CSC263 Week 10

Announcements

Problem Set 5 is out (today)!

Due Tuesday (Dec 1)

Minimum Spanning Trees

The Graph of interest today

A connected undirected weighted graph

G = (V, E) with weights **w(e)** for each $e \in E$

A Minimum Spanning Tree

Applications of MST

Build a road network that connects all towns and with the minimum cost.

Applications of MST

Connect all components with the least amount of wiring.

Other applications

- →Cluster analysis
- →Approximation algorithms for the "travelling salesman problem"

In order to understand minimum spanning tree we need to first understand tree

Tree: undirected connected acyclic graph

A tree **T** with **n** vertices has **exactly** <u>**n-1**</u> edges.

Removing one edge from T will **disconnect the tree**

Adding one edge to T will create a cycle.

Now we are ready to talk about algorithms

Idea #1

Start with **T** = **G.E**, then keep deleting edges until an MST remains.

Which sounds more efficient in terms of worst-case runtime?

Idea #2

Start with **empty** T, then keep adding edges until an MST is built.

Hint

A undirected simple graph G with **n** vertices can have at most _____edges.

$$\binom{n}{2} = \frac{n(n-1)}{2} \in \mathcal{O}(n^2)$$

Note: Here T is an edge set

Idea #1

Idea #2

Start with T = G.E, then keep deleting edges until an MST remains.

In worst-case, need to delete $O(|V|^2)$ edges (*n* choose 2) - (*n*-1)

In worst-case, need to add O(|V|) edges

Start with **empty** T, then keep adding edges until an MST is built.

So, let's explore more of **Idea #2**, i.e., building an MST by **adding** edges one by one

i.e., we "**grow**" a tree

The generic growing algorithm

```
GENERIC-MST(G=(V, E, w)):
  T ← Ø
  while T is not a spanning tree:
    find a "safe" edge e
    T ← T U {e}
  return T
```

What is a "safe" edge?

"Safe" means it keeps the **hope** of T growing into an MST.

"Safe" edge e for T

Assuming **before** adding $e, T \subseteq some MST$, edge e is safe if **after** adding e, still $T \subseteq some MST$

If we make sure T is always a subset of some MST while we grow it, then eventually T will become an MST!

```
GENERIC-MST(G=(V, E, w)):
T ← Ø
while T is not a spanning tree:
  find a "safe" edge e
  T ← T U {e}
return T
```


Intuition

If we make sure the pieces we put together is always a subset of the real picture while we grow it, then eventually it will become the real picture!

The generic growing algorithm

```
GENERIC-MST(G=(V, E, w)):
  T ← Ø
  while T is not a spanning tree:
    find a "safe" edge e
    T ← T U {e}
  return T
```

How to find a "safe" edge?

Two major algorithms we'll learn

→Kruskal's algorithm

→Prim's algorithm

They are both based on one theorem...

How to find a safe edge: The cut property

Let G=(V,E) be a connected, undirected graph.

X a subset of edges of G such that T contains X, where T is a minimum spanning tree of G. (So X is a forest and can be extended to a MST)

Let S be a connected component of (V,X). (So no edge in X crosses the cut S, V-S)

Among all edges crossing between S and V-S, let e be an edge of minimum weight.

Then some MST T' contains X+e (In other words, e is a safe edge.)

Basic outline of all MST algs:

Start with G=(V,E,w)Let X be a set of edges, initially X is empty Repeat until |X| = |V|-1:

- 1. Pick a connected component S of (V,X)
- 2. Let e be a lightest edge in E that crosses between S and V-S
- 3. Add e to X

Basic outline of all MST algs:

Start with G=(V,E,w)Let X be a set of edges, initially E is empty Repeat until |X| = |V|-1:

- 1. Pick a connected component S of (V,X)
- 2. Let e be a lightest edge in E that crosses between S and V-S
- 3. Add e to X

Prim: S starts off being a single vertex r, and in general S is the connected component containing r
 Kruskal: choose S so that the length of e is minimum

Initially, **T** (red) is a subgraph with no edge, each vertex is a connected component, all edges are crossing components, and the minimum weighted one is ...

Now **b** and **c** in one connected component, each of the other vertices is a component, i.e., 4 components.

All gray edges are crossing components.

Now **b**, **c** and **d** are in one connected component, **a** and **e** each is a component. (**c**, **d**) is **NOT** crossing components!

