CSC263 Week 9

Announcements

HW3 is graded. Average is 81%

Announcements

Problem Set 4 is due this Tuesday!

Due Tuesday (Nov 17)

Recap

- →The Graph ADT
 - definition and data structures
- →BFS
 - ◆gives us single-source shortest path
 - ◆Let δ(s, v) denote the length of shortest path from s to v...
 - ♦then after performing a BFS starting from s, we have, for all vertices v

$$d[v] = \delta(s, v)$$

We can prove it.

Idea of the proof

There is no way $d[v] < \delta(s, v)$, according to Lemma 22.2

Use contradiction: suppose there exist $\sqrt[r]{s}$ s.t. $d[v] > \delta(s, v)$, let v be the one with the **minimum** $\delta(s, v)$.

Then on a shortest path between s and v, pick vertex u which is immediately before v...

then we have $d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$

Must be equal because u is on the shortest path from s to v.

Must be equal because v is the minimum $\delta(s, v)$ that violates d[v] > $\delta(s, v)$, so u must not be violating.

Think about the moment after dequeue u (checking u's neighbours)

- \rightarrow if v is white, d[v] = d[u] + 1 (how BFS works), **contradiction**!
- → if v is black, d[v] <= d[u] (coz v is dequeued before u), contradiction!
- → if v is gray, then it is coloured gray by some other vertex w, then d[v] = d[w] + 1 and d[w] <= d[u], therefore d[v] <= d[u] + 1, contradiction!</p>

Depth-First Search

The Depth-First way of learning these subjects

→ Go towards PhD whenever possible; only start learning physics after finishing everything in CS.


```
NOT_YET_BFS(root):
    Q ← Queue()
    Enqueue(Q, root)
    while Q not empty:
        x ← Dequeue(Q)
        print x
    for each child c of x:
        Enqueue(Q, c)
```

```
NOT_YET_DFS(root):
   Q ← Stack()
   Push(Q, root)
   while Q not empty:
    x ← Pop(Q)
   print x
   for each child c of x:
        Push(Q, c)
```

Why they are twins!

DFS in a tree

Output: a c f e b d d f

```
NOT_YET_DFS(root):
   Q ← Stack()
   Push(Q, root)
   while Q not empty:
      x ← Pop(Q)
      print x
   for each child c of x:
      Push(Q, c)
```

Stack: a b c e f d
POP POP POP POP POP

A nicer way to write this code?

The use of stack is basically implementing recursion

```
NOT_YET_DFS(root):

Q ← Stack()

Push(Q, root)

while Q not empty:

x ← Pop(Q)

print x

for each child c of x:

Push(Q, c)
```

```
NOT_YET_DFS(root):
   print root
   for each child c of x:
        NOT_YET_DFS(c)
```

Exercise: Try this code on the tree in the previous slide.

Avoid visiting a vertex twice, same as BFS

Remember you visited it by labelling it using colours.

→White: "unvisited"

→ Gray: "encountered"

→Black: "explored"

- → Initially all vertices are white
- → Colour a vertex gray the first time visiting it
- → Colour a vertex **black** when **all** its **neighbours** have been encountered
- → Avoid visiting gray or black vertices
- → In the end, all vertices are black

Other values to remember, some are same as BFS

- → pi[v]: the vertex from which v is encountered
 - "I was introduced as whose neighbour?"

Other values to remember, different from BFS

- →There is a **clock** ticking, incremented whenever someone's colour is changed
- →For each vertex v, remember two timestamps
 - ◆d[v]: "discovery time", when the vertex is first encountered
 - ◆f[v]: "finishing time", when all the vertex's neighbours have been visited.

Note: this d[v] is totally different from that distance value d[v] in BFS!

