CSC263 Week 9

Announcements

HW3 is graded. Average is 81%

Announcements

Problem Set 4 is due this Tuesday!

Due Tuesday (Nov 17)

Recap

->The Graph ADT

¢ definition and data structures

->BFS

¢ gives us single-source shortest path

o Let (s, v) denote the length of shortest path from s
tov...

o+ then after performing a BFS starting from s, we
have, for all vertices v

d[V] = 6(85 V) . We can prove it.

There is no way d[v] < &(s, V),

Idea Of the proof according to Lemma 22.2

Use contradiction: suppose there exist v s.t. d[v] > O(s, V),
let v be the one with the minimum §(s, v).

Then on a shortest path between s and v, pick vertex u
which is immediately before v...
then we have d[v] > &(s, v) =8(s, u) + 1 =d[u] + 1

P NI

Must be equal because v is
the minimum &(s, v) that
violates d[v] > &(s, v), so u
must not be violating.

Must be equal because u is on
the shortest path from s to v.

Think about the moment after dequeue u (checking u’s neighbours)
-> if vis white, d[v] = d[u] + 1 (how BFS works), contradiction!
-> if vis black, d[v] <= d[u] (coz v is dequeued before u), contradiction!
- if vis gray, then it is coloured gray by some other vertex w, then d[v] = d[w] + 1

and d[w] <= d[u], therefore d[v] <= d[u] + 1, contradiction!

Depth-First Search

The Depth-First way of learning these subjects
- Go towards PhD whenever possible; only start
learning physics after finishing everything in CS.

High School
College }Zé
/1
~— N

Z~ N\

Science

String— Black

Theory

hole

~Geology

Rocks Sand

P ———

FS NOT_YET BFS(root):

” Q « Queue()
Enqueue(Q, root)

N -~ -
e “ while Q not empty:

X « Dequeue(Q)

B

print X
NOT_YET DFS(root): for each child c of x:

Q « Stack() Enqueue(Q, c)
Push(Q, root)
while Q not empty:

X < Pop(Q)

print x Why they are

for each child c of x: twins!

Push(Q, c)

DFS in a tree

NOT_YET _DFS(root):

Output: Q0 « Stack()
a e Push(Q, root)
? while Q not empty:
e Q e X « Pop(Q)
b print x
d for each child ¢ of x:
Q e G Push(Q, c¢)
Stack: a b C e f d

POP poP POP

POP POP POP

A nicer way to write this code?

The use of stack is
basically implementing

recursion
NOT_YET DFS(root): |
Q « Stack() NOT_YET_DFS(root):
Push(Q, root) print root
while Q not empty: for each child c of x:
x « Pop(Q) NOT_YET_DFS(c)
print X r____

for each child c¢ of x:
Exercise: Try this code on the tree

Push (Q, C) in the previous slide.

Avoid visiting a vertex twice, same as BFS

Remember you visited it by

labelling it using colours.
->White: “unvisited”
->Gray: “encountered”
->Black: “explored”

=> Initially all vertices are white

-> Colour a vertex gray the first time visiting it

-> Colour a vertex black when all its neighbours
have been encountered

-> Avoid visiting gray or black vertices

-> In the end, all vertices are black

Other values to remember, some are
same as BFS

-> pi[v]: the vertex from which v is encountered
+ “l was introduced as whose neighbour?”

Other values to remember, different
from BFS

->There is a clock ticking, incremented
whenever someone’s colour is changed
->For each vertex v, remember two

timestamps
+d[v]: “discovery time”, when the vertex is first
encountered
+f[v]: “finishing time”, when all the vertex’s
neighbours have been visited.

T

Note : this d[v] is totally different from that distance value d[v] in BFS!