Now **b**, **c**, **d** and **e** are in one connected component, **a** is a component. (**a**, **e**) and (**a**, **b**) are crossing components.

MST grown!

Two things that need to be worried about when actually implementing the algorithm

→How to keep track of the connected components?

→How to efficiently find the minimum weighted edge?

Kruskal's and Prim's basically use different data structures to do these two things.

Overview: Prim's and Kruskal's

	Keep track of connected components	Find minimum weight edge
Prim's	Keep "one tree plus isolated vertices"	use priority queue ADT
Kruskal's	use "disjoint set" ADT	Sort all edges according to weight

Prim's

Kruskal's

www.combinatorica.com

www.combinatorica.com

https://trendsofcode.files.wordpress.com/2014/09/dijkstra.gif

https://www.projectrhea.org/rhea/images/4/4b/Kruskal_Old_Kiwi.gif

Prim's MST algorithm

Prim's algorithm: Idea

- → Start from an arbitrary vertex as root
- → Focus on growing one tree. This tree is one component; the cut is always (T,V-T) where T is the tree so far.)
- → Choose a minimum weight edge among all edges that are incident to the current tree (edges crossing the cut)
- → How to get that minimum? Store all candidate vertices in a Min-Priority Queue whose key is the weight of the crossing edge (incident to tree).

Trace an example!

ExtractMin (#1) then update neighbours' keys

a: 0, NIL

ExtractMin (#2) then update neighbours' keys

e: 3, a

ExtractMin (#3) then update neighbours' keys

b: 5, e

ExtractMin (#4) then update neighbours' keys

c: 2, b

Correctness of Prim's

The added edge is always a "**safe**" edge, i.e., the **minimum** weight edge crossing the cut (because of **ExtractMin**).

Runtime analysis: Prim's

- →Assume we use binary min heap to implement the priority queue.
- → Each ExtractMin take O(log V)
- →In total V ExtractMin's
- →In total, check at most O(E) neighbours, each check neighbour could lead to a DecreaseKey which takes O(log V)

$\rightarrow \text{TOTAL: O((V+E)\log V) = O(E \log V)}$

In a connected graph G = (V, E)

```
|V| is in O(|E|) because...|E| has to be at least |V|-1
```

```
Also, \log |E| is in O(log |V|) because ...
E is at most V<sup>2</sup>,
so log E is at most log V<sup>2</sup> = 2 log V, which is
in O(log V)
```

Kruskal's MST algorithm

Kruskal's algorithm: idea

- →Sort all edges according to weight, then start adding to MST from the lightest one.
 ◆This is "greedy"!
- →Constraint: added edge must NOT cause a cycle
 - In other words, the two endpoints of the edge must belong to two different trees (components).
- →The whole process is like unioning small trees into a big tree.

m = |E|

KRUSKAL-MST(G(V, E, w)): 1 T ← {} 2 sort edges so that w(e1)≤w(e2)≤...≤w(em) 3 for i ← 1 to m: 4 # let (ui, vi) = ei 5 if ui and vi in different components: 6 T ← T U {ei}

Pseudocode

Example

Add (b, c), the lightest edge

Add (a, e), the 2nd lightest

Add (b, e), the 3rd lightest

Add (a, b), the 4th lightest ... No! a, b are in the same component Add (d, e) instead!

Correctness of Kruskal's

The added edge is always a "**safe**" edge, because it is the **minimum** weight edge among all edges that **cross** components

We need the **Disjoint Set ADT**

which stores a collections of nonempty disjoint sets **S1, S2, ..., Sk**, each has a "representative".

and supports the following operations

- →MakeSet(x): create a new set {x}
- →FindSet(x): return the representative of the set that x belongs to
- →Union(x, y): union the two sets that contain x and y, if different

m = |E|

Real Pseudocode

```
KRUSKAL-MST(G(V, E, w)):
1
     T \leftarrow \{\}
2
     sort edges so that w(e1) \le w(e2) \le \ldots \le w(em)
3
     for each v in V:
4
        MakeSet(v)
5
     for i \leftarrow 1 to m:
6
         # let (ui, vi) = ei
7
         if FindSet(ui) != FindSet(vi):
8
             Union(ui, vi)
9
            T \leftarrow T \cup \{ei\}
```

Next week

→More on Disjoint Set

