CSC263 Week 3

Announcements

Problem Set 2 is out today!

Due Tuesday (Oct 13)

More challenging so start early!

NOT EVERY GROUP PROJECT

IN SCHOOL YOU HAVE EVER DONE

WeKnowMemes

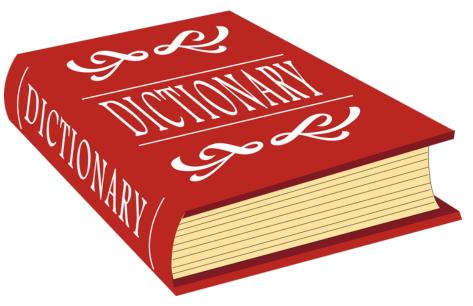
This week

- → ADT: Dictionary
- → Data structure:
 - Binary search tree (BST)
 - Balanced BST AVL tree

Dictionary

What's stored:

→words



Supported operations →Search for a word →Insert a word →Delete a word

Dictionary, more precisely

What's stored

→ A set S where each node x has a field x.key (assumption: keys are distinct, unless o.w. specified)

Supported operations

- → Search(S, k): return x in S, s.t., x.key = k
 - ♦ return NIL if no such x
- → Insert(S, x): insert node x into S
 - ♦ if already exists node y with same key , replace y with x
- \rightarrow Delete(S, x): delete a given **node** x from S

A thing to note: **k** is a key, **x** is a node.

More on Delete

Why Delete(S, x) instead of Delete(S, k)?

Delete(S, **k**) can be implemented by: 1.x = Search(S, k) 2.Delete(S, x)

We want separate different operations, i.e., each operation focuses on only one job.

Implement a Dictionary using simple data structures

40 -> 33 -> 18 -> 65 -> 24 -> 25 Unsorted (doubly) linked list

→Search(S, k)

- ♦O(n) worst case
- •go through the list to find the key

→Insert(S, x)

- ♦O(n) worst case
- need to check if x.key is already in the list

→Delete(S, x)

- ♦O(1) worst case
- ◆Just delete, O(1) in a doubly linked list

Sorted array [18, 24, 25, 33, 40, 65]

→Search(S, k)

O(log n) worst case

binary search!

→Insert(S, x)

- O(n) worst case
- insert at front, everything has to shift to back

→Delete(S, x)

- ♦O(n) worst case
- Delete at front, everything has to shift to front

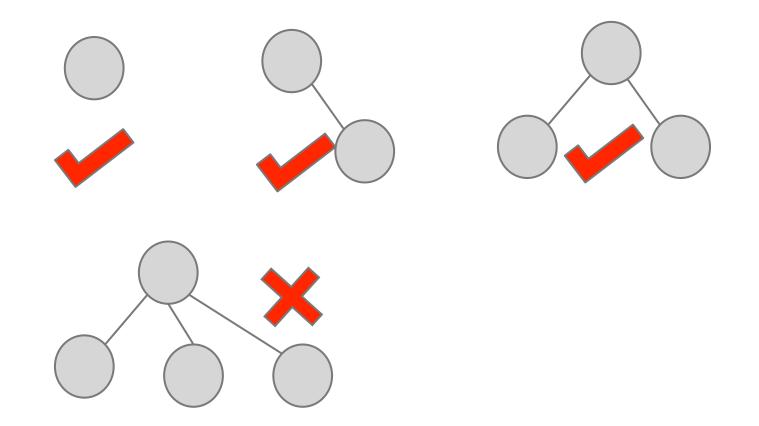
We can do better using smarter data structures, of course

	unsorted list	sorted array	BST	Balanced BST
Search(S, k)	O(n)	O(log n)	O(n)	O(log n)
Insert(S, x)	O(n)	O(n)	O(n)	O(log n)
Delete(S, x)	O(1)	O(n)	O(n)	O(log n)

