
CSC263 Week 8 



Announcements 
 
Problem Set 4 is out! 
 
Due Tuesday (Nov 17) 
 



Other Announcements  
➔ Drop date Nov 8 

➔ Final exam schedule is posted 
 CSC263 exam Dec 11, 2-5pm 

 

 



This week’s outline 

➔ Graphs 
 
➔ BFS 



A really, really important ADT that is used to 
model relationships between objects. 

Graph 

Reference: http://steve-yegge.blogspot.ca/2008/03/get-that-job-at-google.html 



Things that can be modelled using graphs 

➔ Web 
➔ Facebook 
➔ Task scheduling 
➔ Maps & GPS 
➔ Compiler (garbage collection) 
➔ OCR (computer vision) 
➔ Database 
➔ Rubik’s cube 
➔ …. (many many other things) 



Definition 

G = (V, E) 
Set of vertices 
e.g., {a, b, c} 

Set of edges 
e.g., { (a, b), (c, a) } 



Flavours of graphs 



Undirected Directed 

each edge is an 
unordered pair  
(u, v) = (v, u) 

each edge is an 
ordered pair  
(u, v) ≠ (v, u) 
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Unweighted Weighted  



Simple  Non-simple  

No multiple edge, no self-loop 



Acyclic  Cyclic  



Connected Disconnected 



Dense Sparse 



Path 

Length of path = number of edges 

A path of length 3 

Read Appendix B.4 for more 
background on graphs. 



Operations on a graph 

➔ Add a vertex; remove a vertex 

➔ Add an edge; remove an edge 

➔ Get neighbours (undirected graph) 
◆ Neighbourhood(u): all v ∈ V such that (u, v) ∈ E 

➔ Get in-neighbours / out-neighbours 
(directed graph) 

➔ Traversal: visit every vertex in the graph 



Many other operations:  

➔ Traversal: 
 BFS (breadth first search) 

 DFS (depth first search) 

➔ Given s,t find a (minimum length) path 
from s to t 

➔ Given a connected graph G, output a 
spanning tree of G  

➔ Is G connected? 

 
 



Data structures for the 
graph ADT 

➔ Adjacency matrix 
➔ Adjacency list 



Adjacency matrix 

A |V|x|V| matrix A 



Adjacency matrix 

1 

3 

4 2 

1         2        3        4 

1 
 
2 
 
3 
 
 
4 

1 1 

1 

1 

0 0 

0 0 0 

0 0 0 

0 0 0 0 



1         2        3        4 
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2 
 
3 
 
 
4 

1 1 

1 

1 

0 0 

0 0 0 

0 0 0 

0 0 0 0 

How much space 
does it take? 

|V|² 

Adjacency matrix 



Adjacency matrix (undirected graph) 

1 

3 

4 2 

1         2        3        4 

1 
 
2 
 
3 
 
 
4 

1 1 

1 

1 

0 1 

1 0 0 

1 0 0 

1 0 0 0 

The adjacency matrix of an undirected 
graph is _________________. symmetric 



1         2        3        4 

1 
 
2 
 
3 
 
 
4 

1 1 

1 

1 

0 1 

1 0 0 

1 0 0 

1 0 0 0 

Adjacency matrix (undirected graph) 

How much space 
does it take? 

|V|² 



Adjacency list 



Adjacency list (directed graph) 

Each vertex vi stores a list A[i] of vj that 
satisfies (vi , vj) ∈ E 
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1 

1 

3 

4 2 

1 4 3 



1 

2 

3 

4 

2 4 

1 

1 4 3 

Adjacency list (directed graph) 

How much space 
does it take? 

|V|+|E| 

|V| |E| 



1 

2 

3 

4 

2 4 

1 

1 4 3 

Adjacency list (directed graph) 

How much space 
does it take? 

|V|+|E| 

|V| |E| 

This assumes we can store the 
name of a vertex in one cell of 
the linked list. In terms of bits, 
the size would be more like 
|V| + |E| (log |V|) 



1 

2 

3 

4 

2 4 

1 

1 4 3 

Adjacency list (directed graph) 

How much space 
does it take? 

|V|+|E| 

|V| |E| 

One often ignores these lower 
order factors of log n. 
(Recall for hashing, we assume 
h(x) in constant time.) 



Adjacency list (undirected graph) 

1 

3 

4 2 

1 

2 

3 

4 

2 4 3 

1 3 

2 1 

1 



1 

2 

3 

4 

2 4 3 

1 3 

2 1 

1 

Adjacency list (undirected graph) 

How much space 
does it take? 

|V|+2|E| 

|V| 2|E| 



Matrix versus List 

In term of space complexity 
➔ adjacency matrix is Θ(|V|²) 
➔ adjacency list is Θ(|V|+|E|) 

Which one is more space-efficient? 

Adjacency list, if |E| ≪ |V|² , i.e., the graph 
is not very dense. 



Matrix versus List 

Anything that Matrix does better than List? 