The pseudo-code (incomplete)

```
DFS VISIT(G, u):
   colour[u] ← gray
   time ← time + 1
# keep discovery time
   d[u] ← time on first encounter
   for each neighbour v of u:
       if colour[v] = white:
           pi[v] \leftarrow u
          DFS VISIT(G, v)
   colour[u] ← black
   time ← time + 1
                 # keep finishing time after
   f[u] ← time exploring all neighbours
```

The red part is the same as NOT_YET_DFS

Why **DFS_VISIT** instead of **DFS**? We will see...

Let's run an example!

DFS_VISIT(G, u)

time = 1, encounter the source vertex

time = 2, recursive call, level 2

time = 3, recursive call, level 3

time = 4, recursive call, level 4

time = 5, vertex x finished

time = 6, recursion back to level 3, finish y

time = 7, recursive back to level 2, finish v

time = 8, recursion back to level 1, finish u

What about DFS_VISIT(G, u) done! these two white vertices? u W We actually want to visit X them (for some reason)

The pseudo-code for visiting everyone

```
DFS(G):
   for each v in G.V:
       colour[v] \leftarrow white
       f[v] \leftarrow d[v] \leftarrow \infty
       pi[v] ← NIL
   time ← 0
   for each v in G.V:
       if colour[v] = white:
           DFS VISIT(G, v)
```

Make sure NO vertex is left with white colour.

Initialization

```
DFS_VISIT(G, u):
    colour[u] ← gray
    time ← time + 1
    d[u] ← time
    for each neighbour v of u:
        if colour[v] = white:
            pi[v] ← u
            DFS_VISIT(G, v)
    colour[u] ← black
    time ← time + 1
    f[u] ← time
```

So, let's finish this DFS

time = 9, DFS_VISIT(G, w)

time = 10

time = 11

time = 12

DFS(G) done!

Recap

We get a
DFS forest
(a set of
disjoint
trees)

Runtime analysis!

The total amount of work (use adjacency list):

- → Visit each vertex once
 - constant work per vertex
 - → in total: O(|V|)
- → At each vertex, check all its neighbours (all its incident edges)
 - Each edge is checked once (in a directed graph)
 - in total: O(|E|)

Same as BFS

Total runtime: O(|V|+|E|)

What do we get from DFS?

- → Detect whether a graph has a cycle.
 - ◆That's why we wanted to visit all vertices -- if you want to be sure whether a graph has a cycle or not, you'd better check **everywhere**.
 - ♦ Why didn't we do the similar thing for BFS?
- →How exactly do we detect a cycle?

determine descendant / ancestor relationship in the DFS forest

How to decide whether **y** is a **descendant** of **u** in the DFS forest?

Idea #1: trace back the pi[v] pointers (the red edges) starting from y, see whether you can get to u.

Worst-case takes **O(n)** steps.

the "parenthesis structure"

```
((()))()(())
```

- → Either one pair **contains** the another pair.
- → Or one pair is **disjoint** from another

Visualize d[v], f[v] as interval [d[v], f[v]]

Now, visualize all the intervals!

The [d[v], f[v]] intervals that we got from DFS follow the parenthesis structure, i.e.,

- → Either one interval **contains** another
- →Or one is **disjoint** from another

Moreover,

- →Iff interval of u contains interval of v, then u is an ancestor of v in the DFS forest.
- →If interval of **u** is disjoint from interval of **v**, then they are **not** ancestors of each other.

How to decide whether **y** is a **descendant** of **u** in the DFS forest?

We can efficiently check whether a vertex is an ancestor of another vertex in the DFS forest.

so what...

Classifying Edges

4 types of edges in a graph after a DFS

- → Tree edge: an edge in the DFS-forest
- → Back edge: a non-tree edge pointing from a vertex to its ancestor in the DFS forest.
- → Forward edge: a non-tree edge pointing from a vertex to its descendant in the DFS forest

Checking edge types

We can efficiently check edge types, because... we can efficiently check whether a vertex is an **ancestor** / **descendant** of another vertex using... the **parenthesis structure** of [d[v], f[v]] intervals!

We can efficiently check edge types after a DFS!

so what...

