
CSC263 Week 6

Announcements

PS2 marks out today.
 Class average 85% !

Midterm tomorrow evening, 8-9pm EX100

Don’t forget to bring your ID!

This week

➔ QuickSort and analysis

➔ Randomized QuickSort

➔ Randomized algorithms in general

QuickSort

Background
Invented by Tony Hoare in
1960

Very commonly used
sorting algorithm. When
implemented well, can be
about 2-3 times faster than
merge sort and heapsort.

QuickSort: the idea

➔ Partition an array

2 8 7 1 3 5 6 4

pick a pivot
(the last one)

2 1 3 4 7 5 6 8

smaller than pivot larger than pivot

2 1 3 4 7 5 6 8

Recursively partition the sub-arrays
before and after the pivot.

Base case:

1 sorted Read textbook Chapter 7
for details of the Partition
operation

Worst-case Analysis of QuickSort

T(n): the total number of comparisons made

Claim 1. Each element in A can be chosen as
pivot at most once.

2 1 3 4 7 5 6 8

For simplicity, assume all elements are distinct

A pivot never goes into a sub-array on which a recursive call is made.

Claim 2. Elements are only compared to pivots.

That’s what partition is all about -- comparing with pivot.

A

Claim 3. Every pair (a, b) in A are compared with
each other at most once.

The only possible one happens when a or b is chosen as a pivot and the
other is compared to it; after being the pivot, the pivot one will be out of the
market and never compare with anyone anymore.

A 2 1 3 4 7 5 6 8

So, the total number of comparisons is no
more than the total number of pairs.

So, the total number of comparisons is no
more than the total number of pairs.

i.e., the worst-case running time is
lower-bounded by some cn²

Just find one input for which the
running time is at least cn²

so, just find one input for which the
running time is some cn²

i.e., find one input that results in
awful partitions (everything on one side).

Remember that we
always pick the last
one as pivot.

1 2 3 4 5 6 7 8

IRONY:
The worst input for QuickSort
is an already sorted array.

1 2 3 4 5 6 7 8

Choose pivot A[n], then n-1 comparisons

Calculate the number of comparisons

Recurse to subarray, pivot A[n-1], then n-2 comps

Recursive to subarray, pivot A[n-2], then n-3 comps ...
Total # of comps:

So, the worst-case runtime

What other sorting algorithms have n²
worst-case running time?
(The stupidest) Bubble Sort!

 Is QuickSort really “quick” ?

Yes, in average-case.

Average-case Analysis of
QuickSort

O(n log n)

Average over what?

Sample space and input distribution

All permutations of array [1, 2, …, n], and
each permutation appears equally likely.

Not the only choice of sample space, but it is a
representative one.

Let X be the random variable representing the
number of comparisons performed on a
sample array drawn from the sample space.

We want to compute E[X].

What to compute?

An indicator random variable!

array is a permutation of [1, 2, …, n]

So the total number of comparisons:

sum over all
possible pairs

Just need to figure
this out!

because
IRV

Note: i < j

Think about the sorted sub-sequence

A Clever Claim: i and j are compared if and
only if, among all elements in Zij, the first
element to be picked as a pivot is either i or j.

Claim: i and j are compared if and only if,
among all elements in Zij, the first element to
be picked as a pivot is either i or j.

Proof:
The “only if”: suppose the first one picked as pivot as
some k that is between i and j,...
then i and j will be separated into different partitions and
will never meet each other.

The “if”: if i is chosen as pivot (the first one among Zij),
then j will be compared to pivot i for sure, because nobody
could have possibly separated them yet!
Similar argument for first choosing j

Claim: i and j are compared if and only if,
among all elements in Zij, the first element to
be picked as a pivot is either i or j.

There are j-i+1 numbers in
Zij, and each of them is
equally likely to be
chosen as the first pivot.

We have figured
this out!

Something
close to

Analysis Over!

 ≤ 2n (1 + 1/2 + 1/3 + 1/4 + 1/5 + …. + 1/n)

Why is (1 + 1/2 + 1/3 + 1/4 + .1/5 + …. + 1/n) ≤ log n ?
 Divide sum into (log n) groups:
 S1 = 1
 S2 = 1/2 + 1/3
 S3 = 1/4 + 1/5 + 1/6 + 1/7
 S4 = 1/8 + 1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15
 Each group sums to a number ≤ 1, so total sum of all groups is ≤ log n !

Summary

The worst-case runtime of Quicksort is Θ(n²).

The average-case runtime is O(n log n).

 (over all permutations of [1,..,n])

However, in real life...

QuickSort(A)

Average case analysis tells us that for most inputs the
runtime is O(n log n), but this is a small consolation if our
input is one of the bad ones!

The theoretical O(nlog n)
performance is in no way
guaranteed in real life.

