
CSC263 Week 5

Announcements

Assignment 1 marks out
 class average 70.5%
 median 75%

MIDTERM next week!!

MIDTERM:

•  Asymptotic analysis (O, Ω)
•  Runtime analysis
 (worst-case, best-case, average-case)
•  Heaps
•  Binary Search Trees
•  AVL Trees
•  Hashing

Short-answer questions, multiple choice
Example: insert/delete x into this heap/avl tree

Hash Tables
Data Structure of the Week

Hash table is for implementing Dictionary

unsorted
list sorted array

Search(S, k) O(n) O(log n)

Insert(S, x) O(n) O(n)

Delete(S, x) O(1) O(n)

Balanced
BST

O(log n)

O(log n)

O(log n)

Hash
table

average-case, and if
we do it right

O(1)

O(1)

O(1)

Direct address table
a fancy name for “array”...

Problem

Read a grade file, keep track of number of
occurrences of each grade (integer 0~100).

33 20 35 65 771 332 21 125 ... 2

The fastest way: create an array T[0, …, 100], where
T[i] stores the number of occurrences of grade i.

 0 1 2 3 4 5 6 7 …. 100

Everything can be done in O(1) time, worst-case.

Direct-address table: directly using the key as the index of the table

values:

keys:

The drawbacks of direct-address table?

Drawback #1: What if the keys
are not integers? Cannot use
keys as indices anymore!

Drawback #2: What if the grade
1,000,000,000 is allowed? Then
we need an array of size
1,000,000,001! Most space is
wasted.

33 20 35 65 771 332 21 125 ... 2
 0 1 2 3 4 5 6 7 …. 100

values:

keys:

We need to be able to
convert any type of
key to an integer.

We need to map the
universe of keys into
a small number of
slots.

A hash function does both!

An unfortunate naming confusion

Python has a built-in “hash()” function

By our definition, this
“hash()” function is not
really a hash function
because it only does the
first thing (convert to
integer) but not the second
thing (map to a small
number of slots).

Definitions
Universe of keys U, the set of all possible keys.

Hash Table T: an array with M positions, each position is
called a “slot” or a “bucket”.

Hash function h: a functions maps U to {0, 1, …, M-1}
in other words, h(k) maps any key k to one of the M
buckets in table T.
in yet other words, h(k) is the index in T where the key k is
stored.

Example: A hash table with M = 7

0

1

2

3

4

5

6

Insert(“hello”)
assume h(“hello”) = 4

hello

Insert(“world”)
assume h(“world”) = 2 world

Insert(“tree”)
assume h(“tree”) = 5

tree Search(“hello”)
return T[h(“hello”)]

T

What’s new potential issue?

Example: A hash table with M = 7

0

1

2

3

4

5

6

hello

world

T

tree

What if we Insert(“snow”),
and h(“snow”) = 4?

Then we have a collision.

One way to resolve collision is
Chaining

Example: A hash table with M = 7

0

1

2

3

4

5

6

snow

world

T

tree

What if we Insert(“snow”),
and h(“snow”) = 4?

Then we have a collision.

One way to resolve collision is
Chaining

hello

Store a linked list at
each bucket, and insert
new ones at the head

Hashing with chaining: Operations
➔  Search(k):

◆  Search k in the linked list stored at
T[h(k)]

◆  Worst-case O(length of chain),
◆  Worst length of chain: O(m) (e.g.,

all keys hashed to the same slot)
➔  Insert(k):

◆  Insert into the linked list stored at
T[h(k)]

◆  Need to check whether key already
exists, still takes
O(length of chain)

➔  Delete(k)
◆  Search k in the linked list stored at

T[h(k)], then delete, O(length of
chain)

0

1

2

3

4

5

6

snow

world

T

tree

hello

Let m be the total
number of keys in
the hash table.

Hashing with chaining operations, worst-case
running times are O(m) in general. Doesn’t
sound too good.

However, in practice, hash tables work really
well, that is because
➔ The worst case almost never happens.
➔ Average case performance is really good.
 (More on this soon!)

In fact, Python “dict” is implemented using hash table.

So what can we do?

We use some heuristics.

Heuristic
(noun)

A method that works in practice but

you don’t really know why.

First of all

Every object stored in a computer can be represented by a
bit-string (string of 1’s and 0’s), which corresponds to a
(large) integer, i.e., any type of key can be converted to an
integer easily.

So the only thing a hash function really needs to worry
about is how to map these large integers to a small set of
integers {0, 1, …, M-1}, i.e., the buckets.

What do we want to have in a hash
function?

Want-to-have #1
h(k) depends on every bit of k,
so that the differences between different k’s are
fully considered.

h(k) = lowest 3-bits of k
e.g.,
h(101001010001010) = 2

bad

h(k) = sum of all bits
e.g.,
h(101001010001010) = 6

a little
better

Want-to-have #2

h(k) “spreads out” values, so all buckets get
something.

h(k) = k mod 2

Assume there are M = 263 buckets in the hash table.

bad
because all keys

hash to either

bucket 0 or bucket

1

h(k) = k mod 263

better
because all

buckets could get

something

Want-to-have #3

h(k) should be efficient to compute

h(k) = solution to the PDE *
$^% with parameter k

Yuck!

h(k) = k mod 263

better

1. h(k) depends on every bit of k
2. h(k) “spreads out” values
3. h(k) is efficient to compute

In practice, it is difficult to get all three of them, ...

but there are some heuristics that work well

Summary: hash functions

Hash
(noun)

a dish of cooked meat cut into small

pieces and cooked again, usually
with potatoes.