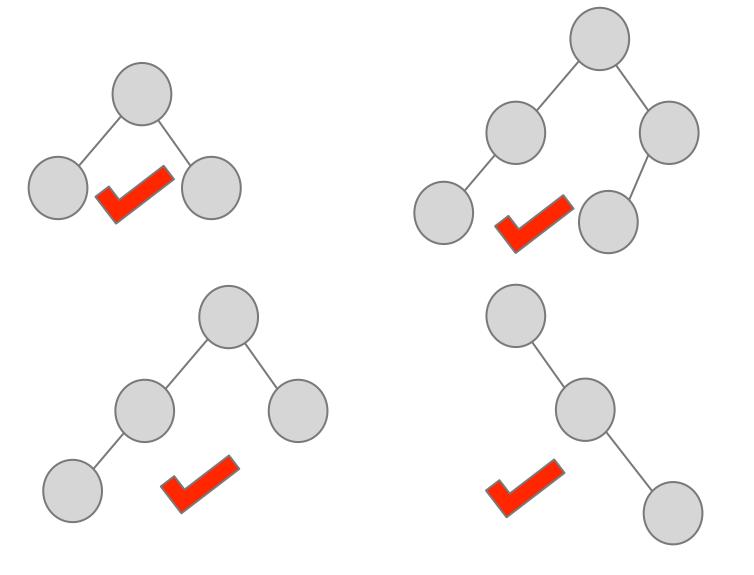
Binary Search Tree

It's a binary tree, like binary heap

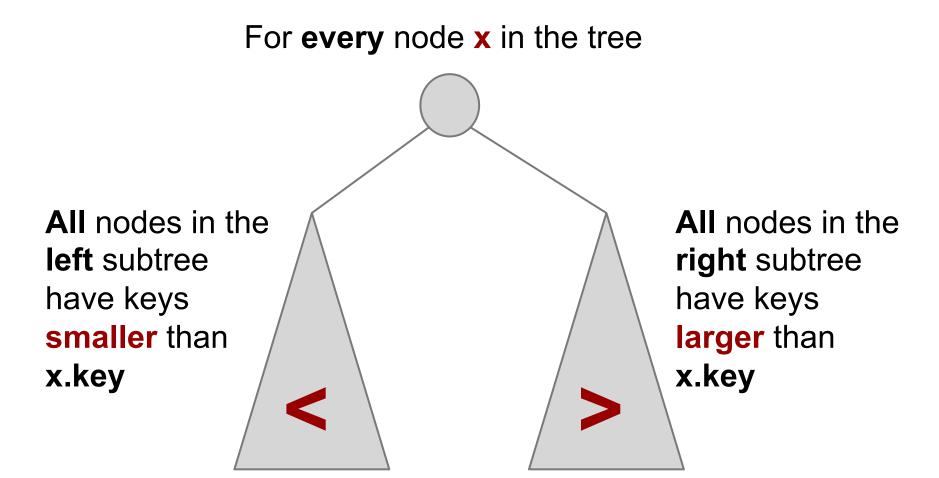
Each node has at most 2 children



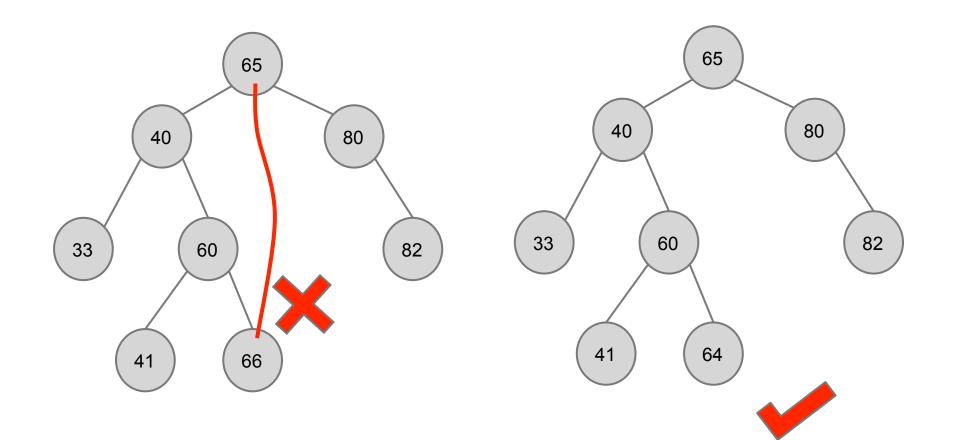
need **NOT** be nearly-complete, unlike binary heap



It has the **BST property**



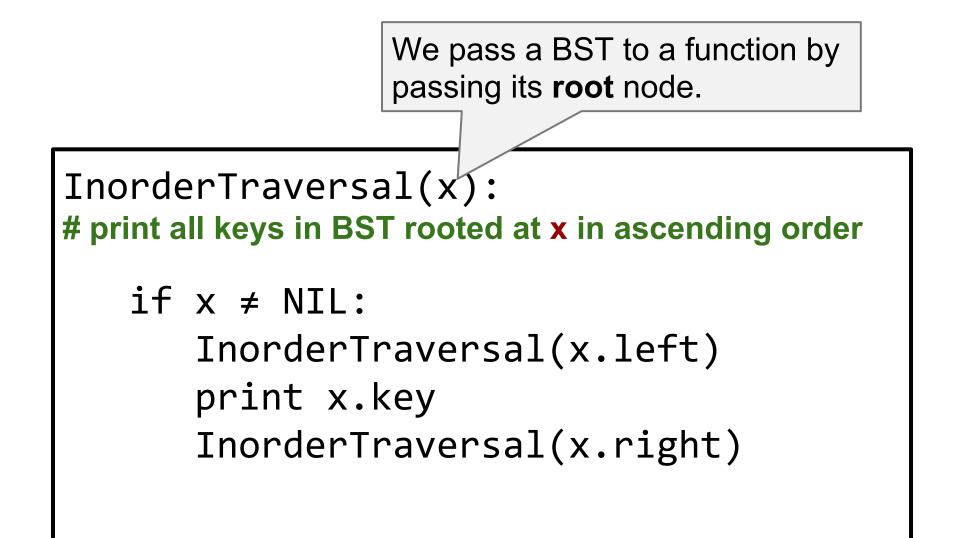
BST or NOT?



Because of BST property, we can say that the keys in a BST are **sorted**.

CSC148 Quiz: How to obtain a sorted list from a BST?

Perform an inorder traversal.



Worst case running time of InorderTraversal: **O(n)**, because visit each node exactly once.

Operations on a BST

First, information at each node x

- →x.key: the key
- →x.left: the left child (node)
- \rightarrow x.right: the right child (node)
- →x.p: the parent (node)

Operations on a BST

read-only operations

- →TreeSearch(root, k)
- →TreeMinimum(x) / TreeMaximum(x)
- →Successor(x) / Predecessor(x)

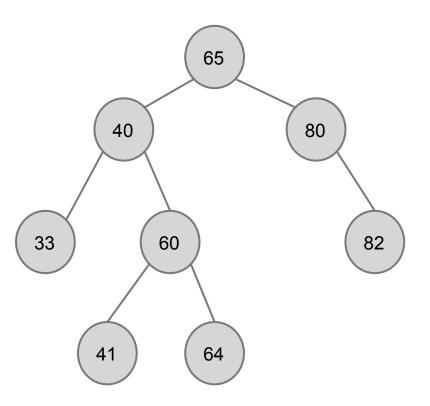
modifying operations
→TreeInsert(root, x)
→TreeDelete(root, x)

TreeSearch(root, k)

Search the BST rooted at root, return the node with key k; return NIL if not exist.

