
CSC263 Week 6 



Announcements 

PS2 marks out today.  
 Class average 85%  ! 

 
Midterm tomorrow evening, 8-9pm EX100 
 
Don’t forget to bring your ID! 
 



This week 

➔ QuickSort and analysis 
 
➔ Randomized QuickSort 

 
➔ Randomized algorithms in general 

 



QuickSort 



Background 
Invented by Tony Hoare in 
1960  
 
Very commonly used 
sorting algorithm. When 
implemented well, can be 
about 2-3 times faster than 
merge sort and heapsort. 



QuickSort: the idea 

➔ Partition an array 

2 8 7 1 3 5 6 4 

pick a pivot 
(the last one) 

2 1 3 4 7 5 6 8 

smaller than pivot larger than pivot 



2 1 3 4 7 5 6 8 

Recursively partition the sub-arrays 
before and after the pivot. 

Base case: 

1 sorted Read textbook Chapter 7 
for details of the Partition 
operation 



Worst-case Analysis of QuickSort 

T(n): the total number of comparisons made 



Claim 1. Each element in A can be chosen as 
pivot at most once.  

2 1 3 4 7 5 6 8 

For simplicity, assume all elements are distinct 

A pivot never goes into a sub-array on which a recursive call is made. 

Claim 2. Elements are only compared to pivots.  

That’s what partition is all about -- comparing with pivot. 

A 



Claim 3. Every pair (a, b) in A are compared with 
each other at most once. 

The only possible one happens when a or b is chosen as a pivot and the 
other is compared to it; after being the pivot, the pivot one will be out of the 
market and never compare with anyone anymore. 

A 2 1 3 4 7 5 6 8 

So, the total number of comparisons is no 
more than the total number of pairs. 



So, the total number of comparisons is no 
more than the total number of pairs. 



i.e., the worst-case running time is 
lower-bounded by some cn² 

Just find one input for which the 
running time is at least cn² 



so, just find one input for which the 
running time is some cn² 

i.e., find one input that results in 
awful partitions (everything on one side). 

Remember that we 
always pick the last 
one as pivot. 

1     2      3     4      5     6     7      8 

IRONY: 
The worst input for QuickSort 
is an already sorted array. 



1 2 3 4 5 6 7 8 

Choose pivot A[n], then n-1 comparisons 

Calculate the number of comparisons 

Recurse to subarray, pivot A[n-1], then n-2 comps 

Recursive to subarray, pivot A[n-2], then n-3 comps ... 
Total # of comps: 



So, the worst-case runtime 



What other sorting algorithms have n² 
worst-case running time? 
(The stupidest) Bubble Sort! 
 
                   Is QuickSort really “quick” ?  

Yes, in average-case. 



Average-case Analysis of 
QuickSort 

O(n log n) 



Average over what? 

Sample space and input distribution 
 
All permutations of array [1, 2, …, n], and 
each permutation appears equally likely. 
 
Not the only choice of sample space, but it is a 
representative one. 



Let X be the random variable representing the 
number of comparisons performed on a 
sample array drawn from the sample space. 
 
We want to compute E[X]. 

What to compute? 



An indicator random variable! 

array is a permutation of [1, 2, …, n] 
 
 

So the total number of comparisons: 

sum over all 
possible pairs 



Just need to figure 
this out! 

because 
IRV 



Note: i < j 

Think about the sorted sub-sequence  

A Clever Claim: i and j are compared if and 
only if, among all elements in Zij, the first 
element to be picked as a pivot is either i or j. 



Claim: i and j are compared if and only if, 
among all elements in Zij, the first element to 
be picked as a pivot is either i or j. 

Proof: 
The “only if”: suppose the first one picked as pivot as 
some k that is between i and j,... 
then i and j will be separated into different partitions and 
will never meet each other. 
 

The “if”: if i is chosen as pivot (the first one among Zij), 
then j will be compared to pivot i for sure, because nobody 
could have possibly separated them yet! 
Similar argument for first choosing j 
 



Claim: i and j are compared if and only if, 
among all elements in Zij, the first element to 
be picked as a pivot is either i or j. 

There are j-i+1 numbers in 
Zij, and each of them is 
equally likely to be 
chosen as the first pivot. 



We have figured 
this out! 



Something 
close to  

Analysis Over! 



 ≤ 2n  (1 + 1/2 + 1/3 + 1/4 + 1/5 + …. + 1/n) 

Why is (1 + 1/2  + 1/3 + 1/4 + .1/5 + …. + 1/n) ≤ log n ? 
 Divide sum into (log n) groups:  
  S1 = 1 
  S2 =  1/2 + 1/3 
  S3 =  1/4 + 1/5 + 1/6 + 1/7 
  S4 =  1/8 + 1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15 
 Each group sums to a number ≤ 1, so total sum of all groups is ≤ log n ! 



Summary 

The worst-case runtime of Quicksort is  Θ(n²). 
 
The average-case runtime is O(n log n). 

 (over all permutations of [1,..,n]) 
 



However, in real life... 

QuickSort(A) 

Average case analysis tells us that for most inputs the 
runtime is O(n log n), but this is a small consolation if our 
input is one of the bad ones! 

