CSC263 Week 7

Announcements

Problem Set 3 is due this Tuesday!

Midterm graded and will be returned on Friday
during tutorial (average 60%)

Amortized Analysis

e Often, we perform sequences of operations on
data structures

* Define "worst-case sequence complexity" of a
sequence of m operations as: Similar to

worst-case
maximum total time over all sequences of m time for

operations one operation
* Worst-case sequence complexity is at most:
m(worst-case complexity of any operation)

e But is it really always that bad?

Amortized analysis

* We do amortized analysis when we are interested
in the total complexity of a sequence of operations.

* Unlike in average-case analysis where we are interested
in a single operation.

* The amortized sequence complexity is the
“average” cost per operation over the sequence.

e But unlike average-case analysis, there is NO probability
or expectation involved.

For a sequence of m operations:

Amortized sequence complexity

worst-case sequence complexity

m

Amortized analysis

* Real-life intuition: Monthly cost of living, a sequence of
12 operations

Monthly cost of living ($)

4000

1000
500 500 500 500 500 500 500 500

0 S __Ee. 2244 2 F aa F x££ 2 £ ‘a1 s | S S

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Methods for amortized analysis

* Aggregate method
* Accounting method

e Potential method (skipped, read Chapter 17 if
interested)

Aggregate method

What is the amortized cost per month (operation)?

Just sum up the costs of all months (operations) and
divide by the number of months (operations).

Monthly cost of living ($)

4000

500 500

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Aggregate method: sum of all months’ spending is
$126,00, divided by 12 months

— the amortized cost is $1,050 per month.

Binary Counter

» Sequence of k bits (k fixed)
 Single operation INCREMENT: add 1 (in binary)

e Cost of one INCREMENT: number of bits that need
to change

Binary Counter

0000
Add 1 0001
Add 1 0010
Add 1 0011
Add 1 0100
Add 1 0101
Add 1 0110
Add 1 0111

Add 1 1000

Binary Counter

Initially
Add 1
Add 1
Add 1
Add 1
Add 1
Add 1
Add 1
Add 1

0000
0001
0010
0011
0100
0101
0110
0111
1000

Cost

A RPN W LN

Binary Counter

* If we do n increments, the worst case complexity of
any increment is log n.

* A naive analysis would then say that the worst case
complexity of n increments is (n log n)

* But it is never this bad since the worst case only
happens once!

Aggregate Method for Binary Counter

Amortized cost of sequence of n INCREMENT operations:

bit changes total number of changes
0 every operation n
1 every 2 operations n/2
2 every 4 operations n/4
i every 2! operations n/2

Total number of bit flips during sequence = %, (flips of bit i)
=n+n/2+..+n/2'8" =n(1+%+%+..+1/2°8n) <2n

So amortized cost < 2n/n = 2 for each operation!

Accounting method

Instead of calculating the average spending, we think
about the cost from a different angle, i.e.,

How much money do | need to earn each month in
order to keep living? That is, be able to pay for the
spending every month and never become broke.

Monthly cost of living ($)

4000 /M\

3000 /_!

\
1500 |

/\
1000 fi)!i)\!_og._r@.- m

so0M -
0 T == a' 5\1 i

Spending

® Spending M Earning

Accounting method: if | earn $1,000 per month from Jan to Nov and
earn $1,600 in December, | will never become broke (assuming earnings

are paid at the beginning of month).

So the amortized cost: $1,000 from Jan to Nov and $1,600 in Dec.

Aggregate vs Accounting

* Aggregate method is easy to do when the cost of
each operation in the sequence is concretely
defined.

* Accounting method is more interesting

* It works even when the sequence of operation is not
concretely defined

* It can obtain more refined amortized cost than
aggregate method (different operations can have
different amortized cost)

Accounting Method

Find a charge (some number of time units charged per operation) such that:
the sum of the charges is an upper bound on the total actual cost

Like maintaining a bank account
Low cost operations charged a bit more than their actual amount
the surplus is deposited in the account for later use

Analogy: Rahul earns 2K per month. Typically he spends 2K. On good
months, he spends < 2K, and surplus goes in the bank to pay for the bad

(expensive) months.
Charges must be set high enough so that the balance is always positive.
But if set too high: upper bound will be >>the (worst case) total actual cost.

Goal: just scrape by -- Set charges as low as possible so that bank account is
always positive

Accounting Method

* We want to show amortized cost is, say S5
* Assign a charge for each operation

* When charge > actual cost, leftover amount is
assigned as credit (usually to specific elements in data
structure)

* When an operation’s charge < actual cost, use some
stored credit to “pay” for excess cost.