A graph is cyclic if and only if DFS yields a back edge.

That's useful!

A (directed) graph contains a cycle if and only if DFS yields a back edge

A (directed) graph contains a cycle if and only if DFS yields a back edge

Proof of "if":

Let the edge be (u, v), then by definition of back edge, v is an ancestor of u in the DFS tree, then their is a path from v to u, i.e., $v \rightarrow ... \rightarrow u$, plus the back edge $u \rightarrow v$, BOOM! Cycle.

Proof of "only if":

Let the cycle be...,

Let v0 be the first one that turns gray, when all others in the cycle are white, then vk must be a descendant of v0. (Read "White Path Theorem" in Text)

How about undirected graph?

Should back and forward edges be the same thing?

→ No, because although the edges are undirected, neighbour checking still has a "direction".

More about undirected graph

After a DFS on a undirected graph, **every** edge is either a **tree edge** or a **back edge**, i.e., **no** forward edge or cross edge.

If this were a forward edge, it would violate the DFS algorithm (not checking at C but tracing back and check at A)

If this were a cross edge, it violets DFS again (should have checked (A, C) when reached A, but instead wait until C is visited.)

Why do we care about cycles in a graph?

Because cycles have meaningful implication in real applications.

Example: a course prerequisite graph

Applications of DFS

- → Detect cycles in a graph
- →Topological sort
- →Strongly connected components

→Place the vertices in such an order that all edges are pointing to the right side.

Topological sort more formally

Suppose that in a **directed** graph **G** = (**V**, **E**) vertices **V** represent tasks, and each edge (**u**, **v**)∈**E** means that task **u** must be done before task **v**

What is an ordering of vertices 1, ..., |V| such that for every edge (u, v), u appears before v in the ordering?

Such an ordering is called a **topological sort of G**Note: there can be multiple topological sorts of G

Topological sort more formally

Is it possible to execute all the tasks in **G** in an order that respects all the precedence requirements given by the graph edges?

The answer is "yes" if and only if the directed graph **G** has **no cycle**!

(otherwise we have a deadlock)

Such a **G** is called a Directed Acyclic Graph, or just a **DAG**

Algorithm for TS

- •TOPOLOGICAL-SORT(**G**):
 - call DFS(G) to compute **finishing** times **f**[v] for each vertex v
 - 2) as each vertex is finished, insert it onto the **front** of a linked list
 - 3) return the linked list of vertices
- Note that the result is just a list of vertices in order of decreasing finish times f[]

1) Call DFS(**G**) to compute the finishing times **f**[**v**]

Let's say we start the DFS from the vertex **c**

Next we discover the vertex **d**

 Call DFS(G) to compute the finishing times f[v]

Let's say we start the DFS from the vertex **c**

Next we discover the vertex **d**

- 1) Call DFS(**G**) to compute the finishing times **f**[**v**]
- 2) as each vertex is finished, insert it onto the **front** of a linked list

Next we discover the

f is done, move back to d

 Call DFS(G) to compute the finishing times f[v]

Let's say we start the DFS from the vertex **c**

Next we discover the

Next we discover the

f is done, move back to d

d is done, move back to c

 Call DFS(G) to compute the finishing times f[v]

Let's say we start the DFS from the vertex **c**

Next we discover the

Next we discover the

f is done, move back to d

d is done, move back to c

Next we discover the vertex **e**

 Call DFS(G) to compute the finishing times f[v]

Let's say we start the DFS from the vertex **c**

Next we discover the

Both edges from e are cross edges

d is done, move back to c

Next we discover the

e is done, move back to c

 Call DFS(G) to compute the finishing times f[v]

Let's say we start the DFS from the vertex **c**

Just a note: If there was (**c**,**f**) edge in the graph, it would be classified as a **forward edge**

(in this particulare DES tob)

Next we discover the

e is done, move back to c

c is done as well

 Call DFS(G) to compute the finishing times f[v]

