
CSC263 Week 8

Announcements

Problem Set 4 is out!

Due Tuesday (Nov 17)

Other Announcements
➔ Drop date Nov 8

➔ Final exam schedule is posted
 CSC263 exam Dec 11, 2-5pm

This week’s outline

➔ Graphs

➔ BFS

A really, really important ADT that is used to
model relationships between objects.

Graph

Reference: http://steve-yegge.blogspot.ca/2008/03/get-that-job-at-google.html

Things that can be modelled using graphs

➔ Web
➔ Facebook
➔ Task scheduling
➔ Maps & GPS
➔ Compiler (garbage collection)
➔ OCR (computer vision)
➔ Database
➔ Rubik’s cube
➔ …. (many many other things)

Definition

G = (V, E)
Set of vertices
e.g., {a, b, c}

Set of edges
e.g., { (a, b), (c, a) }

Flavours of graphs

Undirected Directed

each edge is an
unordered pair
(u, v) = (v, u)

each edge is an
ordered pair
(u, v) ≠ (v, u)

10 200

-3

Unweighted Weighted

Simple Non-simple

No multiple edge, no self-loop

Acyclic Cyclic

Connected Disconnected

Dense Sparse

Path

Length of path = number of edges

A path of length 3

Read Appendix B.4 for more
background on graphs.

Operations on a graph

➔ Add a vertex; remove a vertex

➔ Add an edge; remove an edge

➔ Get neighbours (undirected graph)
◆ Neighbourhood(u): all v ∈ V such that (u, v) ∈ E

➔ Get in-neighbours / out-neighbours
(directed graph)

➔ Traversal: visit every vertex in the graph

Many other operations:

➔ Traversal:
 BFS (breadth first search)

 DFS (depth first search)

➔ Given s,t find a (minimum length) path
from s to t

➔ Given a connected graph G, output a
spanning tree of G

➔ Is G connected?

Data structures for the
graph ADT

➔ Adjacency matrix
➔ Adjacency list

Adjacency matrix

A |V|x|V| matrix A

Adjacency matrix

1

3

4 2

1 2 3 4

1

2

3

4

1 1

1

1

0 0

0 0 0

0 0 0

0 0 0 0

1 2 3 4

1

2

3

4

1 1

1

1

0 0

0 0 0

0 0 0

0 0 0 0

How much space
does it take?

|V|²

Adjacency matrix

Adjacency matrix (undirected graph)

1

3

4 2

1 2 3 4

1

2

3

4

1 1

1

1

0 1

1 0 0

1 0 0

1 0 0 0

The adjacency matrix of an undirected
graph is _________________. symmetric

1 2 3 4

1

2

3

4

1 1

1

1

0 1

1 0 0

1 0 0

1 0 0 0

Adjacency matrix (undirected graph)

How much space
does it take?

|V|²

Adjacency list

Adjacency list (directed graph)

Each vertex vi stores a list A[i] of vj that
satisfies (vi , vj) ∈ E

1

2

3

4

2 4

1

1

3

4 2

1 4 3

1

2

3

4

2 4

1

1 4 3

Adjacency list (directed graph)

How much space
does it take?

|V|+|E|

|V| |E|

1

2

3

4

2 4

1

1 4 3

Adjacency list (directed graph)

How much space
does it take?

|V|+|E|

|V| |E|

This assumes we can store the
name of a vertex in one cell of
the linked list. In terms of bits,
the size would be more like
|V| + |E| (log |V|)

1

2

3

4

2 4

1

1 4 3

Adjacency list (directed graph)

How much space
does it take?

|V|+|E|

|V| |E|

One often ignores these lower
order factors of log n.
(Recall for hashing, we assume
h(x) in constant time.)

Adjacency list (undirected graph)

1

3

4 2

1

2

3

4

2 4 3

1 3

2 1

1

1

2

3

4

2 4 3

1 3

2 1

1

Adjacency list (undirected graph)

How much space
does it take?

|V|+2|E|

|V| 2|E|

Matrix versus List

In term of space complexity
➔ adjacency matrix is Θ(|V|²)
➔ adjacency list is Θ(|V|+|E|)

Which one is more space-efficient?

Adjacency list, if |E| ≪ |V|² , i.e., the graph
is not very dense.

Matrix versus List

Anything that Matrix does better than List?