TreeSearch(root, k)

- → start from root
- → if k is smaller than the key of the current node, go left
- → if k is larger than the key of the current node, go right
- → if equal, **found**
- → if going to NIL, not found



TreeSearch(root, k): Pseudo-code

```
TreeSearch(root, k):

if root = NIL or k = root.key:
   return root
if k < root.key:
   return TreeSearch(root.left, k)
else:
   return TreeSearch(root.right, k)</pre>
```

Worst case running time:

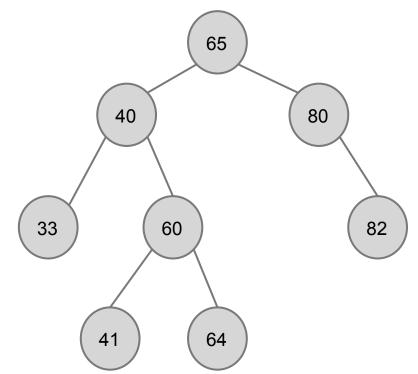
O(h), height of tree, going at most from root to leaf

TreeMinimum(x)

Return the node with the minimum key of the tree rooted at x

TreeMinimum(x)

- → start from root
- → keep going to the left, until cannot go anymore
- \rightarrow return that final node



TreeMinimum(x): pseudo-code

```
TreeMinimum(x):
```

```
while x.left ≠ NIL:
x ← x.left
return x
```

Worst case running time:

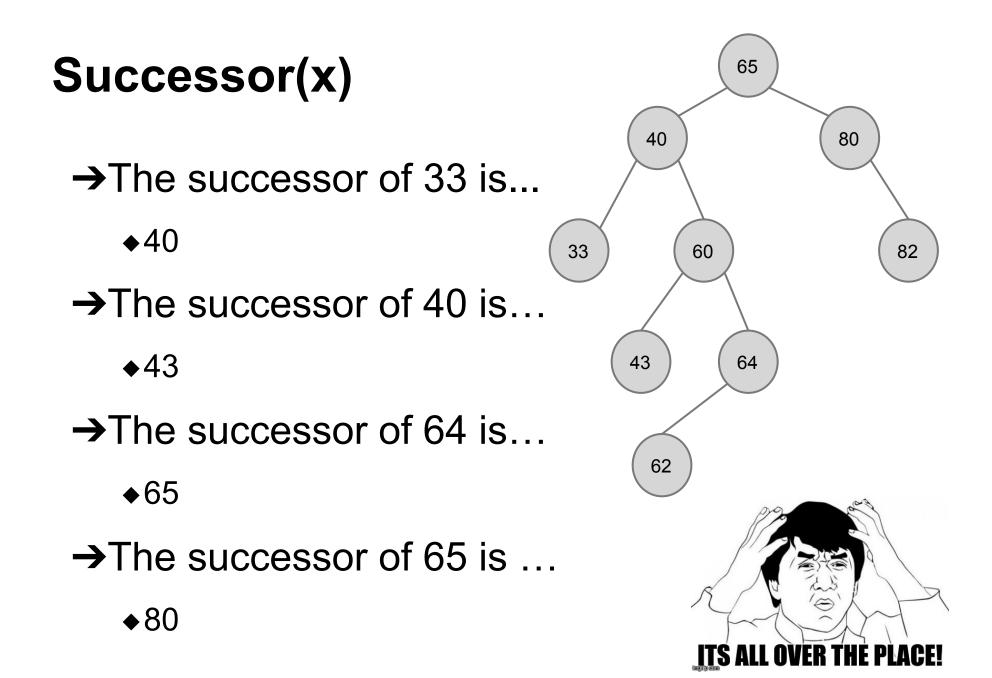
O(h), height of tree, going at most from root to leaf

TreeMaximum(x) is exactly the same, except that it goes to the right instead of to the left.

Successor(x)

Find the node which is the successor of x in the sorted list obtained by inorder traversal