The pseudo-code (incomplete)

The red part is
the same as
NOT YET DFS

DFS_VISIT(G, u):
colour[u] <« gray

time « time + 1 _ _
keep discovery time

d[u] « time on first encounter

for each neighbour v of u:
if colour[v] = white: Why DFS_VISIT
instead of DFS?

pi[v] < u T~ We will see...
DFS_VISIT(G, V)

colour[u] <« black

time « time + 1
keep finishing time after

flu] « time exploring all neighbours

Let’s run an example! DFS_VISIT(G, u)

u V W

D

%

time = 1, encounter the source vertex

u \"/ '}

d=1

%

time = 2, recursive call, level 2

u \'/
1 2

time = 3, recursive call, level 3

u \'/
1 2

time = 4, recursive call, level 4

u \'/
1 2

time = 5, vertex x finished

u \Y/
1 2

time = 6, recursion back to level 3, finish y

u \'/ \"."}
1 2

time = 7, recursive back to level 2, finish v

time = 8, recursion back to level 1, finish u

DFS _VISIT(G, u) done!

What about
these two white
vertices?

We actually
want to visit
them (for some
reason)

The pseudo-code for visiting everyone

DFS(G):
for each v in G.V:
colour[v] <« white

Initialization

/7/

flv] « d[v] ¢« =
pi[v] « NIL
time « ©
for each v in G.V:
if colour[v] white:
/ \DFS_VISIT(G, v)
X

Make sure NO vertex is left

DFS_VISIT(G, u):

colour[u] <« gray

time « time + 1

d[u] « time

for each neighbour v of u:

if colour[v] = white:

pi[v] <« u
DFS_VISIT(G, V)

colour[u] « black

time « time + 1

with white colour.

fl[u] « time

So, let’s finish this DFS

time = 9, DFS_VISIT(G, w)

time = 11

time =12

DFS(G) done!

Recap

d[v]: discovery time

f[v]: finishing time

We get a
DFS forest
(a set of
disjoint
trees)

Runtime analysis!

The total amount of work (use adjacency list):
-> Visit each vertex once
& constant work per vertex
+ intotal: O(|V])
-> At each vertex, check all its neighbours (all its incident
edges)
+ Each edge is checked once (in a directed graph)
+ intotal: O(|E])

Total runtime:
Same as BFS O(|V|+|E])

What do we get from DFS?

->Detect whether a graph has a cycle.
+ That's why we wanted to visit all vertices -- if you
want to be sure whether a graph has a cycle or not,

you’'d better check everywhere.
+\Why didn’t we do the similar thing for BFS?

->How exactly do we detect a cycle?

determine descendant / ancestor
relationship in the DFS forest

How to decide whether y is a descendant of u
in the DFS forest?

Idea #1: trace back the pi[v] pointers
(the red edges) starting from y, see
whether you can get to u.
Worst-case takes O(n) steps.

R IQ’ OLD YOU
¥ x

u K |

A
YOU CAN DO BETTER THAN THIS

the “parenthesis structure”

(€()))0)

-> Either one pair contains the another pair.
-=> Or one pair is disjoint from another

()

This (overlapping)
never happens!

Visualize d[v], f[v] as interval [d[v], f[v]]

Now, visualize all the intervals!

What do you see in this? K |

Parenthesis structure! | |y |

3 6

y —
4 5

X H

10

The [d[v], f[v]] intervals that we got from DFS
follow the parenthesis structure, i.e.,

=>Either one interval contains another

->0r one is disjoint from another

Moreover,
->|ff interval of u contains interval of v, then u
IS an ancestor of v in the DFS forest.
=>|f interval of u is disjoint from interval of v,
then they are not ancestors of each other.

How to decide whether y is a descendant of u
in the DFS forest?

Idea #2: see if [d[u], f[u]]
contains [d[y], f[y]].
Worst-case: 1 step!

) o

We can efficiently check whether a
vertex is an ancestor of another
vertex in the DFS forest.

so what... > OE

Classifying Edges

4 types of edges in a graph after a DFS

- Tree edge: an edge in the DFS-forest

- Back edge: a non-tree edge pointing from a vertex
to its ancestor in the DFS forest.

-> Forward edge: a non-tree edge pointing from a
vertex to its descendant in the DFS forest

U - Cross edge: all
other edges

Checking edge types

We can efficiently check edge types, because...

we can efficiently check whether a vertex is an ancestor /
descendant of another vertex using...

the parenthesis structure of [d[v], f[v]] intervals!

U

" We can efficiently check edge
> @ types after a DFS!

so what...

