## CSC263 Week 3

## Announcements

Problem Set 2 is out today!
Due Tuesday (Oct 13)
More challenging so start early!


## NOT EIEBY GBOUP PROJEGT



## This week

$\rightarrow$ ADT: Dictionary
$\rightarrow$ Data structure:

- Binary search tree (BST)
- Balanced BST - AVL tree


## Dictionary

What's stored:
$\rightarrow$ words

Supported operations
$\rightarrow$ Search for a word
$\rightarrow$ Insert a word
$\rightarrow$ Delete a word

## Dictionary, more precisely

What's stored
$\rightarrow$ A set $\mathbf{S}$ where each node $\mathbf{x}$ has a field $\mathbf{x}$.key
(assumption: keys are distinct, unless o.w. specified)
Supported operations
$\rightarrow$ Search(S, k): return $\mathbf{x}$ in S, s.t., $\mathbf{x}$. key $=k$

- return NIL if no such $x$
$\rightarrow$ Insert(S, $\mathbf{x}$ ): insert node $\mathbf{x}$ into $\mathbf{S}$
$\bullet$ if already exists node $\mathbf{y}$ with same key, replace $\mathbf{y}$ with $\mathbf{x}$
$\rightarrow$ Delete(S, $\mathbf{x}$ ): delete a given node $\mathbf{x}$ from $\mathbf{S}$

A thing to note: $k$ is a key, $x$ is a node.

## More on Delete

Why Delete(S, $\mathbf{x}$ ) instead of Delete(S, k)?
Delete(S, k) can be implemented by:

1. $x=\operatorname{Search}(S, k)$
2.Delete(S, x)

We want separate different operations, i.e., each operation focuses on only one job.

## Implement a Dictionary using simple data structures

## $40->33->18->65->24->25$ <br> Unsorted (doubly) linked list

$\rightarrow$ Search(S, k)

- O(n) worst case
$\bullet$ go through the list to find the key
$\rightarrow$ Insert(S, x)
- O(n) worst case
$\bullet$ need to check if $\mathbf{x}$. .key is already in the list
$\rightarrow$ Delete(S, x)
-O(1) worst case
- Just delete, $O(1)$ in a doubly linked list


## Sorted array [ $18,24,25,33,40,65]$

$\rightarrow$ Search(S, k)

- O(log n) worst case
- binary search!
$\rightarrow$ Insert(S, x)
- O(n) worst case
- insert at front, everything has to shift to back
$\rightarrow$ Delete(S, x)
- O(n) worst case
- Delete at front, everything has to shift to front


## We can do better using smarter data structures, of course

|  | unsorted <br> list | sorted array | BST | Balanced <br> BST |
| :--- | :---: | :---: | :---: | :---: |
| Search(S, k) | $O(n)$ | $O(\log n)$ | $O(n)$ | $O(\log n)$ |
| Insert(S, $\mathbf{x})$ | $O(n)$ | $O(n)$ | $O(n)$ | $O(\log n)$ |
| Delete(S, $x)$ | $O(1)$ | $O(n)$ | $O(n)$ | $O(\log n)$ |

## Binary Search Tree

It's a binary tree, like binary heap
Each node has at most 2 children


need NOT be nearly-complete, unlike binary heap


## It has the BST property

For every node $\mathbf{x}$ in the tree

All nodes in the left subtree have keys smaller than x.key


## BST or NOT?



# Because of BST property, we can say that the keys in a BST are sorted. 

CSC148 Quiz: How to obtain a sorted list from a BST?

Perform an inorder traversal.

## We pass a BST to a function by passing its root node.

## InorderTraversal(x):

\# print all keys in BST rooted at $\mathbf{x}$ in ascending order

$$
\begin{aligned}
\text { if } & x \neq \text { NIL: } \\
& \text { InorderTraversal(x.left) } \\
& \text { print x.key } \\
& \text { InorderTraversal(x.right) }
\end{aligned}
$$

Worst case running time of InorderTraversal:
O(n), because visit each node exactly once.

## Operations on a BST

# First, information at each node $\mathbf{x}$ 

$\rightarrow x$.key: the key
$\rightarrow$ x.left: the left child (node)
$\rightarrow$ x.right: the right child (node)
$\rightarrow$ x.p: the parent (node)

## Operations on a BST

read-only operations
$\rightarrow$ TreeSearch(root, k)
$\rightarrow$ TreeMinimum $(x)$ / TreeMaximum $(x)$
$\rightarrow$ Successor(x) / Predecessor(x)
modifying operations
$\rightarrow$ Treelnsert(root, x)
$\rightarrow$ TreeDelete(root, $x$ )

## TreeSearch(root, k)

Search the BST rooted at root, return the node with key $k$; return NIL if not exist.