or, node with the smallest key larger than x



Successor(x): Organize into two cases

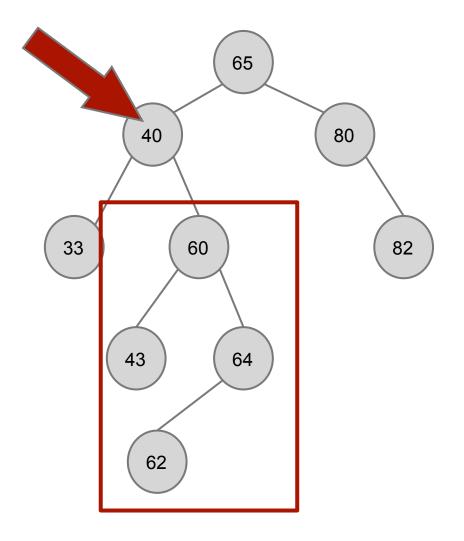
 \rightarrow x has a right child

 \rightarrow x does not have a right child

x has a right child

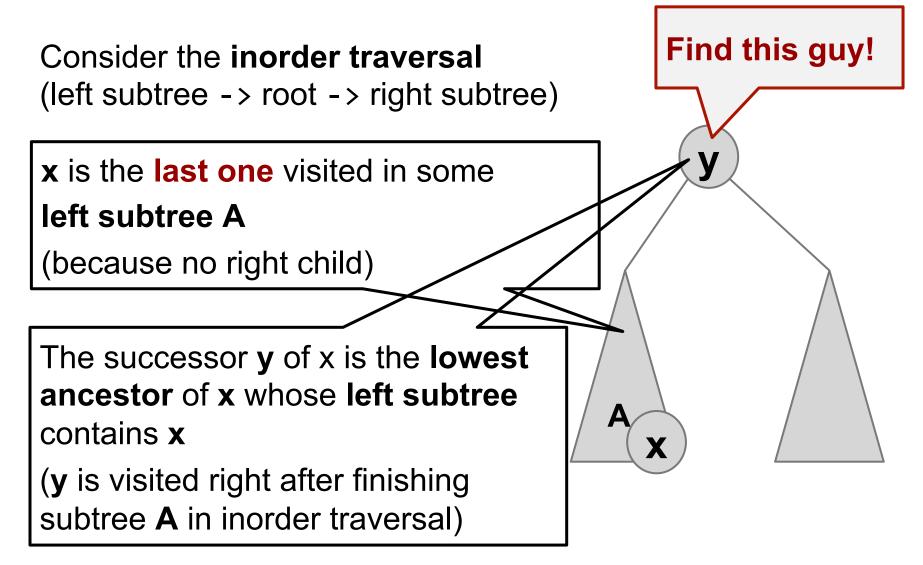
Successor(x) must be in x's **right subtree** (the nodes **right after x** in the inorder traversal)

It's the **minimum** of x's right subtree, i.e., TreeMinimum(x.right)

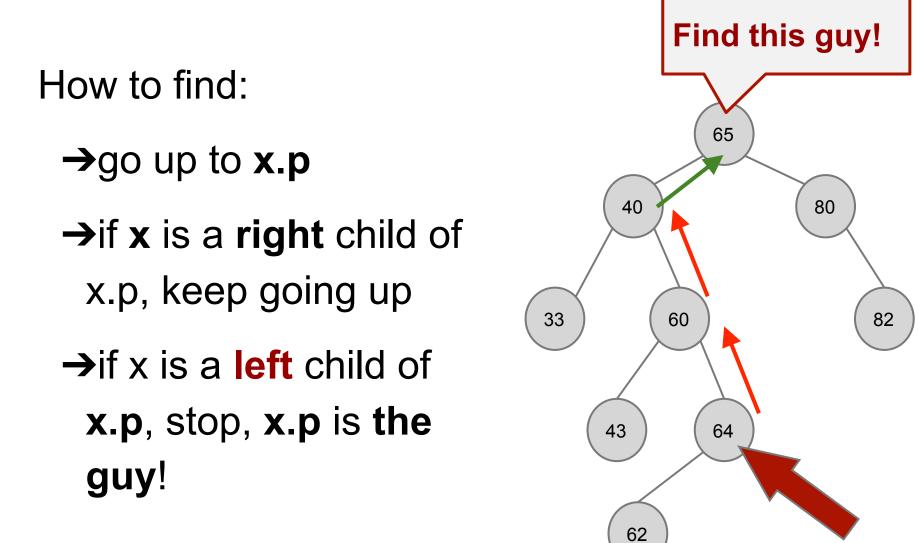


The first (smallest) node among what's right after x.

x does not have a right child



x does not have a right child



Summarize the two cases of Successor(x)

 \rightarrow If x has a right child

return TreeMinimum(x.right)

\rightarrow If x does not have a right child

- keep going up to x.p while x is a right child, stop when x is a left child, then return x.p
- if already gone up to the root and still not finding it, return NIL.

Successor(x): pseudo-code

```
Successor(x):
    if x.right ≠ NIL:
        return TreeMinimum(x.right)
    y ← x.p
    while y ≠ NIL and x = y.right: #x is right child
        x = y
        y = y.p # keep going up
    return y
```

Worst case running time **O(h)**, Case 1: TreeMin is O(log n); Case 2: at most leaf to root

Predecessor(x) works symmetrically the same way as Successor(x)

TreeInsert(root, x)

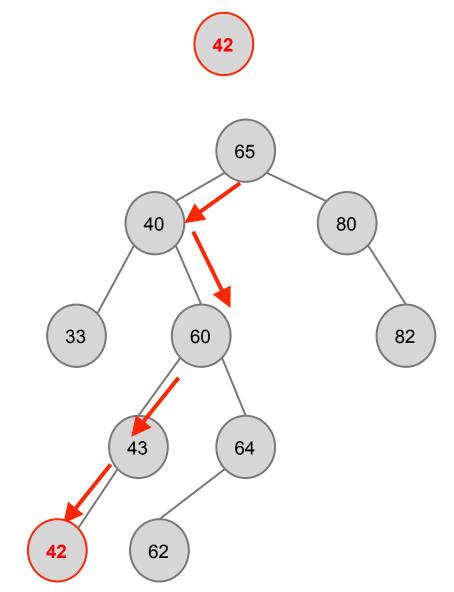
Insert node x into the BST rooted at root return the new root of the modified tree if exists y, s.t. y.key = x.key, replace y with x