* For this to work, need to argue that credit is never
negative

If we have more than one operation, we can assign
different charges to each one

Accounting Method for Binary Counter

* Charge each operation $S2
S1 to flip 0 =2 1 (only one bit flips from 0 to 1)
used stored credits to pay for flips 1 2> 0
S1 credit -- store with the bit just changed to 1

* Credit Invariant: At any step each bit of the
counter that is equal to 1 will have $1 credit

Accounting Method for Binary Counter

Credit Invariant: At any step each bit of the counter that is
equal to 1 will have S1 credit

Proof by induction:
* Initially counter is 0 and no credit

* Induction step: assume true up to some value of x and now
consider next increment
Casel:x=b.. bb01..1 > b..bb10..0
(i least significant bits are 1, i+15t bit is 0)
i+1 = actual cost: use i credits to pay for i flips 120
use 1 out of 2 to pay for 021,

use 1 out of 2 for credit on the new “1”

Accounting Method for Binary Counter

Credit Invariant: At any step each bit of the counter that is
equal to 1 will have S1 credit

Proof by induction:
* Initially counter is 0 and no credit

* Induction step: assume true up to some value of x and now
consider next increment
Case2:x=11.. 1 -> 00..0
(all bits are 1)
actual cost is k
use k credits to pay for k flips 120
extra S2 isn’t needed.

Accounting Method for Binary Counter

Credit Invariant: At any step each bit of the counter
that is equal to 1 will have $S1 credit

* Thus invariant is always true

* So total charge for sequence is upper bound on total
cost.

* Total charge = 2n so amortized cost per operation =2

NOTE: you need the invariant in order to show that the credit
is always positive

Amortized Analysis on
Dynamic Arrays

Problem description

* Think of an array initialized with a fixed number of
slots, and supports APPEND and DELETE operations.

* When we APPEND too many elements, the array
would be full and we need to expand the array
(make the size larger).

* When we DELETE too many elements, we want to
shrink to the array (make the size smaller).

* Requirement: the array must be using one
contiguous block of memory all the time.

How do we do the expanding and shrinking?

One way to expand

* If the array is full when APPEND is called

* Create a new array of twice the size
* Copy the all the elements from old array to new array
* Append the element

B APENo)

RN

Amortized analysis of expand

Now consider a dynamic array initialized with size 1
and a sequence of m APPEND operations on it.

Analyze the amortized cost per operation

Assumption: only count array assignments, i.e.,
append an element and copy an element

Use the aggregate method

The cost sequence would be like:

Copy 2
append 1

1, 2, 3,1,5,1,1,1,91,11,1,1,1,..

Cost sequence concretely defined, sum-and-divide
can be done, but we want to do something more
interesting...

Use the accounting method!

How much money do we need to earn at each operation,
so that all future costs can be paid for?

How much money to earn for each APPEND’ed element ?

$17? 537

27
? Slogm ?

Sm ?

First try: charge $1 for each append

This S1 (the “append-dollar”) is spent when appending the
element.

But, when we need to copy this element to a new array
#when expanding the array), we don’t have any money to pay
or it --

BROKE!

This makes sense since the

total cost of n appends is
greater than n

Next try: charge $2 for each append

S1 (the “append-dollar”) will be spent when
appending the element

S1 (the “copy-dollar”) will be spent when copying the
element to a new array

What if the element is copied for a second time
(when expanding the array for a second time)?

BROKE!

Third try: charge $3 for each append

S1 (the “append-dollar”) will be spent when appending the
element

S1 (the “copy-dollar”) will be spent when copying the
element to a new array

S1 (the “recharge-dollar”) is used to recharge the old
elements that have spent their “copy-dollars”.

So one dollar stored to pay for my copy, and one for a friend

NEVER BROKE!

S1 (the “recharge-dollar”) is used to recharge the old
elements that have used their “copy-dollar”.

New elements each of whom
S1 for recharging one

4 o

old element’s “copy-dollar”.

Old elements who have
used their “copy-dollars”

There will be enough new elements who will spare
enough money for all the old elements, because the
way we expand — TWICE the size

Third try: charge $3 for each append

S1 (the “append-dollar”) to pay for append
S1 (the “copy-dollar”) as credit to pay for copy

S1 (the “recharge-dollar”) as credit to pay for friends’ copy

Credit invariant:
Each element in 2" half of array has $2 credit

Third try: charge $3 for each append

S1 (the “append-dollar”) to pay for append
S1 (the “copy-dollar”) as credit to pay for copy

S1 (the “recharge-dollar”) as credit to pay for friends’ copy

Credit invariant:
Each element in 2" half of array has $2 credit

Base case: no elements in array so true

Third try: charge $3 for each append

S1 (the “append-dollar”) to pay for append
S1 (the “copy-dollar”) as credit to pay for copy

S1 (the “recharge-dollar”) as credit to pay for friends’ copy

Credit invariant:
Each element in 2" half of array has $2 credit

Inductive step.
Case 1: array not full
S1 to append, $2 stored on new item

Third try: charge $3 for each append

S1 (the “append-dollar”) to pay for append
S1 (the “copy-dollar”) as credit to pay for copy

S1 (the “recharge-dollar”) as credit to pay for friends’ copy

Credit invariant:
Each element in 2" half of array has $2 credit

Inductive step.
Case 2: Array full; make new array

Copy all items using stored credit
Add new item (S1) plus S2 credit

So in all cases credit invariant is
maintainted

If we charge S3 for each APPEND it is enough units to
pay for all costs in any sequence of APPEND
operations (starting with an array of size 1)

In other words, for a sequence of m APPEND

operations, the amortized cost per operations is 3,
which is in O(1).

