CSC263 Week 8

Announcements

Problem Set 4 is out!

Due Tuesday (Nov 17)

Other Announcements

\rightarrow Drop date Nov 8
\rightarrow Final exam schedule is posted
CSC263 exam Dec 11, 2-5pm

This week's outline

\rightarrow Graphs

\rightarrow BFS

Graph

A really, really important ADT that is used to model relationships between objects.

Get that job at Google

Whenever someone gives you a problem, think graphs. They are the most fundamental and flexible way of representing any kind of a relationship, so it's about a 50-50 shot that any interesting design problem has a graph involved in it. Make absolutely sure you can't think of a way to solve it using graphs before moving on to other solution types. This tip is important!

Reference: http://steve-vegge.blogspot.ca/2008/03/get-that-job-at-google.html

Things that can be modelled using graphs
\rightarrow Web
\rightarrow Facebook
\rightarrow Task scheduling
\rightarrow Maps \& GPS
\rightarrow Compiler (garbage collection)
\rightarrow OCR (computer vision)
\rightarrow Database
\rightarrow Rubik's cube
$\rightarrow \ldots$ (many many other things)

Definition

Flavours of graphs

each edge is an unordered pair
 $(u, v)=(v, u)$

each edge is an ordered pair
$(u, v) \neq(v, u)$

Undirected

Directed

Unweighted
Weighted

Simple

Non-simple

No multiple edge, no self-loop

Cyclic

Connected

Disconnected

Dense

Sparse

Path

Length of path = number of edges

Read Appendix B. 4 for more background on graphs.

Operations on a graph

\rightarrow Add a vertex; remove a vertex
\rightarrow Add an edge; remove an edge
\rightarrow Get neighbours (undirected graph)
\rightarrow Neighbourhood(u): all $v \in V$ such that $(u, v) \in E$
\rightarrow Get in-neighbours / out-neighbours (directed graph)
\rightarrow Traversal: visit every vertex in the graph

Many other operations:

\rightarrow Traversal:
BFS (breadth first search)
DFS (depth first search)
\rightarrow Given s,t find a (minimum length) path from s to t
\rightarrow Given a connected graph G, output a spanning tree of \mathbf{G}
\rightarrow Is G connected?

Data structures for the graph ADT

\rightarrow Adjacency matrix
\rightarrow Adjacency list

Adjacency matrix

$\mathrm{A}|\mathbf{V}| \mathbf{x}|\mathbf{V}|$ matrix \mathbf{A}

$$
\begin{aligned}
& \text { Let } V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \\
& \qquad A[i, j]= \begin{cases}1 & \text { if }\left(v_{i}, v_{j}\right) \in E \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Adjacency matrix

Adjacency matrix

How much space does it take?

Adjacency matrix (undirected graph)

The adjacency matrix of an undirected graph is
symmetric

Adjacency matrix (undirected graph)

How much space does it take?
$|\mathrm{V}|^{2}$

Adjacency list

Adjacency list (directed graph)

Each vertex \boldsymbol{v}_{i} stores a list $\mathrm{A}[\mathrm{i}]$ of \boldsymbol{v}_{j} that satisfies $\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right) \in E$

Adjacency list (directed graph)

How much space does it take?

$|\mathrm{V}|+\mid$ 티

Adjacency list (directed graph)

How much space does it take?

$|\mathrm{V}|+|\mathrm{E}|$

This assumes we can store the name of a vertex in one cell of the linked list. In terms of bits, the size would be more like |V| + |E| $(\log |\mathrm{V}|)$

Adjacency list (directed graph)

How much space does it take?

$|\mathrm{V}|+|\mathrm{E}|$

One often ignores these lower order factors of $\log \mathbf{n}$. (Recall for hashing, we assume $h(x)$ in constant time.)

Adjacency list (undirected graph)

Adjacency list (undirected graph)

How much space does it take?
|V|+2|E

Matrix versus List

In term of space complexity
\rightarrow adjacency matrix is $\Theta\left(|\mathrm{V}|^{2}\right)$
\rightarrow adjacency list is $\boldsymbol{\Theta}(|\mathbf{V}|+|\mathrm{E}|)$

Which one is more space-efficient?
Adjacency list, if $|\mathrm{E}|<|\mathrm{V}|^{2}$, i.e., the graph is not very dense.

Matrix versus List

Anything that Matrix does better than List?

Check whether edge $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right)$ is in \mathbf{E}
\rightarrow Matrix: just check if $A[i, j]=1, O(1)$
\rightarrow List: go through list $A[i]$ see if j is in there, O(length of list)

Takeaway

Adjacency matrix or adjacency list?

Choose the more appropriate one depending on the problem.

Graph Traversals BFS and DFS

Graph traversals

Visiting every vertex once, starting from a given vertex.

The visits can follow different orders, we will learn about the following two ways
\rightarrow Breadth First Search (BFS)
\rightarrow Depth First Search (DFS)

Intuitions of BFS and DFS

Consider a special graph -- a tree
"The knowledge learning tree"

The Breadth-First ways of learning these subjects
\rightarrow Level by level, finish high school, then all subjects at College level, then finish all subjects in PhD level.

The Depth-First way of learning these subjects
\rightarrow Go towards PhD whenever possible; only start learning physics after finishing everything in CS.