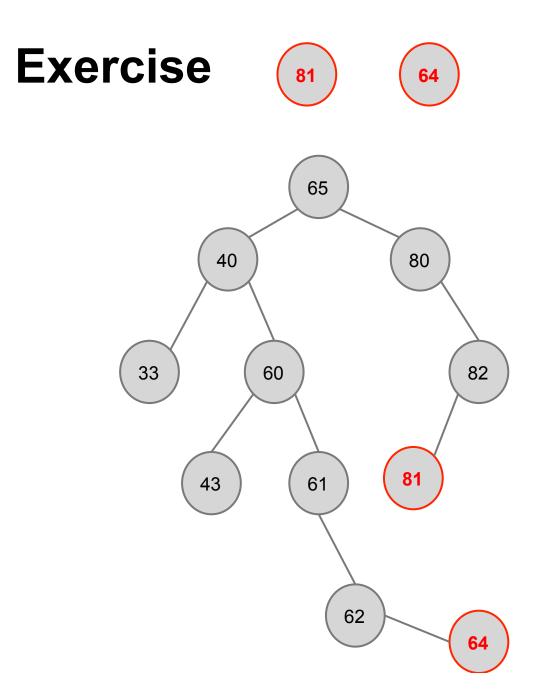
TreeInsert(root, x)

Go down, left and right like what we do in TreeSearch

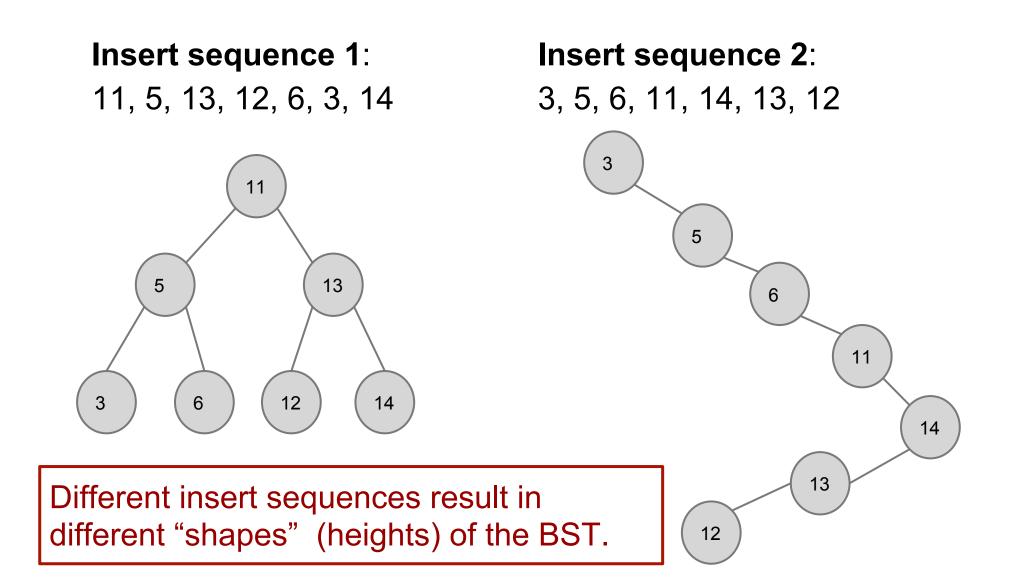
When next position is NIL, insert there

If find equal key, replace the node





Ex 2: Insert sequence into an empty tree



TreeInsert(root, x): Pseudo-code

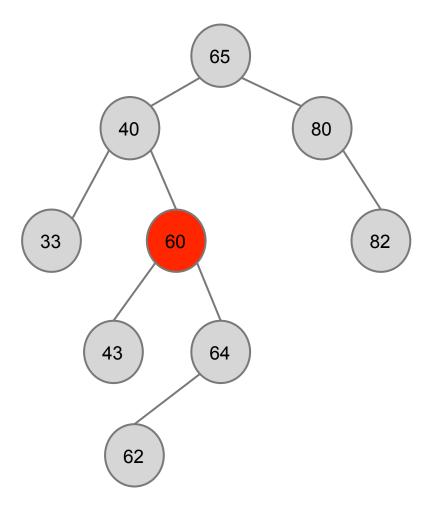
```
Worst case
TreeInsert(root, x):
# insert and return the new root
                                    running time:
   if root = NIL:
                                     O(h)
      root \leftarrow x
   elif x.key < root.key:</pre>
      root.left ← TreeInsert(root.left, x)
   elif x.key > root.key:
      root.right ← TreeInsert(root.right, x)
   else # x.key = root.key:
      replace root with x # update x.left, x.right
   return root
```


TreeDelete(root, x)

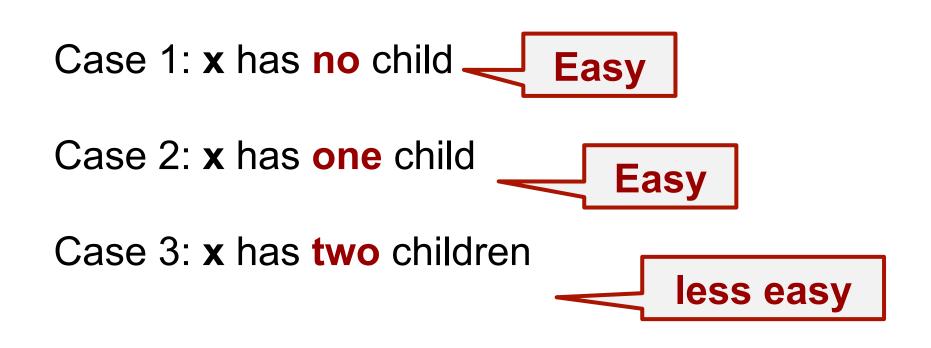
Delete node x from BST rooted at root while maintaining BST property, return the new root of the modified tree

What's tricky about deletion?

Tree might be disconnected after deleting a node, need to connect them back together, while maintaining the BST property.