Check whether edge (vi , vj) is in E 
➔ Matrix: just check if A[i, j] = 1, O(1) 
➔ List: go through list A[i] see if j is in there, 

O(length of list) 



Takeaway 

Adjacency matrix or adjacency list? 
 
Choose the more appropriate one depending 
on the problem. 



Graph Traversals 

They are twins! 

BFS and DFS 



Graph traversals 

Visiting every vertex once, starting from a 
given vertex. 
 
The visits can follow different orders, we will 
learn about the following two ways 
➔ Breadth First Search (BFS) 
➔ Depth First Search (DFS) 



Intuitions of BFS and DFS 

Consider a special graph -- a tree 



“The knowledge learning tree” 

High School 

College 

PhD 

Science 

CS Physics Geology 

AI DB String 
Theory 

Black 
hole 

Rocks Sand 

Traversing 
this graph 
means 
learning all 
these 
subjects. 



The Breadth-First ways of learning these subjects  
➔  Level by level, finish high school, then all subjects at 

College level, then finish all subjects in PhD level. 

High School 

College 

PhD 

Science 

CS Physics Geology 

AI DB String 
Theory 

Black 
hole 

Rocks Sand 



The Depth-First way of learning these subjects  
➔ Go towards PhD whenever possible; only start 

learning physics after finishing everything in CS. 

High School 

College 

PhD 

Science 

CS Physics Geology 

AI DB String 
Theory 

Black 
hole 

Rocks Sand 



Now let’s seriously start 
studying BFS 



Review CSC148: 
BFS in a tree (starting from root) is a  
______________________ traversal. 

Special case: BFS in a tree 

level-by-level 

What ADT did we use for implementing the level-by-level 
traversal? 

Queue! 

(NOT preorder!) 



Special case: BFS in a tree 

NOT_YET_BFS(root):	
  
	
  	
  Q	
  ←	
  Queue()	
  
	
  	
  Enqueue(Q,	
  root)	
  
	
  	
  while	
  Q	
  not	
  empty:	
  
	
  	
  	
  	
  x	
  ←	
  Dequeue(Q)	
  
	
  	
  	
  	
  print	
  x	
  
	
  	
  	
  	
  for	
  each	
  child	
  c	
  of	
  x:	
  
	
  	
  	
  	
  	
  	
  Enqueue(Q,	
  c)	
  

a 

b c 

d e f 

a	
  

DQ 

b	
  Queue: c	
   d	
   e	
   f	
  

DQ DQ DQ DQ DQ 
EMPTY! 

Output:  
a 
b 
c 
d 
e 
f 



The real deal: BFS in a Graph 

r t s 

w x v 

u 

y 

NOT_YET_BFS(root): 
  Q ← Queue() 
  Enqueue(Q, root) 
  while Q not empty: 
    x ← Dequeue(Q) 
    print x 
    for each neighbr c of x: 
      Enqueue(Q, c) 

If we just run NOT_YET_BFS(t) 
on the above graph. What 
problem would we have? 

It would want to visit some 
vertices more than once  
(e.g., x) 



How avoid visiting a vertex twice 

Remember you visited it by 
labelling it using colours. 
➔ White: “unvisited” 
➔ Gray: “encountered” 
➔ Black: “explored” 

➔  Initially all vertices are white 
➔  Colour a vertex gray the first time visiting it 
➔  Colour a vertex black when all its neighbours 

have been encountered 
➔  Avoid visiting gray or black vertices 
➔  In the end, all vertices are black (sort-of) 



Some other values we want to remember 
during the traversal... 

➔ pi[v]: the vertex from which v is encountered 
◆ “I was introduced as whose neighbour?” 

 
➔ d[v]: the distance value 
◆ the distance from v to the source vertex of the BFS 

r t s

w xv

u

y

This d[v] is going to 
be really useful! 



Pseudocode: the real BFS BFS(G=(V,	
  E),	
  s):	
  
	
  1	
  	
  	
  for	
  all	
  v	
  in	
  V:	
  
	
  2	
  	
  	
  	
  	
  	
  colour[v]	
  ←	
  white	
  
	
  3	
  	
  	
  	
  	
  	
  d[v]	
  ←	
  ∞	
  
	
  4	
  	
  	
  	
  	
  	
  pi[v]	
  ←	
  NIL	
  
	
  5	
  	
  	
  Q	
  ←	
  Queue()	
  
	
  6	
  	
  	
  colour[s]	
  ←	
  gray	
  
	
  7	
  	
  	
  d[s]	
  ←	
  0	
  
	
  8	
  	
  	
  Enqueue(Q,	
  s)	
  
	
  9	
  	
  	
  while	
  Q	
  not	
  empty:	
  
10	
  	
  	
  	
  	
  	
  u	
  ←	
  Dequeue(Q)	
  
11	
  	
  	
  	
  	
  	
  for	
  each	
  neighbour	
  v	
  of	
  u:	
  
12	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  colour[v]	
  =	
  white	
  