A graph is cyclic if and only if
DFS yields a back edge.

That’s useful!

A (directed) graph contains a cycle if and
only if DFS yields a back edge

A (directed) graph contains a cycle if and
only if DFS yields a back edge

Proof of “if”: Proof of “only if”:
Let the edge be (U, V), Let the CyC|e be...,
then by definition of back G

edge, v is an ancestor of u

in the DFS tree,
() (0
~

then their is a path from v to

u,l.e.,v— ... - u, G

plus the back edge u — v, Let vO be the first one that turns gray,

BOOM! Cycle. when all others in the cycle are white,
then vk must be a descendant of vO.
(Read “White Path Theorem” in Text)

How about undirected graph?

Should back and forward edges be the same thing?
-> No, because although the edges are undirected,
neighbour checking still has a “direction”.

U)

Checking in this
direction, so it's
a back edge

More about undirected graph

After a DFS on a undirected graph, every edge
IS either a tree edge or a back edge,
l.e., no forward edge or cross edge.

If this were a forward edge, it would If this were a cross edge, it violets
violate the DFS algorithm (not DFS again (should have checked (A,
checking at C but tracing back and C) when reached A, but instead wait
check at A) until C is visited.)

Why do we care about
cycles in a graph?

Because cycles have meaningful implication
In real applications.

Example:
a course prerequisite graph

—V[CSC258
CSC165}\‘

CSCZBGJ
[CSC373J
‘\{CSCZGB
If the graph has a cycle, all
courses in the cycle become [STA247 }
impossible to take!

Applications of DFS

->Detect cycles in a graph
->Topological sort

->Strongly connected components

Topological Sort

-=>Place the vertices in such an order that all
edges are pointing to the right side.

(" undershorts)
< shoes)

A valid order of
getting dressed.

~ N
(watch) (shirt tie) (undershorts)—»{(pants belt jacket) (socks shoes

\>

Topological sort more formally

Suppose that in a directed graph G = (V, E) vertices
V represent tasks, and each edge (u, v)€E means
that task u must be done before task v

What is an ordering of vertices 1, ..., |V| such that

for every edge (u, v), u appears before v in the
ordering?

Such an ordering is called a topological sort of G
Note: there can be multiple topological sorts of G

Topological sort more formally

s it possible to execute all the tasks in G in an order
that respects all the precedence requirements given by
the graph edges?

The answer is "yes" if and only if the directed graph G
has no cycle!

(otherwise we have a deadlock)

Such a G is called a Directed Acyclic Graph, or just a
DAG

Algorithm for TS

- TOPOLOGICAL-SORT(G):

1) call DFS(G) to compute finishing times f[v] for each
vertex v

2) as each vertex is finished, insert it onto the front of
a linked list

3) return the linked list of vertices

*Note that the result is just a list of vertices in
order of decreasing finish times f{]

Topological sort
1) Call DFS(G) to compute
the finishing times f[v]

Let’s say we start the DFS
from the vertex ¢

Next we discover the
vertex d

Topological sort
1) Call DFS(G) to compute
the finishing times f[v]

Let’s say we start the DFS
from the vertex ¢

Next we discover the
vertex d

Topological sort

1) Call DFS(G) to compute
the finishing times f[v]

2) as each vertex is
finished, insert it onto the

front of a linked list

s nn,s ol

Next we discover the

PP P |

f is done, move back to d

Topological sort

1) Call DFS(G) to compute
the finishing times f[v]

Let’s say we start the DFS
from the vertex ¢

Next we discover the

s nn,s ol

Next we discover the

P P |

f is done, move back to d

d is done, move back to ¢

Topological sort

1) Call DFS(G) to compute
the finishing times f[v]

Let’s say we start the DFS
from the vertex ¢

Next we discover the

s nn,s ol

Next we discover the

PP P |

f is done, move back to d

d is done, move back to ¢

Next we discover the
vertex e

Topological sort
1) Call DFS(G) to compute

the finishing times f[v]

Let’s say we start the DFS
from the vertex ¢

Next we discover the

s nn,s ol |

Both edges from e are

cross edges
d is done, move back to ¢

Next we discover the

NP PN

e is done, move back to ¢

Topological sort

1) Call DFS(G) to compute
the finishing times f[v]

