CSC263 Week 4
Problem Set 2 is due this Tuesday!

Due Tuesday (Oct 13)
Other Announcements

Ass1 marks available on MarkUS
⇒ Re-marking requests accepted until October 14

YOUR MARK MAY GO UP OR DOWN AS THE RESULT OF A REMARK REQUEST
Recap

ADT: Dictionary
 ➔ Search, Insert, Delete

Binary Search Tree
 ➔ TreeSearch, TreeInsert, TreeDelete, …
 ➔ Worst case running time: \(O(h) \)
 ➔ Worst case height \(h \): \(O(n) \)

Balanced BST: \(h \) is \(O(\log n) \)
Balanced BSTs

AVL tree, Red-Black tree, 2-3 tree, AA tree, Scapegoat tree, Splay tree, Treap, ...
AVL tree

First self-balancing BST to be invented.
An extra attribute to each node in a BST -- balance factor

$h_R(x)$: height of x’s right subtree
$h_L(x)$: height of x’s left subtree

$BF(x) = h_R(x) - h_L(x)$

$BF(x) = 0$: x is balanced
$BF(x) = 1$: x is right-heavy
$BF(x) = -1$: x is left-heavy

above 3 cases are considered as “good”

$BF(x) > 1$ or < -1: x is imbalanced (not good)
heights of some special trees

Note: height is measured by the number of edges.
AVL tree: definition

An AVL tree is a BST in which every node is balanced, right-heavy or left-heavy.
i.e., the BF of every node must be 0, 1 or -1.
It can be **proven** that the height of an AVL tree with \(n \) nodes satisfies

\[
h \leq 1.44 \log_2(n + 2)
\]

i.e., \(h \) is in \(O(\log n) \)

WHY?
Operations on AVL trees

AVL-Search(root, k)
AVL-Insert(root, x)
AVL-Delete(root, x)
Things to worry about

➔ Before the operation, the BST is a valid AVL tree (precondition)

➔ After the operation, the BST must still be a valid AVL tree (so re-balancing may be needed)

➔ The balance factor attributes of some nodes need to be updated.
AVL-Search(root, k)

Search for key k in the AVL tree rooted at root

First, do a TreeSearch(root, k) as in BST.

Then, nothing else!
(No worry about balance being broken because we didn’t change the tree)
AVL-Insert(root, x)

First, do a TreelInsert(root, x) as in BST

Insert 70
everything is fine

Insert 28
NOT fine, not an AVL tree anymore, need rebalancing.
Basic move for rebalancing -- Rotation

Objective:
1. change heights of a node’s left and right subtrees
2. maintain the BST property

BST order to be maintained: ABCDE

- Height of left subtree decreased
- Height of right subtree increased
- BST order maintained
Similarly, left rotation

BST order to be maintained: ABCDE

- height of left subtree **increased**
- height of right subtree **decreased**
- BST order **maintained**
Now, we are ready to use rotations to rebalance an AVL tree after insertion
When do we need to rebalance?

Case 1: the insertion increases the height of a node’s right subtree, and that node was already right heavy.

Case 2: the insertion increases the height of a node’s left subtree, and that node was already left heavy.

A is the lowest ancestor of the new node who became imbalanced.
Let’s deal with Case 1

In order to rebalance, we need to increase the height of the left subtree and decrease the height of the right subtree, so...

We want to do a left rotation around A, but in order to do that, we need a more refined picture.
Case 1, more refined picture

Why C and D must both have height h, why cannot one of them be h-1?

HINT: A is the **lowest** ancestor that became imbalanced.
Case 1.1, let’s left-rotate around A!

Another important thing to note:
After the rotation, the height of the whole subtree in the picture does not change (h+2) before and after the insertion, i.e., everything happens in this picture stays in this picture, nobody above would notice.
Case 1.2, let’s left-rotate around A!

Still not balanced.

To deal with this, we need an even more refined picture.
Case 1.2, an even more refined picture

These two cases are actually not that different.
Case 1.2.1, ready to rotate

Now the right side looks “heavy” enough for a left rotation around A.
Case 1.2.1, second rotation

Same note as before: After the rotations, the **height** of the whole subtree in the picture **does not change** \((h+2)\) **before and after** the insertion, i.e., everything happens in this picture stays in this picture, nobody above would notice.
What did we just do for Case 1.2.1?

We did a **double rotation**, first a right and then a left rotation.

For **Case 1.2.2**, we do exactly the same thing, and get this...

Practice for home
AVL-Insert -- outline

➔ First, insert like a BST
➔ If still balanced, return.
➔ Else: (need re-balancing)
 ◆ Case 1:
 ● Case 1.1: single left rotation
 ● Case 1.2: double right-left rotation
 ◆ Case 2: (symmetric to Case 1)
 ● Case 2.1: single right rotation
 ● Case 2.2: double left-right rotation

Something missing?
Things to worry about

➔ Before the operation, the BST is a valid AVL tree (precondition)

➔ After the operation, the BST must still be a valid AVL tree

➔ The balance factor attributes of some nodes need to be updated.
Updating balance factors

Just update accordingly as rotations happen.

And nobody outside the picture needs to be updated, because the height is the same as before and nobody above would notice a difference. “Everything happens in Vegas stays in Vegas”.

So, only need O(1) time for updating BFs.

Note: this nice property is only for Insert. Delete will be different.
Running time of AVL-Insert

Just Tree-Insert plus some constant time for rotations and BF updating.

