
CSC263 Week 5 



Announcements 

Assignment 1 marks out 
 class average 70.5% 
 median 75% 

 
 
MIDTERM next week!!  
 



MIDTERM: 

•  Asymptotic analysis (O, Ω) 
•  Runtime analysis  
       (worst-case, best-case, average-case) 
•  Heaps 
•  Binary Search Trees 
•  AVL Trees 
•  Hashing 
 
Short-answer questions, multiple choice 
Example: insert/delete x into this heap/avl tree 



Hash Tables 
Data Structure of the Week 



Hash table is for implementing Dictionary 

unsorted 
list sorted array 

Search(S, k) O(n) O(log n) 

Insert(S, x) O(n) O(n) 

Delete(S, x) O(1) O(n) 

Balanced 
BST 

O(log n) 

O(log n) 

O(log n) 

Hash 
table 

average-case, and if 
we do it right 

O(1) 

O(1) 

O(1) 



Direct address table 
a fancy name for “array”... 



Problem 

Read a grade file, keep track of number of 
occurrences of each grade (integer 0~100). 

33 20 35 65 771 332 21 125 ... 2 

The fastest way: create an array T[0, …, 100], where 
T[i] stores the number of occurrences of grade i. 

   0         1           2         3          4          5           6         7        ….  100 

Everything can be done in O(1) time, worst-case. 

Direct-address table: directly using the key as the index of the table 

values: 

keys: 



The drawbacks of direct-address table? 

Drawback #1: What if the keys 
are not integers? Cannot use 
keys as indices anymore! 
 
Drawback #2: What if the grade 
1,000,000,000 is allowed? Then 
we need an array of size 
1,000,000,001! Most space is 
wasted. 

33 20 35 65 771 332 21 125 ... 2 
   0         1           2         3          4          5           6         7        ….  100 

values: 

keys: 

We need to be able to 
convert any type of 
key to an integer. 

We need to map the 
universe of keys into 
a small number of 
slots. 

A hash function does both! 



An unfortunate naming confusion 

Python has a built-in “hash()” function 

By our definition, this 
“hash()” function is not 
really a hash function 
because it only does the 
first thing (convert to 
integer) but not the second 
thing (map to a small 
number of slots). 



Definitions 
Universe of keys U, the set of all possible keys. 
 
Hash Table T: an array with M positions, each position is 
called a “slot” or a “bucket”. 
 
Hash function h: a functions maps U to {0, 1, …, M-1} 
in other words, h(k) maps any key k to one of the M 
buckets in table T. 
in yet other words,  h(k) is the index in T where the key k is 
stored. 



Example: A hash table with M = 7 

0 

1 

2 

3 

4 

5 

6 

Insert(“hello”) 
assume h(“hello”) = 4 

hello 

Insert(“world”) 
assume h(“world”) = 2 world 

Insert(“tree”) 
assume h(“tree”) = 5 

tree Search(“hello”) 
return T[ h(“hello”) ] 

T 

What’s new potential issue? 



Example: A hash table with M = 7 

0 

1 

2 

3 

4 

5 

6 

hello 

world 

T 

tree 

What if we Insert(“snow”), 
and h(“snow”) = 4? 

Then we have a collision. 

One way to resolve collision is 
Chaining  



Example: A hash table with M = 7 

0 

1 

2 

3 

4 

5 

6 

snow 

world 

T 

tree 

What if we Insert(“snow”), 
and h(“snow”) = 4? 

Then we have a collision. 

One way to resolve collision is 
Chaining  

hello 

Store a linked list at 
each bucket, and insert 
new ones at the head 



Hashing with chaining: Operations 
➔  Search(k): 

◆  Search k in the linked list stored at 
T[ h(k) ] 

◆  Worst-case O(length of chain),  
◆  Worst length of chain: O(m) (e.g., 

all keys hashed to the same slot) 
➔  Insert(k): 

◆  Insert into the linked list stored at 
T[ h(k) ] 

◆  Need to check whether key already 
exists, still takes                     
O(length of chain) 

➔  Delete(k) 
◆  Search k in the linked list stored at 

T[ h(k) ], then delete, O(length of 
chain) 

0 

1 

2 

3 

4 

5 

6 

snow 

world 

T 

tree 

hello 

Let m be the total 
number of keys in 
the hash table. 