## TreeSearch(root, k)

$\rightarrow$ start from root
$\rightarrow$ if $\mathbf{k}$ is smaller than the key of the current node, go left
$\rightarrow$ if $\mathbf{k}$ is larger than the key of the current node, go right
$\rightarrow$ if equal, found
$\rightarrow$ if going to NIL, not found


## TreeSearch(root, k): Pseudo-code

```
TreeSearch(root, k):
if root = NIL or k = root.key:
    return root
if k < root.key:
    return TreeSearch(root.left, k)
else:
    return TreeSearch(root.right, k)
```

Worst case running time:
O(h), height of tree, going at most from root to leaf

## TreeMinimum(x)

Return the node with the minimum key of the tree rooted at $x$

## TreeMinimum(x)

$\rightarrow$ start from root
$\rightarrow$ keep going to the left, until cannot go anymore
$\rightarrow$ return that final node


## TreeMinimum(x): pseudo-code

```
TreeMinimum(x):
while x.left # NIL:
    x *x.left
return x
```

Worst case running time:
O(h), height of tree, going at most from root to leaf
TreeMaximum( $\mathbf{x}$ ) is exactly the same, except that it goes to the right instead of to the left.

## Successor(x)

Find the node which is the successor of $x$ in the sorted list obtained by inorder traversal
or, node with the smallest key larger than $x$

## Successor(x)

$\rightarrow$ The successor of 33 is...
-40
$\rightarrow$ The successor of 40 is...
-43
$\rightarrow$ The successor of 64 is...
-65
$\rightarrow$ The successor of 65 is $\ldots$

- 80



# Successor(x): <br> Organize into two cases 

$\rightarrow x$ has a right child
$\rightarrow x$ does not have a right child

## x has a right child

Successor(x) must be in x 's right subtree (the nodes right after $\mathbf{x}$ in the inorder traversal)

It's the minimum of $x$ 's right subtree, i.e.,
TreeMinimum(x.right)


The first (smallest) node among what's right after x .

## $x$ does not have a right child

Consider the inorder traversal (left subtree -> root -> right subtree)

Find this guy!
$\mathbf{x}$ is the last one visited in some left subtree A
(because no right child)

The successor $y$ of $x$ is the lowest ancestor of $\mathbf{x}$ whose left subtree contains $\mathbf{x}$
( $\mathbf{y}$ is visited right after finishing subtree A in inorder traversal)

## $x$ does not have a right child

How to find:
$\rightarrow$ go up to $\mathbf{x . p}$
$\rightarrow$ if $\mathbf{x}$ is a right child of x.p, keep going up
$\rightarrow$ if $x$ is a left child of x.p, stop, x.p is the guy!


## Summarize the two cases of Successor(x)

$\rightarrow$ If $x$ has a right child

- return TreeMinimum(x.right)
$\rightarrow$ If $x$ does not have a right child
- keep going up to $x . p$ while $x$ is a right child, stop when $x$ is a left child, then return $x . p$
- if already gone up to the root and still not finding it, return NIL.


## Successor(x): pseudo-code

```
Successor(x):
    if x.right # NIL:
        return TreeMinimum(x.right)
    y}\leftarrowx.
    while y f NIL and x = y.right: #x is right child
        x = y
        y = y.p # keep going up
    return y
```

Worst case running time
$O(h)$, Case 1: TreeMin is $O(\log n)$; Case 2: at most leaf to root

Predecessor(x) works symmetrically the same way as Successor(x)

## TreeInsert(root, x)

Insert node x into the BST rooted at root return the new root of the modified tree if exists $y$, s.t. y.key $=x$.key, replace $y$ with $x$

## TreeInsert(root, x)



## Exercise



## Ex 2: Insert sequence into an empty tree

Insert sequence 1:
$11,5,13,12,6,3,14$


Different insert sequences result in different "shapes" (heights) of the BST.

Insert sequence 2:
$3,5,6,11,14,13,12$


## TreeInsert(root, x): Pseudo-code

TreeInsert(root, x):
\# insert and return the new root

$$
\text { if } \begin{aligned}
\text { root } & =\text { NIL: } \\
& \text { root }
\end{aligned}
$$

elif x.key < root.key: root.left $\leftarrow$ TreeInsert(root.left, x)
elif x.key > root.key:
root.right $\leftarrow$ TreeInsert(root.right, x)
else \# x.key = root.key:
replace root with x \# update x.left, x.right
return root

## Worst case running time: O(h)



## TreeDelete(root, x)

Delete node $x$ from BST rooted at root while maintaining BST property, return the new root of the modified tree

## What's tricky about deletion?

Tree might be disconnected after deleting a node, need to connect them back together, while maintaining the BST property.


## Delete(root, x): Organize into 3 cases

Case 1: $\mathbf{x}$ has no child $\_$Easy
Case 2: $\mathbf{x}$ has one child


Case 3: $\mathbf{x}$ has two children
less easy

## Case 1: $x$ has no child

Just delete it, nothing else need to be changed.