(verb)

make (meat or other food) into a
hash “The spirit of hashing”

The division method

The division method

h(k) = k mod M
h(k) is between 0 and M-1

Pitfall: sensitive to the value of M
➔  If M = 8, ...
◆  h(k) just returns the lowest 3-bits of k

➔  So M better be a prime number

A variation of the division method

h(k) = (ak + b) mod M
where a and b are constants that can be picked

Used in “Universal hashing” (coming up next!)
➔  Achieve constant sized chains in expectation by

choosing randomly from this set of hash functions.
 (choose a,b randomly)

On Heuristics

•  These methods can be good in practice but
there is NO GUARANTEE.

•  If the hash function h is chosen in advance,

there will be sets S that hash very badly (and
thus all operations will be inefficient.)

So what else can we do?

Use randomness!!

Randomness
(noun)

A random sequence of events, symbols

or steps has no order and does not follow
an intelligible pattern or combination

Randomness

•  Randomness is a wonderful resource!

•  It allows us to fool adversaries.

•  It can give faster and simpler algorithms

•  MANY applications including: cryptography,
data privacy, statistics

Universal Hashing

•  Use randomization to achieve good
expected behavior of hashing with chaining
for any subset S of U

•  Idea: Pick a hash function h from H at
random, where H is a “nice” family of hash
functions H so that:

 for any S, the expected number of
 collisions is constant.

Definitions
Universe of keys U, the set of all possible keys.

U = [0,1,…,N-1]

Range = [0,1,…,M-1]

Hash functions h: maps [0,1,…,N-1] to [0,1,…,M-1]

Let S be the (unknown) subset of U that is getting
mapped to [0,1,..,M-1]

Let |S| = m, and let m/M = α be the load factor

 (typically we want to choose M ~ m)

Universal Hashing

A family H of hash functions from [0,1,..,N-1] to
[0,1,…,M-1] is d-universal if for all j,k in
[0,1,..,N-1], j ≠ k

 Pr h in H [h(j) = h(k)] ≤ d/M

**Think of d = 1 (or maybe 2)

Equivalently let Xjk = 1 if h(j)=h(k) and 0 otherwise.
Then H is universal if for all j ≠ k: Eh [Xjk] ≤ d/M

Universal Hashing:
why is d-universal good enough?

Theorem
Let 0 ≤ j ≤ N-1, and let S be a subset of [0,..,N-1],
|S|=m. Then
 Eh in H [# collisions between j and S] ≤ dm/M

[The number of collisions between j and S is the number of
items in S that map to h(j)]

Theorem tells us that each j, the expected chain
length of bucket containing j is at most 1+dm/M
If we pick M so that m/M = O(1), this is constant!

Universal hashing
Proof of Theorem.
Let Ch (j,S) = # collisions between j and S
Let Xjk be the indicator random variable that is

 1 if h(j)=h(k) and 0 otherwise

Let Ch (j,S) = Σk in S Xjk
Then:
 Eh [Ch(j,S) = Σk in S Eh[Xjk] ≤ Σk in S 1/M = md/M

Designing a universal family H

Example 1. The set of all functions from
 U=[0,…,N-1] to [0,..,M-1] is a universal family.

What is the problem??

Designing a universal family H

Example 1. The set of all functions from
 U=[0,…,N-1] to [0,..,M-1] is a universal family.

What is the problem??

This universal family is WAY too large.
Just to write down one h in H takes
 time >> N > M > m
BUT we want to run in time O(log m) or O(1)

Designing a universal family H

Example 2. Let U=[0,…,N-1], where N is a
prime p, and M divides p-1

Let H = { ha | a=1,2,…,p-1 }

 where ha(x) = (ax mod p) mod M

Theorem.
Prh [h(j) = h(k)] ≤ 2/M (so 2-universal)

Designing a universal family H
Let U=[0,…,N-1], where N is a prime p, and M divides p-1
Let H = { ha | a=1,2,…,p-1 }

 where ha(x) = (ax mod p) mod M
Theorem.
Prh [h(j) = h(k)] ≤ 2/M

Fact 1. For p prime, ax mod p is 1-1, onto for all a
Fact 2. For all z≠0, for all i: Pra [az mod p = i] = 1/p

Designing a universal family H
Fact 1. For p prime, for all a, (ax mod p) is bijective
Fact 2. For all z≠0, for all i: Pra [az mod p = i] = 1/p

Example: p=11
x 0 1 2 3 4 5 6 7 8 9 10

a=1 0 1 2 3 4 5 6 7 8 9 10
a=2 0 2 4 6 8 10 1 3 5 7 9
a=3 0 3 6 9 1 4 7 10 2 5 8
a=4 0 4 8 1 5 9 2 6 10 4 7
a=5 0 5 10 4 9 3 8 2 7 1 6
a=6 0 6 1 7 2 8 3 9 4 10 5
a=7 0 7 3 10 6 2 9 5 1 8 4
a=8 0 8 5 2 10 7 4 1 9 6 3
a=0 0 9 7 5 3 1 10 8 6 4 2
a=10 0 10 9 8 7 6 5 4 3 2 1

Designing a universal family H
The facts tells us that all columns (except the first) of
the matrix below are different permutations of [1…p-1].