Now let's seriously start studying BFS

Special case: BFS in a tree

Review CSC148:
BFS in a tree (starting from root) is a level-by-level traversal.
(NOT preorder!)
What ADT did we use for implementing the level-by-level traversal?

Queue!

Special case: BFS in a tree

Output:

NOT_YET_BFS(root):
$\mathrm{Q} \leftarrow$ Queue ()
Enqueue(Q, root) while Q not empty:
$x \leftarrow \operatorname{Dequeue}(Q)$
print x
for each child c of x :
Enqueue (Q, c)

Queue:

The real deal: BFS in a Graph

If we just run NOT_YET_BFS(t) on the above graph. What problem would we have?

It would want to visit some vertices more than once
(e.g., \boldsymbol{x})

NOT_YET_BFS(root):
Q \leftarrow Queue()
Enqueue(Q, root) while Q not empty:
$x \leftarrow \operatorname{Dequeue(Q)}$
print x
for each neighbr c of x :
Enqueue(Q, c)

How avoid visiting a vertex twice

Remember you visited it by
labelling it using colours.
\rightarrow White: "unvisited"
\rightarrow Gray: "encountered"
\rightarrow Black: "explored"

\rightarrow Initially all vertices are white
\rightarrow Colour a vertex gray the first time visiting it
\rightarrow Colour a vertex black when all its neighbours have been encountered
\rightarrow Avoid visiting gray or black vertices
\rightarrow In the end, all vertices are black (sort-of)

Some other values we want to remember during the traversal...

\rightarrow pi[v]: the vertex from which v is encountered
-"I was introduced as whose neighbour?"
$\rightarrow \mathrm{d}[\mathrm{v}]$: the distance value

- the distance from \mathbf{v} to the source vertex of the BFS


```
BFS(G=(V, E), s):
    1 for all \(v\) in \(V\) :
        colour[v] \(\leftarrow\) white
        \(d[v] \leftarrow \infty\)
        \(\mathrm{pi}[\mathrm{v}] \leftarrow \mathrm{NIL}\)
    \(\mathrm{Q} \leftarrow\) Queue ()
    colour \([\mathrm{s}] \leftarrow\) gray
    \(d[s] \leftarrow 0\)
    Enqueue(Q, s)
    while Q not empty:
    \(u \leftarrow\) Dequeue \((Q)\)
        for each neighbour \(v\) of \(u\) :
        if colour[v] = white
        colour[v] \(\leftarrow\) gray
        \(d[v] \leftarrow d[u]+1\)
        \(\mathrm{pi}[\mathrm{v}] \leftarrow \mathrm{u}\)
        Enqueue(Q, v)
        colour \([\mathrm{u}] \leftarrow\) black
```


Pseudocode: the real BFS

```
# Initialize vertices
```

\# source s is encountered
\# distance from s to \mathbf{s} is 0
\# only visit unvisited vertices
\# v is "1-level" farther from s than u
\# v is introduced as u's neighbour
\# all neighbours of u have been
encountered, therefore u is explored

The blue lines are the same as NOT_YET_BFS

Let's run an example!

BFS(G, s)

After initialization

All vertices are white and have $\mathbf{d}=\infty$

Start by "encountering" the source

Colour the source gray and set its d=0, and Enqueue it

Dequeue, explore neighbours

The red edge indicates the pi[v] that got remembered

Colour black after exploring all neighbours

Dequeue, explore neighbours (2)

Dequeue, explore neighbours (3)

after a few more steps...

BFS done!

What do we get after doing all this?

First of all, we get to visit every vertex once.

Did you know? The official name of the red edges are called "tree edges".

This is called the BFS-tree, it's a tree that connects all vertices, if the graph is connected.

These d[v] values, we said they were going to be really useful.

Short path from u to s :
$\mathrm{u} \rightarrow \mathrm{pi}[\mathrm{u}] \rightarrow \mathrm{pi}[\mathrm{pi}[\mathrm{u}]] \rightarrow$
$\mathrm{pi}[\mathrm{pi}[\mathrm{pi}[\mathrm{u}]]] \rightarrow \ldots \rightarrow \mathrm{s}$

The value indicates the vertex's distance from the source vertex.

Actually more than that, it's the shortest-path distance, we can prove it.
How about finding short path itself?
Follow the red edges, pi[v] comes in handy for this.

What if G is disconnected?

The infinite distance value of \mathbf{z} indicates that it is unreachable from the source vertex.

Runtime analysis!

The total amount of work (use adjacency list):
\rightarrow Visit each vertex once

- Enqueue, Dequeue, change colours, assign d[v], ..., constant work per vertex
- in total: $\mathbf{O}(|\mathrm{V}|)$
\rightarrow At each vertex, check all its neighbours (all its incident edges)
- Each edge is checked twice (by the two end vertices)
- in total: $\mathbf{O}(|E|)$

Total runtime: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Summary of BFS

\rightarrow Explores breadth rather than depth
\rightarrow Useful for getting single-source shortest paths on unweighted graphs
\rightarrow Useful for testing reachability
\rightarrow Runtime $\mathbf{O}(|\mathbf{V}|+|\mathrm{E}|)$ with adjacency list (with adjacency matrix it'll be different)

Next week

BFS