## Case 2: $x$ has one child

First delete that node, which makes an open spot.

Then promote x's only child to the spot, together with the only child's subtree.


## Case 2: $x$ has one child

First delete that node, which makes an open spot.

Then promote x's only child to the spot, together with the only child's subtree.


## Case 3: x has two children

Delete $\mathbf{x}$, which makes an open spot.

A node y should fill this spot, such that $L<y<R$, Who should be $y$ ?

$y \leftarrow$ the minimum of R, i.e., Successor(x)
$L<y$ because $y$ is in $R, y<R$ because it's minimum

## Further divide into two cases

Case 3.1:
y happens to be the right child of $\mathbf{x}$


## Case 3.1: $y$ is $x$ 's right child

Easy, just promote y to x's spot


## Case 3.1: $y$ is $x$ 's right child

Easy, just promote y to x's spot


## Case 3.2: $y$ is NOT x's right child

1.Promote $\mathbf{w}$ to $\mathbf{y}$ 's

Order: y < w < z spot, y becomes free.


## Case 3.2: $y$ is NOT x's right child

1.Promote w to y's

## Order: y < w < z

 spot, y becomes free.2. Make $z$ be $y$ 's right child ( $\mathbf{y}$ adopts $\mathbf{z}$ )


## Case 3.2: $y$ is NOT x's right child

1.Promote w to y's

Order: y < w < z spot, y becomes free.
2. Make $z$ be $y$ 's right child ( $\mathbf{y}$ adopts $\mathbf{z}$ )
3. Promote $\mathbf{y}$ to $\mathbf{x}$ 's spot


## Case 3.2: $y$ is NOT x's right child

1.Promote w to y's

Order: y < w < z spot, y becomes free.
2. Make $z$ be $y$ 's right child ( $\mathbf{y}$ adopts $\mathbf{z}$ )
3. Promote $\mathbf{y}$ to $\mathbf{x}$ 's spot

x deleted, BST order maintained, all is good.

## Summarize TreeDelete(root, x)

$\rightarrow$ Case 1: x has no child, just delete
$\rightarrow$ Case 2: $x$ has one child, promote
$\rightarrow$ Case 3: $x$ has two children, $y=\operatorname{successor}(x)$
-Case 3.1: y is x's right child, promote

- Case 3.2: y is NOT x's right child
- promote y's right child
- y adopt x's right child
- promote y


## TreeDelete(root, x): pseudo-code

Textbook Chapter 12.3
Key: Understand Transplant(root, u, v)
\# v takes away u's parent

used for promoting v and deleting u


## Transplant(root, u, v):

\# v takes away u's parent
if $u . p=$ NIL: \# if $u$ is root
root $\leftarrow \mathrm{v}$ \# v replaces u as root
elif $u=u . p . l e f t: \#$ if $u$ is mom's left child
u.p.left $\leftarrow \mathrm{v}$ \#mom accepts v as left child
else: \# if $u$ is mom's right child
u.p.right $\leftarrow \mathrm{v}$ \#mom accept v as right child if v $\neq$ NIL:
$\mathrm{v} . \mathrm{p} \leftarrow \mathrm{u} . \mathrm{p}$ \#vaccepts new mom \# u can cry now...

TreeDelete(root, x):
if x.left = NIL:
Transplant(root, x, x.right)
elif x.right = NIL:
Transplant(root, x, x.left) Promote left child else:
$y \leftarrow$ TreeMinimum(x.right)
if y.p $\neq x$ :
Transplant(root, ỳ y. right)
$y$.right $\leftarrow x$.nightignt right child of $x$
$y . r i g h t . p \leftarrow y$
Case 3

## Promote right child



CasFransplant (root, $x, y$ )
$y$.left $\leftarrow x . l e f t$
$y . l e f t . p \leftarrow y$
return root


TreeDelete(root, $x$ ) worst case running time
$\mathbf{O}(\mathrm{h})$ (time spent on TreeMinimum)

# Now, about that h (height of tree) 

## Definition: height of a tree

The longest path from the root to a leaf, in terms of number of edges.


## Consider a BST with n nodes, what's the highest it can be?

$h=n-1$
i.e, in worst case
$h \in \boldsymbol{O}(n)$
so all the operations we learned with $\mathbf{O}(\mathrm{h})$ runtime, they are $\mathbf{O}(\mathrm{n})$ in worst case

## So, what's the best case for h ?

In best case, $\mathrm{h} \in \Theta(\log \mathrm{n})$

A Balanced BST
guarantees to have height in $\Theta(\log n)$


Therefore, all the $\mathbf{O}(\mathrm{h})$ become $\mathbf{O}(\log \mathrm{n})$

## Next week

A Balanced BST called an AVL tree