Randomize-‐QuickSort(A):	
	 run	 QuickSort(A)	 as	 above	 	
	 but	 each	 time	 picking	 a	 random	 	
	 element	 in	 the	 array	 as	 a	 pivot	

Let’s try to get around this problem by adding
randomization into the algorithm itself:

Randomize-‐QuickSort(A):	
	 run	 QuickSort(A)	 as	 above	 	
	 but	 each	 time	 picking	 a	 random	 	
	 element	 in	 the	 array	 as	 a	 pivot	

Let’s try to get around this problem by adding
randomization into the algorithm itself:

•  We will prove that for any input array of n elements, the
expected time is O(n log n)

•  This is called a worst-case expected time bound
•  We no longer assume any special properties of the input

Worst-case Expected Runtime of
Randomized QuickSort

O(n log n)

Let X be the random variable representing the
number of comparisons performed on a
sample array drawn from the sample space.

We want to compute E[X].

Now the expectation is over the random
choices for the pivot, and the input is fixed.

What to compute?

An indicator random variable!

array is a permutation of [1, 2, …, n]

So the total number of comparisons:

sum over all
possible pairs

Just need to figure
this out!

because
IRV

Claim: i and j are compared if and only if,
among all elements in Zij, the first element to
be picked as a pivot is either i or j.

There are j-i+1 numbers in
Zij, and each of them is
equally likely to be
chosen as the first pivot.

A Different Analysis (less clever)

T(n) is expected time to sort n elements. First pivot
chooses ith smallest element, all equally likely. Then:

Solving this recurrence gives T(n) ≤ O(n log n)

Randomized Algorithms

Use randomization to guarantee
expected performance

We do it everyday.

Two types of randomized algorithms

“Las Vegas” algorithm
➔ Deterministic answer, random runtime

“Monte Carlo” algorithm
➔ Deterministic runtime, random answer

Randomized-QuickSort is a …
Las Vegas algorithm

An Example of
Monte Carlo Algorithm

“Equality Testing”

The problem

Alice holds a binary number x and Bob holds y,
decide whether x = y.

No kidding, what if the size of x and y are 10TB each?
Alice and Bob would need to transmit ~10¹⁴ bits.
Can we do better?

Randomly choose a prime number p ≤ n²,
then len(p) ≤ log₂(n²) = 2log₂(n)
then compare (x mod p) and (y mod p)
i.e., return (x mod p) == (y mod p)

Need to compare at most 2log(n) bits.

Why assuming x and y are of the same length?

log₂(10¹⁴) ≈ 46.5

But, does it give the
correct answer?

Huge improvement on runtime!

Let n = len(x) = len(y) be the length of x and y.

Does it give the correct answer?

If (x mod p) ≠ (y mod p), then…
Must be x ≠ y, our answer is correct for sure.

If (x mod p) = (y mod p), then…
Could be x = y or x ≠ y, so our answer might be
correct.
Correct with what probability?
What’s the probability of a wrong answer?

Prime number theorem

In range [1, m], there are roughly m/ln(m)
prime numbers.
So in range [1, n²], there are
 n²/ln(n²) = n²/2ln(n) prime numbers.

How many (bad) primes in [1, n²] satisfy
(x mod p) = (y mod p) even if x ≠ y ?

At most n (x mod p) = (y mod p) ⇔ |x - y| is a multiple of p, i.e., p

is a divisor of |x - y|.
|x - y| < 2ⁿ (n-bit binary #) so it has no more than n
prime divisors (otherwise it will be larger than 2ⁿ).

So...
Out of the n²/2ln(n) prime numbers we choose
from, at most n of them are bad.

If we choose a good prime, the algorithm gives
correct answer for sure.
If we choose a bad prime, the algorithm may
give a wrong answer.
So the prob of wrong answer is less than

Error probability of our Monte Carlo
algorithm

When n = 10¹⁴ (10TB)
Pr(error) ≤ 0.00000000000644

Performance comparison (n = 10TB)

The regular algorithm x == y
➔  Perform 10¹⁴ comparisons
➔  Error probability: 0

The Monte Carlo algorithm (x mod p) == (y mod p)
➔  Perform < 100 comparisons
➔  Error probability: 0.000000000000644
If your boss says: “This error probability is too high!”
Run it twice: Perform < 200 comparisons
➔  Error prob squared: 0.000000000000000000000000215

Summary

Randomized algorithms
➔ Guarantees worst-case expected performance
➔ Make algorithm less vulnerable to malicious inputs

Monte Carlo algorithms
➔ Gain time efficiency by sacrificing some correctness.

For more details:

 Notes on Randomized Algorithms and
Quicksort

 posted on course webpage, lecture 6

•  Also gives a good review of probability

theory and computing expectations!