Example: p=11
x 0 1 2 3 4 5 6 7 8 9 10

a=1 0 1 2 3 4 5 6 7 8 9 10
a=2 0 2 4 6 8 10 1 3 5 7 9
a=3 0 3 6 9 1 4 7 10 2 5 8
a=4 0 4 8 1 5 9 2 6 10 4 7
a=5 0 5 10 4 9 3 8 2 7 1 6
a=6 0 6 1 7 2 8 3 9 4 10 5
a=7 0 7 3 10 6 2 9 5 1 8 4
a=8 0 8 5 2 10 7 4 1 9 6 3
a=0 0 9 7 5 3 1 10 8 6 4 2
a=10 0 10 9 8 7 6 5 4 3 2 1

Designing a universal family H

Fact 1. For p prime, for all a, (ax mod p) is bijective
Fact 2. For all z≠0, for all i: Pra [az mod p = i] = 1/p

Say p-1 = cM (M divides p-1). Then:

Prh [h(x)=h(y)] (y<x<p, maps to something < M-1)
 = Pra [(ax mod p)mod M = (ay mod p)mod M]
 = Pra [(a(x-y)mod p)mod M =0]
 = Pra [a(z) mod p = 0 or M or 2M or ..or cM] (z≠0)
 ≤ 1/p (c+1) [by Fact 2]
 ≤ 1/p (2p/M)
 = 2/M

Summary: Universal Hashing

•  Start with unknown S
•  Randomly pick one hash function, h, from a

small, efficient universal hash family and use
h to map S

•  The expected chain length will be constant!
•  Very important: this expectation is for all S,

over the random choice of h

Open addressing
another way of resolving collisions

other than chaining

Open addressing

➔ There is no chain
➔ Then what to do when having a collision?
◆ Find another bucket that is free

➔ How to find another bucket that is free?
◆ We probe.

➔ How to probe?
◆ linear probing

◆ quadratic probing

◆ double hashing

Linear probing
Probe sequence:
(h(k)	 +	 i)	 mod	 M, for i=0,1,2, ...

0

1

2

3

4

5

6

hello

world

T

tree

Insert(“hello”)
assume h(“hello”) = 4

Insert(“world”)
assume h(“world”) = 2

Insert(“tree”)
assume h(“tree”) = 2
probe 2, 3 ok

Insert(“snow”)
assume h(“snow”) = 3
probe 3, 4, 5 ok

snow

Problem with linear probing

Keys tend to cluster, which
causes long runs of probing.

Solutions: Jump farther in each
probe.
before: h(k), h(k)+1, h(k)+2, h(k)+3, ...
after: h(k), h(k)+1, h(k)+4, h(k)+9, ...

0

1

2

3

4

5

6

hello

world

T

tree

snow

This is called quadratic probing.

Quadratic probing

Probe sequence
(h(k)	 +	 c₁i	 +	 c₂i²)	 mod	 M, for i=0,1,2,...

Pitfalls:
➔  Collisions still cause a milder form of clustering, which

still cause long runs (keys that collide jump to the same
places and form crowd).

➔  Need to be careful with the values of c₁ and c₂, it could
jump in such a way that some of the buckets are never
reachable.

Double hashing

Probe sequence:
(h₁(k)	 +	 ih₂(k))	 mod	 M,	 for	 i=0,1,2,...	

Now the jumps almost look like random, the
jump-step (h₂(k)) is different for different k,
which helps avoiding clustering upon collisions,
therefore avoids long runs (each one has their
own way of jumping, so no crowd).

Performance of open addressing

Assuming simple uniform hashing, the average-
case number of probes in an unsuccessful
search is 1/(1-α).

For a successful search it is

In both cases, assume α < 1

Open addressing cannot have α > 1. Why?

How exactly to do Search, Insert and Delete
work in an open-addressing hash table?

Will see in this week’s tutorial.

Hashing is one of the most important ideas
in Computer Science!!

What you have seen today
is just the tip of the iceberg!!

•  Perfect hashing
•  Cuckoo hashing
•  Bloom filter
•  Fast string search algorithm
•  Geometric hashing
•  Cryptography: authentication, message fingerprinting,

 digital signatures
•  Complexity: approximate counting, recycling random

bits, interactive proofs

Recap

➔ Hash table: a data structure used to
implement the Dictionary ADT.

➔ Hash function h(k): maps any key k to
{0, 1, …, m-1}

➔ Hashing with chaining: expected time
O(1+α) for search, insert and delete when h
chosen randomly from a universal hash
family

Next week

➔ Randomized algorithms