Hashing with chaining operations, worst-case 
running times are O(m) in general. Doesn’t 
sound too good. 
 
However, in practice, hash tables work really 
well, that is because 
➔ The worst case almost never happens. 
➔ Average case performance is really good. 
       (More on this soon!) 

In fact, Python “dict” is implemented using hash table. 



So what can we do? 

We use some heuristics. 

Heuristic  
(noun) 

 
A method that works in practice but 

you don’t really know why. 



First of all 

Every object stored in a computer can be represented by a 
bit-string (string of 1’s and 0’s), which corresponds to a 
(large) integer, i.e., any type of key can be converted to an 
integer easily. 
 
So the only thing a hash function really needs to worry 
about is how to map these large integers to a small set of 
integers {0, 1, …, M-1}, i.e., the buckets. 



What do we want to have in a hash 
function? 



Want-to-have #1 
h(k) depends on every bit of k, 
so that the differences between different k’s are 
fully considered. 

h(k) = lowest 3-bits of k 
e.g.,  
h(101001010001010) = 2 

bad 

h(k) = sum of all bits 
e.g.,  
h(101001010001010) = 6 

a little 
better 



Want-to-have #2 

h(k) “spreads out” values, so all buckets get 
something. 

h(k) = k mod 2 

Assume there are M = 263 buckets in the hash table. 

bad 
because all keys 

hash to either 

bucket 0 or bucket 

1 

h(k) = k mod 263 

better 
because all 

buckets could get 

something 



Want-to-have #3 

h(k) should be efficient to compute 

h(k) = solution to the PDE *
$^% with parameter k 

Yuck! 

h(k) = k mod 263 

better 



1. h(k) depends on every bit of k 
2. h(k) “spreads out” values 
3. h(k) is efficient to compute 

 
In practice, it is difficult to get all three of them, ... 
 
but there are some heuristics that work well 



Summary: hash functions 

Hash  
(noun) 

 
a dish of cooked meat cut into small 

pieces and cooked again, usually 
with potatoes. 

 
(verb) 

make (meat or other food) into a 
hash “The spirit of hashing” 



The division method 



The division method 

h(k) = k mod M 
h(k) is between 0 and M-1 
 
Pitfall: sensitive to the value of M 
➔  If M = 8, ... 
◆  h(k) just returns the lowest 3-bits of k 

➔  So M better be a prime number 
 



A variation of the division method 

h(k) = (ak + b) mod M 
where a and b are constants that can be picked 
 
Used in “Universal hashing” (coming up next!) 
➔  Achieve constant sized chains in expectation by 

choosing randomly from this set of hash functions.  
     (choose a,b randomly) 



On Heuristics 

•  These methods can be good in practice but 
there is NO GUARANTEE. 

 
•  If the hash function h is chosen in advance, 

there will be sets S that hash very badly (and 
thus all operations will be inefficient.) 



So what else can we do? 

Use randomness!! 

Randomness  
(noun) 

 
A random sequence of events, symbols 

or steps has no order and does not follow 
an intelligible pattern or combination 



Randomness 

•  Randomness is a wonderful resource! 

•  It allows us to fool adversaries. 

•  It can give faster and simpler algorithms 

•  MANY applications including: cryptography, 
data privacy, statistics 



Universal Hashing 

•  Use randomization to achieve good 
expected behavior of hashing with chaining 
for any subset S of U 

•  Idea: Pick a hash function h from H  at 
random, where H  is a  “nice” family of hash 
functions H so that: 

  for any S, the expected number of 
  collisions is constant. 

 
 



Definitions 
Universe of keys U, the set of all possible keys. 
 
U = [0,1,…,N-1] 
 
Range = [0,1,…,M-1] 
 
Hash functions h: maps [0,1,…,N-1] to [0,1,…,M-1] 
 
Let S be the (unknown) subset of U that is getting 
mapped to [0,1,..,M-1] 
 
Let |S| = m, and let m/M = α be the load factor 

 (typically we want to choose M ~ m) 



Universal Hashing 

A family H of hash functions from [0,1,..,N-1] to 
[0,1,…,M-1] is d-universal if for all j,k in 
[0,1,..,N-1], j ≠ k 

  
 Pr h in H [ h(j) = h(k)] ≤ d/M  

 
 
**Think of d = 1 (or maybe 2) 
 
Equivalently let  Xjk = 1 if h(j)=h(k) and 0 otherwise. 
Then H  is universal if for all j ≠ k: Eh [Xjk] ≤ d/M 
 



Universal Hashing:  
why is d-universal good enough? 