Check whether edge (vi , vj) is in E
➔ Matrix: just check if A[i, j] = 1, O(1)
➔ List: go through list A[i] see if j is in there,

O(length of list)

Takeaway

Adjacency matrix or adjacency list?

Choose the more appropriate one depending
on the problem.

Graph Traversals

They are twins!

BFS and DFS

Graph traversals

Visiting every vertex once, starting from a
given vertex.

The visits can follow different orders, we will
learn about the following two ways
➔ Breadth First Search (BFS)
➔ Depth First Search (DFS)

Intuitions of BFS and DFS

Consider a special graph -- a tree

“The knowledge learning tree”

High School

College

PhD

Science

CS Physics Geology

AI DB String
Theory

Black
hole

Rocks Sand

Traversing
this graph
means
learning all
these
subjects.

The Breadth-First ways of learning these subjects
➔  Level by level, finish high school, then all subjects at

College level, then finish all subjects in PhD level.

High School

College

PhD

Science

CS Physics Geology

AI DB String
Theory

Black
hole

Rocks Sand

The Depth-First way of learning these subjects
➔ Go towards PhD whenever possible; only start

learning physics after finishing everything in CS.

High School

College

PhD

Science

CS Physics Geology

AI DB String
Theory

Black
hole

Rocks Sand

Now let’s seriously start
studying BFS

Review CSC148:
BFS in a tree (starting from root) is a
______________________ traversal.

Special case: BFS in a tree

level-by-level

What ADT did we use for implementing the level-by-level
traversal?

Queue!

(NOT preorder!)

Special case: BFS in a tree

NOT_YET_BFS(root):	
	 	 Q	 ←	 Queue()	
	 	 Enqueue(Q,	 root)	
	 	 while	 Q	 not	 empty:	
	 	 	 	 x	 ←	 Dequeue(Q)	
	 	 	 	 print	 x	
	 	 	 	 for	 each	 child	 c	 of	 x:	
	 	 	 	 	 	 Enqueue(Q,	 c)	

a

b c

d e f

a	

DQ

b	 Queue: c	 d	 e	 f	

DQ DQ DQ DQ DQ
EMPTY!

Output:
a
b
c
d
e
f

The real deal: BFS in a Graph

r t s

w x v

u

y

NOT_YET_BFS(root):
 Q ← Queue()
 Enqueue(Q, root)
 while Q not empty:
 x ← Dequeue(Q)
 print x
 for each neighbr c of x:
 Enqueue(Q, c)

If we just run NOT_YET_BFS(t)
on the above graph. What
problem would we have?

It would want to visit some
vertices more than once
(e.g., x)

How avoid visiting a vertex twice

Remember you visited it by
labelling it using colours.
➔ White: “unvisited”
➔ Gray: “encountered”
➔ Black: “explored”

➔  Initially all vertices are white
➔  Colour a vertex gray the first time visiting it
➔  Colour a vertex black when all its neighbours

have been encountered
➔  Avoid visiting gray or black vertices
➔  In the end, all vertices are black (sort-of)

Some other values we want to remember
during the traversal...

➔ pi[v]: the vertex from which v is encountered
◆ “I was introduced as whose neighbour?”

➔ d[v]: the distance value
◆ the distance from v to the source vertex of the BFS

r t s

w xv

u

y

This d[v] is going to
be really useful!

Pseudocode: the real BFS BFS(G=(V,	 E),	 s):	
	 1	 	 	 for	 all	 v	 in	 V:	
	 2	 	 	 	 	 	 colour[v]	 ←	 white	
	 3	 	 	 	 	 	 d[v]	 ←	 ∞	
	 4	 	 	 	 	 	 pi[v]	 ←	 NIL	
	 5	 	 	 Q	 ←	 Queue()	
	 6	 	 	 colour[s]	 ←	 gray	
	 7	 	 	 d[s]	 ←	 0	
	 8	 	 	 Enqueue(Q,	 s)	
	 9	 	 	 while	 Q	 not	 empty:	
10	 	 	 	 	 	 u	 ←	 Dequeue(Q)	
11	 	 	 	 	 	 for	 each	 neighbour	 v	 of	 u:	
12	 	 	 	 	 	 	 	 	 if	 colour[v]	 =	 white	
13	 	 	 	 	 	 	 	 	 	 	 	 colour[v]	 ←	 gray	
14	 	 	 	 	 	 	 	 	 	 	 	 d[v]	 ←	 d[u]	 +	 1	
15	 	 	 	 	 	 	 	 	 	 	 	 pi[v]	 ←	 u	
16	 	 	 	 	 	 	 	 	 	 	 	 Enqueue(Q,	 v)	
17	 	 	 	 	 	 colour[u]	 ←	 black	