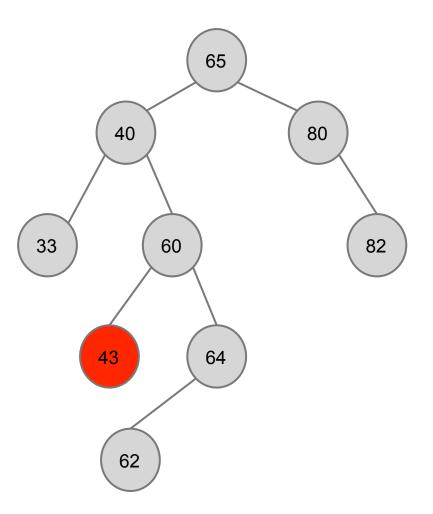


Delete(root, x): Organize into 3 cases



Case 1: x has no child

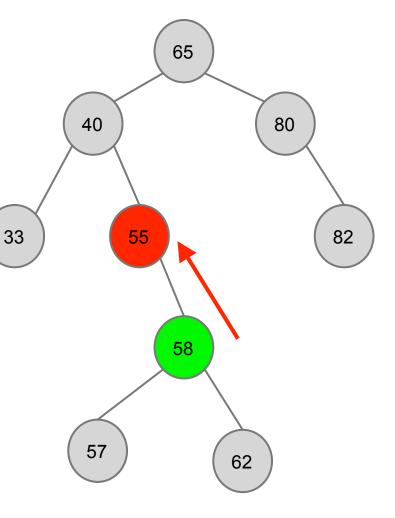
Just delete it, nothing else need to be changed.



Case 2: x has one child

First delete that node, which makes an **open spot**.

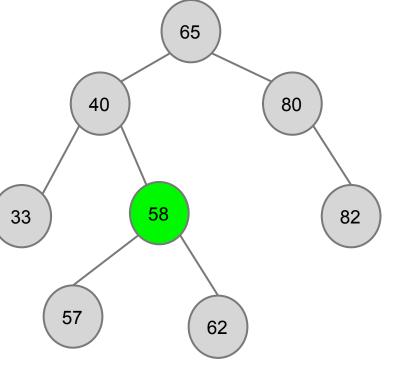
Then **promote x's only** (**child** to the spot, together with the only child's subtree.



Case 2: x has one child

First delete that node, which makes an **open spot**.

Then **promote x's only** (**child** to the spot, together with the only child's subtree.



Case 3: x has two children

Delete **x**, which makes an open spot.

A node y should fill this spot, such that L < y < R, Who should be y?

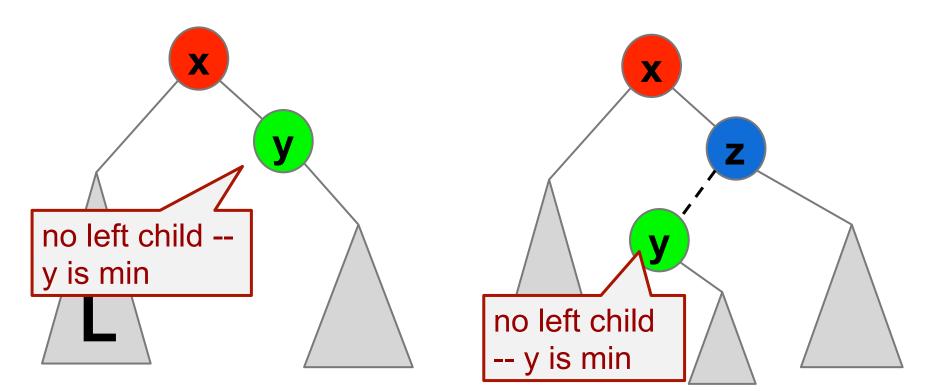
y ← the minimum of R, i.e., Successor(x) L < y because y is in R, y < R because it's minimum

X

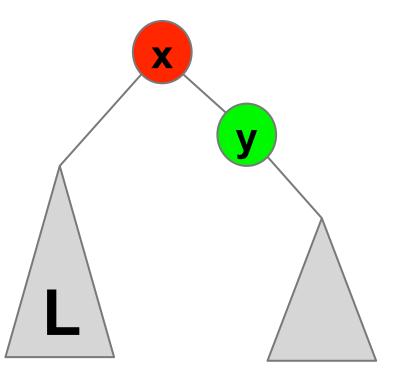
R

Further divide into two cases

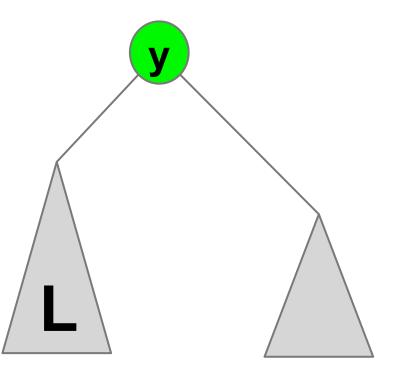
Case 3.1: y happens to be the right child of x Case 3.2: y is not the right child of x



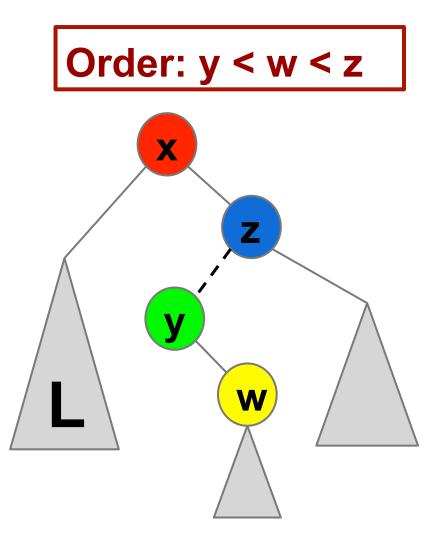
Easy, just **promote y** to **x**'s spot