> Let's now call DFS visit from the vertex **a**

Next we discover the vertex **c**, but **c** was already

Next we discover the vertex **b**

 Call DFS(G) to compute the finishing times f[v]

> Let's now call DFS visit from the vertex **a**

Next we discover the vertex **c**, but **c** was already

Next we discover the

b is done as (**b**,**d**) is a cross edge => now move back to **c**

Time = 12 d = 9 $f = \infty$ d = 1d = 10f = 8f = 11 b d = 2d = 6f = 7f = 5d = 3f = 4dl⇔∣d d

 Call DFS(G) to compute the finishing times f[v]

> Let's now call DFS visit from the vertex **a**

Next we discover the vertex **c**, but **c** was already

Next we discover the

b is done as (**b**,**d**) is a cross edge => now move

a is done as well

hack to c

Time = 13 d = 9f = 12d = 1d = 10f = 8f = 11 b C d = 2d = 6f = 7f = 5d = 3f = 4

 Call DFS(G) to compute the finishing times f[v]

WE HAVE THE RESULT!

3) return the linked list of vertices

but c was already

Next we discover the

b is done as (**b**,**d**) is a cross edge => now move

a is done as well

The linked list is sorted in **decreasing** order of finishing times **f**[]

Try yourself with different vertex order for DFS visit

Note: If you redraw the graph so that all vertices are in a line ordered by a valid topological sort, then all edges point "from left to right"

Time complexity of TS(G)

Running time of topological sort:

$$\Theta(n + m)$$

where $n=|V|$ and $m=|E|$

Why? Depth first search takes $\Theta(n + m)$ time in the worst case, and inserting into the front of a linked list takes $\Theta(1)$ time

- Theorem: TOPOLOGICAL-SORT(G) produces a topological sort of a DAG G
- •The TOPOLOGICAL-SORT(**G**) algorithm does a DFS on the DAG **G**, and it lists the nodes of **G** in order of decreasing finish times **f**[]
- •We must show that this list satisfies the topological sort property, namely, that for every edge (**u**,**v**) of **G**, **u** appears before **v** in the list
- •Claim: For every edge (u,v) of G: f[v] < f[u] in DFS

"For every edge (u,v) of G, f[v] < f[u] in this DFS"

The DFS classifies (u,v) as a tree edge, a forward edge or a cross-edge (it cannot be a back-edge since G has no cycles):

- i. If (u,v) is a **tree** or a **forward edge** \Rightarrow v is a descendant of $u \Rightarrow f[v] < f[u]$
- ii. If (u,v) is a cross-edge

"For every edge (u,v) of $G: f[v] \le f[u]$ in this DFS"

ii. If (u,v) is a cross-edge:

Q.E.D. of Claim

as (\mathbf{u}, \mathbf{v}) is a cross-edge, by definition, neither \mathbf{u} is a descendant of \mathbf{v} nor \mathbf{v} is a descendant of \mathbf{u} :

$$d[\mathbf{u}] < f[\mathbf{u}] < d[\mathbf{v}] < f[\mathbf{v}]$$

or

since (u,v) is an edge, v is surely discovered before u's exploration completes

TOPOLOGICAL-SORT(G) lists the nodes of G from highest to lowest finishing times

By the **Claim**, for every edge (**u**,**v**) of **G**: f[v] < f[u]

 \Rightarrow **u** will be before **v** in the algorithm's list

Q.E.D of **Theorem**

Recap: topological sorting

1.Do a **DFS**

2.Order vertices according to their finishing times f[v]

Strongly connected components

(covered in this week's tutorial)

→Subgraphs with strong connectivity (any pair of vertices can reach each other)

Summary of DFS

- →It's the twin of BFS (Queue vs Stack)
- → Keeps two timestamps: d[v] and f[v]
- → Has same runtime as BFS
- →Does NOT give us shortest-path
- →Give us cycle detection (back edge)
- →For real problems, choose BFS and DFS wisely.

Next week

→ Minimum Spanning Tree