Let’s say we start the DFS
from the vertex ¢

Just a note: If there was
(c,f) edge in the graph, it
would be classified as a
forward edge

(in thig particka/eBEsR f&'8)

Next we discover the

NP PN

e is done, move back to ¢

= crlerdr f e c is done as well

Topological sort

1) Call DFS(G) to compute
the finishing times f[v]

Let’s now call DFS visit from
the vertex a

Next we discover the
vertex c,
but ¢ was already

........ pu | L N T

Next we discover the
vertex b ™

Topological sort

1) Call DFS(G) to compute
the finishing times f[v]

Let’s now call DFS visit from
the vertex a

Next we discover the
vertex c,
but ¢ was already

........ pu | L N T

Next we discover the

Y T -
b is done as (b,d) is a
cross edge => now move
back to ¢

Topological sort

Call DFS(G) to compute
the finishing times f[v]

Let’s now call DFS visit from
the vertex a

Next we discover the
vertex c,
but ¢ was already

........ pu | L N T

Next we discover the

e . .

b is done as (b,d) is a
cross edge => now move

a is done as well

Topological sort

1) Call DFS(G) to compute
the finishing times f[v]

WE HAVE THE RESULT!

3) return the linked list of
vertices

‘butc wa already

..... P [— Y PG WP

Next¥'we discover the

Y e i
b is done as (b,d) is a
cross edge => now move

a is done as well

Topological sort

The linked list is sorted In
decreasing order of
finishing times f[]

Try yourself with different
vertex order for DFS visit

Note: If you redraw the graph
so that all vertices are in a line
ordered by a valid topological
sort, then all edges point
,from left to right”

Time complexity of TS(G)

Running time of topological sort:
O(n + m)
where n=|V| and m=|E|
Why? Depth first search takes @(n + m) time in the

worst case, and inserting into the front of a linked
list takes O(1) time

Proof of correctness

‘Theorem: TOPOLOGICAL-SORT(G) produces a
topological sort of a DAG G

*The TOPOLOGICAL-SORT(G) algorithm does a
DFS on the DAG G, and it lists the nodes of G in

order of decreasing finish times f{]

*\WWe must show that this list satisfies the
topological sort property, namely, that for every
edge (u,v) of G, u appears before v in the list
Claim: For every edge (u,v) of G: f[v] < f[u] in
DFS

Proof of correctness

“For every edge (u,v) of G, f[v] < f[u] in this DFS”

The DFS classifies (u,v) as a tree edge, a forward
edge or a cross-edge (it cannot be a back-edge

since G has no cycles):

i. If(u,v)isatreeoraforward edge = vis a descendant
of u = f[v] < f[u]

i. If (u,v)is across-edge

Proof of correctness

“For every edge (u,v) of G: f[v] < f[u] in this DFS”
ii. If (u,v)is a cross-edge: Q.E.D. of Claim
as (u,v) is a cross-edge, by definition, neither u is a
descendant of v nor v is a déscendant of u:
d[u] < f[u] < d[v] < f[v]

or since (u,v) is an edge, v
dv] < f[v] < d[u] < f[u] Is surely discovered
before u's exploration
S completes

fiv] < f[u]

Proof of correctness

TOPOLOGICAL-SORT(G) lists the nodes of G from
highest to lowest finishing times

By the Claim, for every edge (u,v) of G:
flv] < f[u]

= u will be before v in the algorithm's list
Q.E.D of Theorem

Recap: topological sorting

1.Do0 a DFS

2.0rder vertices according to their finishing
times f[v]

Strongly connected components
(covered in this week’s tutorial)

->Subgraphs with strong connectivity (any pair
of vertices can reach each other)

Summary of DFS

=|t’s the twin of BFS (Queue vs Stack)
->Keeps two timestamps: d[v] and f[v

->Has same runtime as BFS

->Does NOT give us shortest-path

->Give us cycle detection (back edge)

->For real problems, choose BFS and DFS
wisely.

Next week

->Minimum Spanning Tree