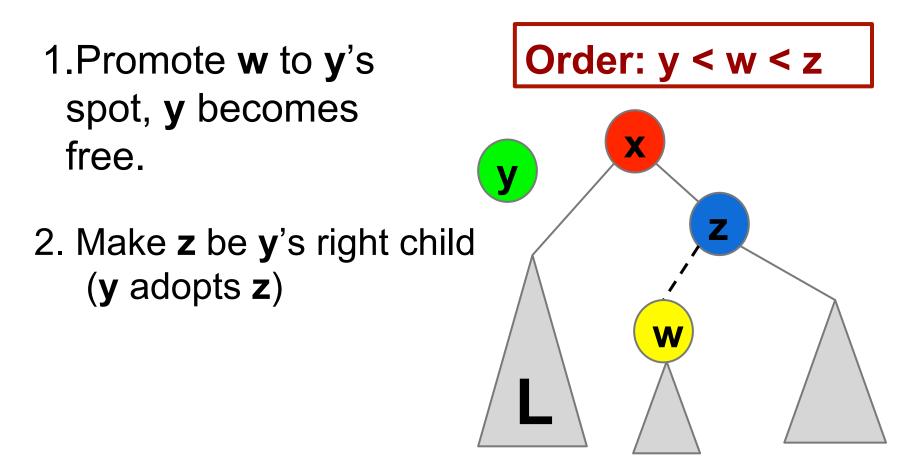


Easy, just **promote y** to **x**'s spot

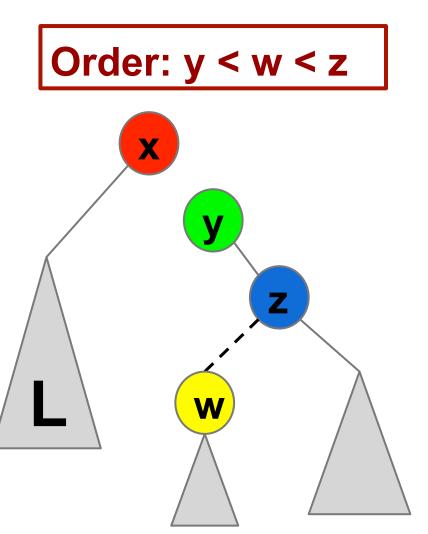


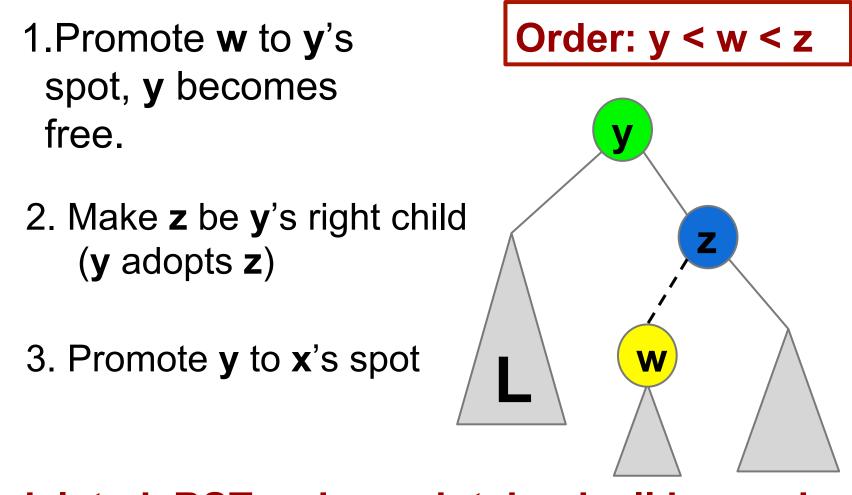
1.Promote **w** to **y**'s spot, **y** becomes free.





- 1.Promote **w** to **y**'s spot, **y** becomes free.
- Make z be y's right child (y adopts z)
- 3. Promote **y** to **x**'s spot





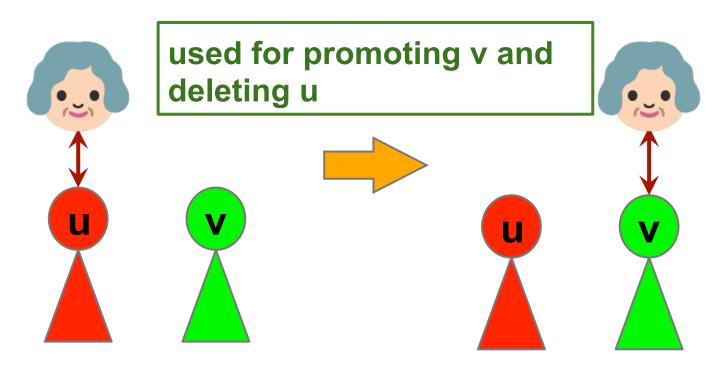
x deleted, BST order maintained, all is good.