The blue lines are
the same as
NOT_YET_BFS

Initialize vertices

distance from s to s is 0

only visit unvisited vertices

v is “1-level” farther from s than u
v is introduced as u’s neighbour

all neighbours of u have been
encountered, therefore u is explored

source s is encountered

Let’s run an example!

r t s

w x v

u

y

BFS(G, s)

After initialization

r t s

w x v

u

y

∞ ∞

∞ ∞ ∞ ∞

∞ ∞

All vertices are white and have d = ∞

Start by “encountering” the source

r t s

w x v

u

y

∞ ∞

∞ ∞ ∞ d=0

∞ ∞

Colour the source gray and set its d = 0, and Enqueue it

Queue: s	

Dequeue, explore neighbours

r t s

w x v

u

y

∞ ∞

∞ ∞ ∞ 0

∞ ∞

Queue: s	

DQ

r

1

w
1

r	 w	

The red edge indicates the pi[v] that got remembered

Colour black after exploring all neighbours

r t s

w x v

u

y

∞ ∞

∞ ∞ ∞ 0

∞ ∞

Queue: s	

DQ

r

1

w
1

r	 w	

Dequeue, explore neighbours (2)

r t s

w x v

u

y

∞ ∞

∞ ∞ ∞ 0

∞ ∞

Queue: s	

DQ

r

1

w
1

r	 w	

DQ

v

2

r

v	

Dequeue, explore neighbours (3)

r t s

w x v

u

y

∞ ∞

∞ ∞ ∞ 0

∞ ∞

Queue: s	

DQ

r

1

w
1

r	 w	

DQ

v

2

r

v	

DQ

t

2

x

2

t	 x	

w

after a few more steps...

r t s

w x v

u

y

∞ ∞

∞ ∞ 3 0

∞

Queue: s	

DQ

r

1

w
1

r	 w	

DQ

2

r

v	

DQ

2

2

t	 x	

w

BFS done!

3

u	 y	

DQ DQ DQ DQ DQ

What do we get after
doing all this?

r t s

w x v

u

y

∞ ∞

∞ ∞ 3 0

∞

r

1

w
1 2

r

2

2
w

3

First of all, we get to visit every
vertex once.

r t s

w x v

u

y

r

w

r

w

This is called the BFS-tree, it’s a
tree that connects all vertices, if
the graph is connected.

Did you know? The official name of the red
edges are called “tree edges”.

r t s

w x v

u

y

∞ ∞

∞ ∞ 3 0

∞

r

1

w
1 2

r

2

2
w

3

These d[v] values, we said they
were going to be really useful.

The value indicates the vertex’s distance from the source vertex.

Actually more than that, it’s the shortest-path distance, we can prove it.

How about finding short path itself?
Follow the red edges, pi[v] comes in handy for this.

Short path from u to s:
u → pi[u] → pi[pi[u]] →
pi[pi[pi[u]]] → … → s

What if G is disconnected?

r t s

w x v

u

y

∞ ∞

∞ ∞ 3 0

∞

r

1

w
1 2

r

2

2
w

3

z
∞

The infinite distance value of z indicates that it
is unreachable from the source vertex.

After BFS(s),
z is of white
colour and
d[v] = ∞

Runtime analysis!

The total amount of work (use adjacency list):
➔  Visit each vertex once
◆  Enqueue, Dequeue, change colours, assign d[v], …,

constant work per vertex
◆  in total: O(|V|)

➔  At each vertex, check all its neighbours (all its incident
edges)
◆  Each edge is checked twice (by the two end vertices)
◆  in total: O(|E|)

r t s

w xv

u

y

r

w

r

w

Total runtime:
O(|V|+|E|)

Summary of BFS

➔ Explores breadth rather than depth

➔ Useful for getting single-source shortest
paths on unweighted graphs

➔ Useful for testing reachability

➔ Runtime O(|V|+|E|) with adjacency list (with
adjacency matrix it’ll be different)

Next week

 DFS BFS