13	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  colour[v]	
  ←	
  gray	
  
14	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  d[v]	
  ←	
  d[u]	
  +	
  1	
  
15	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  pi[v]	
  ←	
  u	
  
16	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Enqueue(Q,	
  v)	
  
17	
  	
  	
  	
  	
  	
  colour[u]	
  ←	
  black	
  

The blue lines are 
the same as 
NOT_YET_BFS 

# Initialize vertices 

# distance from s to s is 0 

# only visit unvisited vertices 

# v is “1-level” farther from s than u 
# v is introduced as u’s neighbour  

# all neighbours of u have been 
encountered, therefore u is explored  

# source s is encountered 



Let’s run an example! 

r t s 

w x v 

u 

y 

BFS(G, s) 



After initialization 

r t s 

w x v 

u 

y 

∞ ∞ 

∞ ∞ ∞ ∞ 

∞ ∞ 

All vertices are white and have d = ∞ 



Start by “encountering” the source 

r t s 

w x v 

u 

y 

∞ ∞ 

∞ ∞ ∞ d=0 

∞ ∞ 

Colour the source gray and set its d = 0, and Enqueue it 

Queue: s	
  



Dequeue, explore neighbours 

r t s 

w x v 

u 

y 

∞ ∞ 

∞ ∞ ∞ 0 

∞ ∞ 

Queue: s	
  

DQ 

r 

1 

w 
1 

r	
   w	
  

The red edge indicates the pi[v] that got remembered 



Colour black after exploring all neighbours 

r t s 

w x v 

u 

y 

∞ ∞ 

∞ ∞ ∞ 0 

∞ ∞ 

Queue: s	
  

DQ 

r 

1 

w 
1 

r	
   w	
  



Dequeue, explore neighbours (2) 

r t s 

w x v 

u 

y 

∞ ∞ 

∞ ∞ ∞ 0 

∞ ∞ 

Queue: s	
  

DQ 

r 

1 

w 
1 

r	
   w	
  

DQ 

v 

2 

r 

v	
  



Dequeue, explore neighbours (3) 

r t s 

w x v 

u 

y 

∞ ∞ 

∞ ∞ ∞ 0 

∞ ∞ 

Queue: s	
  

DQ 

r 

1 

w 
1 

r	
   w	
  

DQ 

v 

2 

r 

v	
  

DQ 

t 

2 

x 

2 

t	
   x	
  

w 



after a few more steps... 



r t s 

w x v 

u 

y 

∞ ∞ 

∞ ∞ 3 0 

∞ 

Queue: s	
  

DQ 

r 

1 

w 
1 

r	
   w	
  

DQ 

2 

r 

v	
  

DQ 

2 

2 

t	
   x	
  

w 

BFS done! 

3 

u	
   y	
  

DQ DQ DQ DQ DQ 



What do we get after 
doing all this? 



r t s 

w x v 

u 

y 

∞ ∞ 

∞ ∞ 3 0 

∞ 

r 

1 

w 
1 2 

r 

2 

2 
w 

3 

First of all, we get to visit every 
vertex once. 



r t s 

w x v 

u 

y 

r 

w 

r 

w 

This is called the BFS-tree, it’s a 
tree that connects all vertices, if 
the graph is connected.  

Did you know? The official name of the red 
edges are called “tree edges”. 



r t s 

w x v 

u 

y 

∞ ∞ 

∞ ∞ 3 0 

∞ 

r 

1 

w 
1 2 

r 

2 

2 
w 

3 

These d[v] values, we said they 
were going to be really useful. 

The value indicates the vertex’s distance from the source vertex. 

Actually more than that, it’s the shortest-path distance, we can prove it. 

How about finding short path itself?  
Follow the red edges, pi[v] comes in handy for this. 

Short path from u to s: 
u → pi[u] → pi[pi[u]] → 
pi[pi[pi[u]]] → … → s 



What if G is disconnected? 

r t s 

w x v 

u 

y 

∞ ∞ 

∞ ∞ 3 0 

∞ 

r 

1 

w 
1 2 

r 

2 

2 
w 

3 

z 
∞ 

The infinite distance value of z indicates that it 
is unreachable from the source vertex. 

After BFS(s), 
z is of white 
colour and 
d[v] = ∞ 



Runtime analysis! 

The total amount of work (use adjacency list): 
➔  Visit each vertex once  
◆  Enqueue, Dequeue, change colours, assign d[v], …, 

constant work per vertex 
◆  in total: O(|V|) 

➔  At each vertex, check all its neighbours (all its incident 
edges) 
◆  Each edge is checked twice (by the two end vertices) 
◆  in total: O(|E|) 

r t s

w xv

u

y

r

w

r 

w

Total runtime: 
O(|V|+|E|) 



Summary of BFS 

➔ Explores breadth rather than depth 

➔ Useful for getting single-source shortest 
paths on unweighted graphs 

➔ Useful for testing reachability 

➔ Runtime O(|V|+|E|) with adjacency list (with 
adjacency matrix it’ll be different) 



Next week 

   DFS BFS 