Summarize TreeDelete(root, x)

- →Case 1: x has no child, just delete
- →Case 2: x has one child, promote
- →Case 3: x has two children, y = successor(x)
 - Case 3.1: y is x's right child, promote
 - ◆Case 3.2: y is NOT x's right child
 - promote y's right child
 - y adopt x's right child
 - promote y

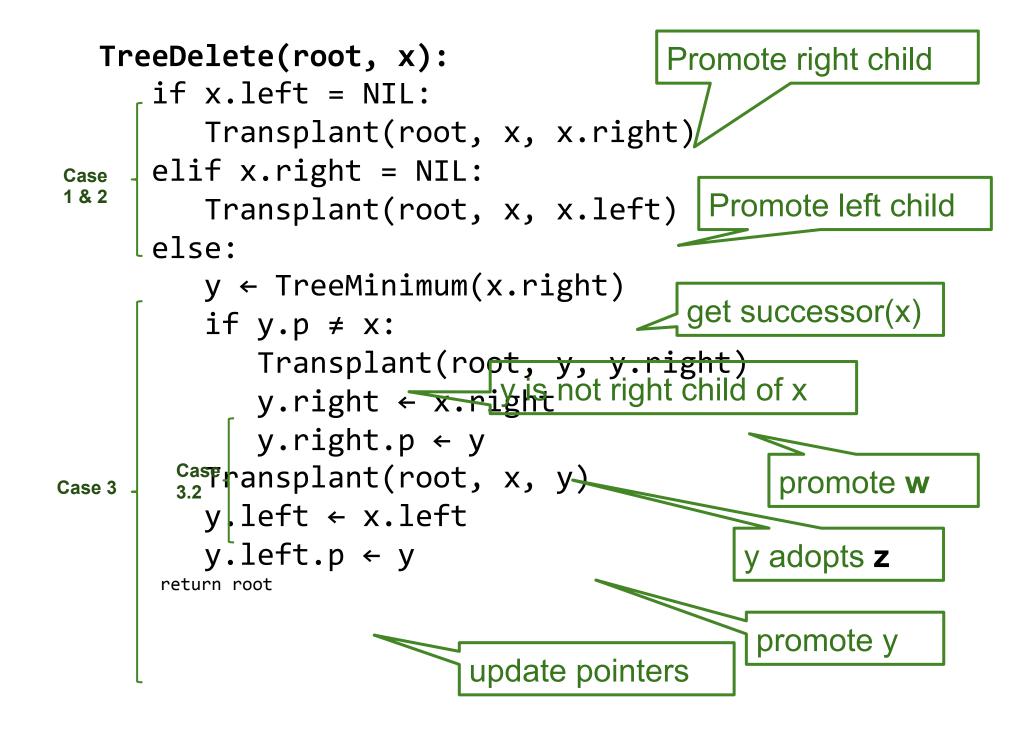
TreeDelete(root, x): pseudo-code

Textbook Chapter 12.3 Key: Understand Transplant(root, u, v) # v takes away u's parent



Transplant(root, u, v): # v takes away u's parent if u.p = NIL: #ifuisroot root \leftarrow V # v replaces u as root elif u = u.p.left:#if u is mom's left child u.p.left \leftarrow v #mom accepts v as left child else: # if u is mom's right child u.p.right ← v #mom accept v as right child if $v \neq NIL$: $V.p \leftarrow U.p \# v \text{ accepts new mom}$

u can cry now...

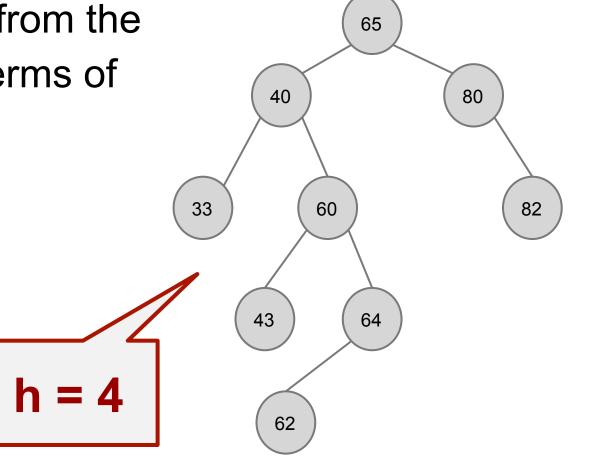


TreeDelete(root, x) worst case running time O(h) (time spent on TreeMinimum)

Now, about that h (height of tree)

Definition: height of a tree

The longest path from the root to a leaf, in terms of number of edges.

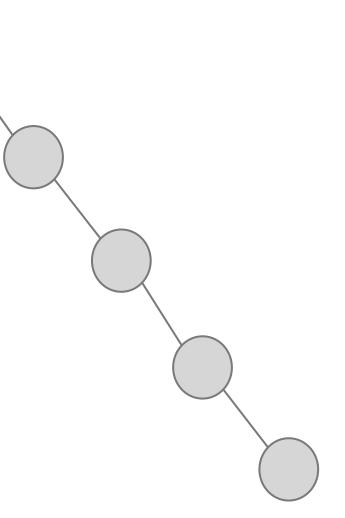


Consider a BST with **n** nodes, what's the highest it can be?

h = n-1

i.e, in worst case $h \in \Theta(n)$

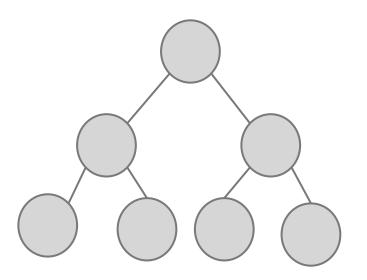
so all the operations we learned with **O(h)** runtime, they are **O(n)** in worst case



So, what's the best case for h?

In best case, $h \in \Theta(\log n)$

A **Balanced BST** guarantees to have height in $\Theta(\log n)$



Therefore, all the O(h) become O(log n)

Next week

A Balanced BST called an AVL tree