Theorem 
Let 0 ≤ j ≤ N-1, and let S be a subset of [0,..,N-1], 
|S|=m. Then 
  Eh in H [# collisions between j and S] ≤ dm/M  
 
[The number of collisions between j and S is the number of 
items in S that map to h(j) ] 
 
Theorem tells us that each j, the expected chain 
length of bucket containing j is at most 1+dm/M  
If we pick M so that m/M = O(1), this is constant! 
 
 
 
 
 
 
 
 



Universal hashing 
Proof of Theorem. 
Let Ch (j,S) = # collisions between j and S 
Let Xjk  be the indicator random variable that is 

 1 if h(j)=h(k) and 0 otherwise 
 
Let Ch (j,S) = Σk in S Xjk 
Then: 
    Eh [Ch(j,S) = Σk in S Eh[Xjk] ≤ Σk in S 1/M = md/M 
 



Designing a universal family H 

Example 1. The set of all functions from  
   U=[0,…,N-1] to [0,..,M-1] is a universal family. 
 
What is the problem?? 
 
 



Designing a universal family H 

Example 1. The set of all functions from  
   U=[0,…,N-1] to [0,..,M-1] is a universal family. 
 
What is the problem?? 
 
This universal family is WAY too large. 
Just to write down one h in H  takes 
 time >> N > M > m  
BUT we want to run in time O(log m) or O(1)  
 
 



Designing a universal family H 

Example 2. Let U=[0,…,N-1], where N is a 
prime p, and M divides p-1   
 
Let H = { ha |  a=1,2,…,p-1 } 

 where ha(x) = (ax mod p) mod M  
 
Theorem.  
Prh [h(j) = h(k)] ≤ 2/M  (so 2-universal) 
 
 
 



Designing a universal family H 
Let U=[0,…,N-1], where N is a prime p, and M divides p-1   
Let H = { ha |  a=1,2,…,p-1 } 

 where ha(x) = (ax mod p) mod M  
Theorem.  
Prh [h(j) = h(k)] ≤ 2/M 

 
Fact 1. For p prime, ax mod p is 1-1, onto for all a 
Fact 2. For all z≠0, for all i: Pra [az mod p = i] = 1/p 
 
 
 



Designing a universal family H 
Fact 1. For p prime, for all a, (ax mod p) is bijective  
Fact 2. For all z≠0, for all i: Pra [az mod p = i] = 1/p 
 
Example: p=11  
x        0     1     2     3     4     5    6     7     8    9     10 
----------------------------------------------------------------------------- 
a=1    0     1     2     3     4     5    6     7     8     9    10 
a=2    0     2     4     6     8   10    1     3     5     7     9 
a=3    0     3     6     9     1     4    7   10     2     5     8 
a=4    0     4     8     1     5     9    2     6   10     4     7 
a=5    0     5   10     4     9     3    8     2     7     1     6 
a=6    0     6     1     7     2     8    3     9     4   10     5 
a=7    0     7     3   10     6     2    9     5     1     8     4 
a=8    0     8     5     2   10     7    4     1     9     6     3 
a=0    0     9     7     5     3     1  10     8     6     4     2 
a=10  0   10     9     8     7     6    5     4     3     2     1 

 
 



Designing a universal family H 
The facts tells us that all columns (except the first) of 
the matrix below are different permutations of [1…p-1]. 
 
Example: p=11  
x        0     1     2     3     4     5    6     7     8    9     10 
----------------------------------------------------------------------------- 
a=1    0     1     2     3     4     5    6     7     8     9    10 
a=2    0     2     4     6     8   10    1     3     5     7     9 
a=3    0     3     6     9     1     4    7   10     2     5     8 
a=4    0     4     8     1     5     9    2     6   10     4     7 
a=5    0     5   10     4     9     3    8     2     7     1     6 
a=6    0     6     1     7     2     8    3     9     4   10     5 
a=7    0     7     3   10     6     2    9     5     1     8     4 
a=8    0     8     5     2   10     7    4     1     9     6     3 
a=0    0     9     7     5     3     1  10     8     6     4     2 
a=10  0   10     9     8     7     6    5     4     3     2     1 