Overall, worst case $O(h)$

since it’s balanced, $O(\log n)$
Recap

➔ AVL tree: a self-balancing BST
 ◆ each node keeps a balance factor

➔ Operations on AVL tree
 ◆ AVL-Search: same as BST
 ◆ AVL-Insert:
 ● First do a BST TreeInsert
 ● Then rebalance if necessary
 ○ Single rotations, double rotations.
 ◆ AVL-Delete
AVL-Delete(root, x)

Delete node x from the AVL tree rooted at root
AVL-Delete: General idea

➔ First do a normal BST **Tree-Delete**

➔ The deletion may cause changes of subtree heights, and may cause certain nodes to lose **AVL-ness** (BF(x) is 0, 1 or -1)

➔ Then **rebalance** by single or double **rotations**, similar to what we did for AVL-Insert.

➔ Then **update BF**s of affected nodes.
Cases that need rebalancing.

Case 1: the deletion reduces the height of a node’s right subtree, and that node was left heavy.

Case 2: the insertion increases the height of a node’s left subtree, and that node was already left heavy.

Note: node A is the lowest ancestor that becomes imbalanced.

Note 2: height of the “whole subtree” rooted at A before deletion is $h + 3$.

Just need to handle Case 1, Case 2 is symmetric.
Case 1.1 and Case 1.2 in a refined picture

Case 1.1 the easy one

Case 1.2 the harder one

A single right rotation around A would fix it

Need double left-right rotations

This one can be h or h+1, doesn’t matter
Case 1.1: single right rotation

Note: after deletion, the height of the whole subtree could be $h+3$ (same as before) or $h+2$ (different from before) depending on whether the yellow box exists or not.

Balanced!
Case 2: first refine the picture

Only one of the two yellow boxes needs to exist.
Case 2: double left-right rotation

Note: In this case, the height of the whole subtree after deletion must be $h+2$ (guaranteed to be different from before).

No Vegas any more!

Beautifully balanced!
Updating the balance factors

Since the **height** of the “whole subtree” may change, then the **BFs** of some nodes outside the “whole subtree” need to be updated.

Which nodes?

All **ancestors** of the subtree

How many of them?

$O(\log n)$

Updating BFs take $O(\log n)$ time.
For home thinking

In an AVL tree, each node does NOT really store the \textit{height} attribute. They only store the \textit{balance factor}.

But a node can always \textbf{infer} the change of height from the change of BF of its child.

For example, “After an insertion, my left child’s BF changed from 0 to +1, then my left subtree’s height must have increase by 1. I gotta update my BF...”

\textbf{Think it through by enumerating all possible cases.}
Alternative implementation of AVL tree

Instead of storing the balance factor at each node x, we can also store the height of the subtree rooted at x. All information about the balance factor can be calculated from the height information.
AVL-Deletion: Outline

➔ First, Delete like a BST
➔ If still balanced, return.
➔ Else: (need re-balancing)
 ◆ Case 1:
 ● Case 1.1: single right rotation
 ● Case 1.2: double left-right rotation
 ◆ Case 2: (symmetric to Case 1)
 ● Case 2.1: single left rotation
 ● Case 2.2: double right-left rotation
 ◆ Update balance factor as rotation happens, and propagates up to root.
AVL-Delete: Running time

→ BST Tree-Delete: $O(\log n)$
→ Update balance factors: $O(\log n)$
→ Rotations: $O(\log n)$ (not $O(1)$ because more rotations at higher level may be caused as a result of updating ancestors’ balance factors)

→ Overall: $O(\log n)$ worst-case
AVL-SEARCH, AVL-INSERT, AVL-DELETE

AVL-DONE!
Augmenting Data Structures

This is not about a particular dish, this is about **how to cook**.
Reflect on AVL tree

→ We “augmented” BST by storing additional information (the balance factor) at each node.

→ The additional information enabled us to do additional cool things with the BST (keep the tree balanced).

→ And we can maintain this additional information efficiently in modifying operations (within O(log n) time, without affecting the running time of Insert or Delete).
Augmentation is an important methodology for data structure and algorithm design.

It’s widely used in practice, because

➔ On one hand, textbook data structures rarely satisfy what’s needed for solving real interesting problems.

➔ One the other hand, people also rarely need to invent something completely new.

➔ Augmenting known data structures to serve specific needs is the sensible middle-ground.
Augmentation: General Procedure

1. Choose data structure to augment

2. Determine additional information

3. Check additional information can be maintained, during each original operation, hopefully efficiently.

4. Implement new operations.
Example: Ordered Set

An ADT with the following operations

- \textbf{Search}(S, k) \text{ in } O(\log n)
- \textbf{Insert}(S, x) \text{ in } O(\log n)
- \textbf{Delete}(S, x) \text{ in } O(\log n)

- \textbf{Rank}(k): \text{ return the rank of key } k
- \textbf{Select}(r): \text{ return the key with rank } r

E.g., \(S = \{ 27, 56, 30, 3, 15 \} \)
\textbf{Rank}(15) = 2 \text{ because 15 is the second smallest key}
\textbf{Select}(4) = 30 \text{ because 30 is the 4th smallest key}

AVL tree would work

Augmentation needed
Ideas will be explored in this week’s tutorial

➔ Use unmodified AVL tree

➔ AVL tree with additional `node.rank` attribute for each node

➔ AVL tree with additional `node.size` (size of subtree) attribute for each node

Only one of these works really well, go to the tutorial and find out why!
Which one is better?

faster Rank(k) ?
easier to maintain?
A useful theorem about AVL tree (or red-black tree) augmentation

Theorem 14.1 of Textbook
If the additional information of a node only depends on the information stored in its children and itself,...

then this information can be maintained efficiently during Insert() and Delete() without affecting their $O(\log n)$ worst-case runtime.
Next week

➔ Hash tables