea

-> Start from an arbitrary vertex as root

-> Focus on growing one tree. This tree is one
component; the cut is always (T,V-T) where T is the
tree so far.)

- Choose a minimum weight edge among all edges that
are incident to the current tree (edges crossing the
cut)

- How to get that minimum? Store all candidate vertices
in a Min-Priority Queue whose key is the weight of the
crossing edge (incident to tree).

PRIM-MST(G=(V, E, w)):

-

1

O 00 NGO U1 b WN

R R R R R R
i D WIN RO

T« {}

for all v in V:
key[v] « e
pi[v] « NIL

key[v] keeps the “shortest distance”
between v and the current tree

pi[v] keeps who, in the tree, is v
connected to via lightest edge.

pick arbitrary vertex r as root; key[r]=0
initialize priority queue Q with all v in V

T < {r}
. . u is the next vertex to add to
while Q is not empty: current tree
u « EXTRACT-MIN(Q) E—
. . add edge, pi[u] is lightest
if pi[u] != NIL: vertex to connect to, “safe”

T «Tu {(pifu], u)}
for each neighbour v of u:
if v in Q and w(u, v) < key[v]:

DECREASE-KEY(Q, v, w(u, v))—W

pi[v] < u

all u’s neighbours’ distances to the
current tree need update

Trace an example!

Pick “a” as root

Ly
R OR

3 0 10
() * (@

Next, ExtractMin !

©)

key

o]

NIL

NIL

NIL

NIL

NIL

ExtractMin (#1)

then update neighbours’ keys

@ @
@ @

©

a: 0, NIL

key

o]

NIL
-

NIL

NIL

NIL
9

ExtractMin (#2)
then update neighbours’ keys

e: 3, a

key

o]

8-5

NIL

NIL
—€

ExtractMin (#3)
then update neighbours’ keys

b: 5, e

C 352 |NIL

() b
d) e

o

Could also have extracted d

since its key is also 5 (min)

ExtractMin (#4)
then update neighbours’ keys

c:2,b

key

o]

ExtractMin (#4)
then update neighbours’ keys

d:5 e

Q

key

o]

]

Q is empty now.

Correctness of Prim’s

The added edge is always a “safe” edge, i.e.,
the minimum weight edge crossing the cut
(because of ExtractMin).

Runtime analysis: Prim’s

->Assume we use binary min heap to
implement the priority queue.
->Each ExtractMin take O(log V)

=>In total V ExtractMin’s
->|n total, check at most O(E) neighbours, each

check neighbour could lead to a DecreaseKey
which takes O(log V)

> TOTAL: O((V+E)log V) = O(E log V)

In a connected graph G = (V, E)

V| is in O(|E|) because...
|E| has to be at least |V]-1

Also, log |E| is in O(log |V]|) because ...

E is at most V3,

so log E is at most log V2 =2 log V, which is
in O(log V)

Kruskal’s MST algorithm

.
+
.
.
+ +
.
* -
+
. .
+ , + + + *
* +
+ +
+ + * + +
+
e
* Yo * *
". .t
+ 1 +
* + ‘e +
e .t
*
* +
, 1 + e
+ - ++ + +
+ +
+ + * ’0
* + - + *
. +
Q’ + * +
+ * +
. *
+
+
+
+ +
* N
*
* . N
*
+ + .
* +
. +
* ‘
*
*
*

Kruskal’s algorithm: idea

->Sort all edges according to weight, then
start adding to MST from the lightest one.

¢ This is “greedy”!
->Constraint: added edge must NOT cause a
cycle

+In other words, the two endpoints of the edge must
belong to two different trees (components).

->The whole process is like unioning small
trees into a big tree.

m = |E]|

Pseudocode

KRUSKAL-MST(G(V, E, w)):
T « {}
sort edges so that w(el)iw(e2)<2...2w(em)
for 1 « 1 to m:
let (ui, vi) = ei
if ui and vi in different components:
T« TuU {ei}

aoutph WN B

Example

@ @
@ @

©

Add (b, c), the lightest edge

6
O
JENC
) ° (O

Add (a, e), the 2nd lightest

6
OO
J NG

© ' © -

Add (b, e), the 3rd lightest

Add (a, b), the 4th lightest ...

No! a, b are in the same component
Add (d, e) instead!

Correctness of Kruskal’s

The added edge is always a “safe” edge,
because it is the minimum weight edge among
all edges that cross components

m = |E|

Runtime ...

sorting takes O(E log E)

KRUSKAL-MST(G(V, E, w)):
T« {}
sort edges so that w(el)iw(e2)N..2w(em)

for 1 « 1 to m:
let (ui, vi) = ei
if ui and vi in different components:

[T« T U {ei} }

aoutph WN B

— 7

How exactly do we do these two lines?

We need the Disjoint Set ADT

which stores a collections of nonempty disjoint
sets S1, S2, ..., Sk, each has a
“representative”.

and supports the following operations
->MakeSet(x): create a new set {x}
->FindSet(x): return the representative of the
set that x belongs to
->Union(x, y): union the two sets that contain
x and vy, if different

m = |E]|

Real Pseudocode

KRUSKAL-MST(G(V, E, w)):
T« {}
sort edges so that w(el)w(e2)<2...2w(em)
for each v in V:
MakeSet(v)
for 1 « 1 to m:
let (ui, vi) = ei
if FindSet(ui) != FindSet(vi):
Union(ui, vi)
T « T U {ei}

OWoOoONOUTES, WN B

Next week

->More on Disjoint Set