 
 



Designing a universal family H 

Fact 1. For p prime, for all a, (ax mod p) is bijective  
Fact 2. For all z≠0, for all i: Pra [az mod p = i] = 1/p 
 
Say p-1 = cM (M divides p-1). Then: 
 
Prh [h(x)=h(y)]   (y<x<p, maps to something < M-1) 
    = Pra [ (ax mod p)mod M = (ay mod p)mod M]  
    = Pra [ (a(x-y)mod p)mod M =0]   
    = Pra [ a(z) mod p = 0 or M or 2M or ..or cM]  (z≠0) 
    ≤ 1/p (c+1)   [by Fact 2] 
    ≤ 1/p (2p/M) 
    = 2/M  



Summary: Universal Hashing 

•  Start with unknown S 
•  Randomly pick one hash function, h, from a 

small, efficient universal hash family and use 
h to map S 

•  The expected chain length will be constant!  
•  Very important: this expectation is for all S, 

over the random choice of h 



Open addressing 
another way of resolving collisions 

other than chaining 



Open addressing 

➔ There is no chain 
➔ Then what to do when having a collision? 
◆ Find another bucket that is free 

➔ How to find another bucket that is free? 
◆ We probe. 

➔ How to probe? 
◆ linear probing 

◆ quadratic probing 

◆ double hashing 



Linear probing 
Probe sequence:  
( h(k)	  +	  i)	  mod	  M,  for i=0,1,2, ... 

0 
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3 
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5 

6 

hello 

world 

T 

tree 

Insert(“hello”) 
assume h(“hello”) = 4 

Insert(“world”) 
assume h(“world”) = 2 

Insert(“tree”) 
assume h(“tree”) = 2 
probe 2, 3 ok 

Insert(“snow”) 
assume h(“snow”) = 3 
probe 3, 4, 5 ok 

snow 



Problem with linear probing 

Keys tend to cluster, which 
causes long runs of probing. 
 
Solutions: Jump farther in each 
probe. 
before: h(k), h(k)+1, h(k)+2, h(k)+3, ... 
after: h(k), h(k)+1, h(k)+4, h(k)+9, ... 

0 

1 
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3 

4 

5 

6 

hello 

world 

T 

tree 

snow 

This is called quadratic probing. 



Quadratic probing 

Probe sequence 
(h(k)	  +	  c₁i	  +	  c₂i²)	  mod	  M, for i=0,1,2,...  

Pitfalls: 
➔  Collisions still cause a milder form of clustering, which 

still cause long runs (keys that collide jump to the same 
places and form crowd). 

➔  Need to be careful with the values of c₁ and c₂, it could 
jump in such a way that some of the buckets are never 
reachable. 



Double hashing 

Probe sequence: 
(h₁(k)	  +	  ih₂(k))	  mod	  M,	  for	  i=0,1,2,...	  

Now the jumps almost look like random, the 
jump-step (h₂(k)) is different for different k, 
which helps avoiding clustering upon collisions, 
therefore avoids long runs (each one has their 
own way of jumping, so no crowd). 



Performance of open addressing 

Assuming simple uniform hashing, the average-
case number of probes in an unsuccessful 
search is 1/(1-α). 
 
For a successful search it is  
 
In both cases, assume α < 1 

Open addressing cannot have α > 1. Why? 



How exactly to do Search, Insert and Delete 
work in an open-addressing hash table? 
 
Will see in this week’s tutorial. 
 



Hashing is one of the most important ideas 
in Computer Science!!  
 
What you have seen today 
is just the tip of the iceberg!! 

 
•  Perfect hashing 
•  Cuckoo hashing 
•  Bloom filter 
•  Fast string search algorithm 
•  Geometric hashing 
•  Cryptography: authentication, message fingerprinting, 

 digital signatures 
•  Complexity: approximate counting, recycling random 

bits, interactive proofs 



Recap 

➔ Hash table: a data structure used to 
implement the Dictionary ADT. 

➔ Hash function h(k): maps any key k to     
{0, 1, …, m-1} 

➔ Hashing with chaining: expected time 
O(1+α) for search, insert and delete when h 
chosen randomly from a universal hash 
family 

 



Next week 

➔ Randomized algorithms 