In a regular worst-case analysis (non-amortized), what is
the worst-case runtime of an APPEND operation on an

array with m elements?
@ y

By performing the amortized analysis, we
showed that “double the size when full” is a

good strategy for expanding a dynamic array,
since it’s amortized cost per operation is in

O(1).

In contrast, “increase size by 100 when full”

would not be a good strategy. Why?
&

Takeaway

Amortized analysis provides us valuable

insights into what is the proper strategy

of expanding dynamic arrays.

Expanding and Shrinking
dynamic arrays

A bit trickier...

First thing that comes to mind...

When the array is Y full after DELETE, create a new
array of half of the size, and copy all the elements.

Consider the following sequence of operations
performed on a full array with n element...

APPEND, DELETE, APPEND, DELETE, APPEND, ...

©(n) amortized cost per operation since every
APPEND or DELETE causes allocation of new array.

NO GOOD!

The right way of shrinking

When the array is Ya full after DELETE, create a new

array of ¥ of the size, and copy all the elements.

Charge S3 per APPEND
S2 per DELETE

* 1 append/delete-dollar

* 1 copy-dollar

* 1 recharge-dollar

The array, after shrinking...

Je—

Before the next expansion, we need to fill the empty half, which
will spare enough money for copying the green part.

Before the next shrinking, we need to empty half of the green
part, which will spare enough money for copying what's left.

Credit Invariant for Dynamic Arrays:
Append and Delete

Credit Invariant:
In an array of size 2X there are at least 2* /4 elements.
Elements in rightmost half have $2 stored.
Empty slots inleftmost half have S1 stored

Proof

Base case: First operation is an insert

S1 to pay for append, S2 stored

Credit Invariant for Dynamic Arrays:
Append and Delete

Credit Invariant:
In an array of size 2 there are at least 2% /4 elements.
Elements in rightmost half have S2 stored.
Empty slots in bottom half have $1 stored

Proof

Inductive Step: four cases

(a) append without overflow
(b) append with overflow
(c) delete without shrinking
(d) delete with shrinking

Credit Invariant for Dynamic Arrays:
Append and Delete

Credit Invariant:
In an array of size 2k there are at least 2% /4 elements.

Elements in rightmost half have $2 stored.

Empty slots in bottom half have S1 stored
Inductive Step: four cases
(a) append without overflow:
2 2 2
al: abcdeXXX - abcdefXX

11 1
a2: abXXXXXX - abcXXXXX

Credit Invariant for Dynamic Arrays:
Append and Delete

Credit Invariant:
In an array of size 2k there are at least 2% /4 elements.

Elements in rightmost half have $2 stored.

Empty slots in bottom half have S1 stored
Inductive Step: four cases
(b) append with overflow:
2 2 2
abcd - abcdeXXX

credit pays to copy old stuff
S3: store S2, and use $1 to pay for new copy

Credit Invariant for Dynamic Arrays:
Append and Delete

Credit Invariant:
In an array of size 2k there are at least 2% /4 elements.

Elements in rightmost half have $2 stored.

Empty slots in bottom half have S1 stored
Inductive Step: four cases
(c) delete no shrinking:
2 2 2
cl: abcdefXX - abcdeXXX

1 11
22 abcXXXXX - abXXXXXX

S2 charge: S1 for delete, S1 for credit

Credit Invariant for Dynamic Arrays:
Append and Delete

Credit Invariant:
In an array of size 2k there are at least 2% /4 elements.

Elements in rightmost half have $2 stored.

Empty slots in bottom half have S1 stored
Inductive Step: four cases
(d) delete with shrinking:
1 11
abcXXXXX 2 abXXXXXX2abXX

First delete c, $S1 to delete, S1 stored on new blank spot
Then shrink — dollars stored will pay for copy of all guys to left

So, overall credit invariant maintained

Summary: In a dynamic array, if we expand and
shrink the array as discussed (double on full, halve
on % full) then:

For any sequence of APPEND or DELETE operations,
S3 per APPEND and $S2 per DELETE is enough money
to pay for all costs in the sequence.

Therefore the amortized cost per operation of any
sequence is upper-bounded by 3, i.e., O(1).

Next week

Graphs!