The theoretical O(nlog n) 
performance is in no way 
guaranteed in real life. 



Randomize-‐QuickSort(A):	  
	  run	  QuickSort(A)	  as	  above	  	  
	  but	  each	  time	  picking	  a	  random	  	  
	  element	  in	  the	  array	  as	  a	  pivot	  

Let’s try to get around this problem by adding 
randomization into the algorithm itself: 



Randomize-‐QuickSort(A):	  
	  run	  QuickSort(A)	  as	  above	  	  
	  but	  each	  time	  picking	  a	  random	  	  
	  element	  in	  the	  array	  as	  a	  pivot	  

Let’s try to get around this problem by adding 
randomization into the algorithm itself: 

•  We will prove that for any input array of n elements, the 
expected time is O(n log n) 

•  This is called a worst-case expected time bound 
•  We no longer assume any special properties of the input 



Worst-case Expected Runtime of 
Randomized QuickSort 

O(n log n) 



Let X be the random variable representing the 
number of comparisons performed on a 
sample array drawn from the sample space. 
 
We want to compute E[X]. 
 
Now the expectation is over the random 
choices for the pivot, and the input is fixed. 

What to compute? 



An indicator random variable! 

array is a permutation of [1, 2, …, n] 
 
 

So the total number of comparisons: 

sum over all 
possible pairs 



Just need to figure 
this out! 

because 
IRV 



Claim: i and j are compared if and only if, 
among all elements in Zij, the first element to 
be picked as a pivot is either i or j. 

There are j-i+1 numbers in 
Zij, and each of them is 
equally likely to be 
chosen as the first pivot. 



A Different Analysis (less clever) 

T(n) is expected time to sort n elements. First pivot 
chooses ith smallest element, all equally likely. Then: 

Solving this recurrence gives T(n) ≤ O(n log n) 



Randomized Algorithms 



Use randomization to guarantee 
expected performance 

We do it everyday. 



Two types of randomized algorithms 

“Las Vegas” algorithm 
➔ Deterministic answer, random runtime 

 
“Monte Carlo” algorithm 
➔ Deterministic runtime, random answer 

Randomized-QuickSort is a … 
Las Vegas algorithm 



An Example of  
Monte Carlo Algorithm 

“Equality Testing” 



The problem 

Alice holds a binary number x and Bob holds y, 
decide whether x = y. 

No kidding, what if the size of x and y are 10TB each? 
Alice and Bob would need to transmit  ~10¹⁴ bits. 
Can we do better? 



Randomly choose a prime number p ≤ n², 
then len(p) ≤ log₂(n²) = 2log₂(n) 
then compare (x mod p) and (y mod p) 
i.e., return (x mod p) == (y mod p) 
 
Need to compare at most 2log(n) bits. 

Why assuming x and y are of the same length? 

log₂(10¹⁴) ≈  46.5 
 

But, does it give the 
correct answer? 

Huge improvement on runtime! 

Let n = len(x) = len(y) be the length of x and y. 
 



Does it give the correct answer? 

If (x mod p) ≠ (y mod p), then… 
Must be x ≠ y, our answer is correct for sure. 
 
If (x mod p) = (y mod p), then… 
Could be x = y or x ≠ y, so our answer might be 
correct. 
Correct with what probability? 
What’s the probability of a wrong answer? 
 



Prime number theorem 

In range [1, m], there are roughly m/ln(m) 
prime numbers. 
So in range [1, n²], there are  
   n²/ln(n²) = n²/2ln(n) prime numbers. 
 
How many (bad) primes in [1, n²] satisfy 
(x mod p) = (y mod p) even if x ≠ y ? 
 
At most n (x mod p) = (y mod p) ⇔ |x - y| is a multiple of p, i.e., p 

is a divisor of |x - y|. 
|x - y| < 2ⁿ (n-bit binary #) so it has no more than n 
prime divisors (otherwise it will be larger than 2ⁿ). 



So... 
Out of the n²/2ln(n) prime numbers we choose 
from, at most n of them are bad. 
 
If we choose a good prime, the algorithm gives 
correct answer for sure. 
If we choose a bad prime, the algorithm may 
give a wrong answer. 
So the prob of wrong answer is less than 



Error probability of our Monte Carlo 
algorithm 

When n = 10¹⁴  (10TB) 
Pr(error) ≤ 0.00000000000644 



Performance comparison (n = 10TB) 

The regular algorithm x == y 
➔  Perform 10¹⁴ comparisons 
➔  Error probability: 0 
 
The Monte Carlo algorithm (x mod p) == (y mod p) 
➔  Perform < 100 comparisons 
➔  Error probability: 0.000000000000644 
If your boss says: “This error probability is too high!” 
Run it twice: Perform < 200 comparisons 
➔  Error prob squared: 0.000000000000000000000000215 



Summary 

Randomized algorithms 
➔ Guarantees worst-case expected performance 
➔ Make algorithm less vulnerable to malicious inputs 

 
Monte Carlo algorithms 
➔ Gain time efficiency by sacrificing some correctness. 

 



For more details: 

 
 Notes on Randomized Algorithms and 
Quicksort  

 posted on course webpage, lecture 6 
 
•  Also gives a good review of probability 

theory and computing expectations! 


