
CSC263 Week 2

If you feel rusty with probabilities, please read
the Appendix C of the textbook. It is only about
20 pages, and is highly relevant to what we
need for CSC263.

Appendix A and B are also worth reading.

Problem Set 1 is due this Tuesday!

 (Sept 29)

This week topic

➔ ADT: Priority Queue

➔ Data structure: Heap

An ADT we already know

Queue:
➔ a collection of

elements
➔ supported operations
◆  Enqueue(Q, x)
◆  Dequeue(Q)
◆  PeekFront(Q)

First in first serve

The new ADT

40 33 18 65 24 25

Oldest person first

Max-Priority Queue:
➔  a collection of elements with

priorities, i.e., each element x
has x.priority

➔  supported operations
◆  Insert(Q, x)

●  like enqueue(Q, x)
◆  ExtractMax(Q)

●  like dequeue(Q)
◆  Max(Q)

●  like PeekFront(Q)
◆  IncreasePriority(Q, x, k)

●  increase x.priority to k

Applications of Priority Queues

➔ Job scheduling in an operating system

◆ Processes have different priorities (Normal, high...)

➔ Bandwidth management in a router

◆ Delay sensitive traffic has higher priority

➔ Find minimum spanning tree of a graph

➔ etc.

Now, let’s implement
a (Max)-Priority Queue

Use an unsorted linked list

➔ INSERT(Q, x) # x is a node
◆ Just insert x at the head, which takes Θ(1)

➔ IncreasePriority(Q, x, k)
◆ Just change x.priority to k, which takes Θ(1)

➔ Max(Q)
◆ Have to go through the whole list, takes Θ(n)

➔ ExtractMax(Q)
◆ Go through the whole list to find x with max priority

(O(n)), then delete it (O(1) if doubly linked) and
return it, so overall Θ(n).

40 -> 33 -> 18 -> 65 -> 24 -> 25

Use a reversely sorted linked list

➔ Max(Q)
◆ Just return the head of the list, Θ(1)

➔ ExtractMax(Q)
◆ Just delete and return the head, Θ(1)

➔ INSERT(Q, x)
◆ Have to linearly search the correct location of

insertion which takes Θ(n) in worst case.
➔ IncreasePriority(Q, x, k)
◆ After increase, need to move element to a new

location in the list, takes Θ(n) in worst case.

65 -> 40 -> 33 -> 25 -> 24 -> 18

Θ(1) is fine, but Θ(n) is kind-of bad...

unsorted linked list
sorted linked list
...
Can we link these elements in a smarter
way, so that we never need to do Θ(n)?

Why does a sorted array also not work?

Yes, we can!

unsorted list sorted list

Insert(Q, x) Θ(1) Θ(n)

Max(Q) Θ(n) Θ(1)

ExtractMax(Q) Θ(n) Θ(1)

IncreasePriority
(Q, x, k) Θ(1) Θ(n)

Heap

Θ(log n)

Θ(1)

Θ(log n)

Θ(log n)

Worst case running times

Binary Max-Heap

A binary max-heap is a

nearly-complete binary

tree that has the max-

heap property.

65

25 40

18 24 33

It’s a binary tree

Each node has at most 2 children

It’s a nearly-complete binary tree

Each level is completely filled, except the bottom level
where nodes are filled to as far left as possible

Why is it important to be a
nearly-complete binary tree?

Because then we can store the tree in an
array, and each node knows which index has
its parent and its left/right child.

A

C B

F E D

A B C D E F

Left(i) = 2i

Right(i) = 2i + 1

Parent(i) = floor(i/2)
Assume index starts from 1

index: 1 2 3 4 5 6

Why is it important to be a nearly-
complete binary tree?

Another reason:

The height of a complete binary tree with n
nodes is Θ(log n).

This is essentially why those operations would
have Θ(log n) worst-case running time.

A heap is stored in an array.

A thing to remember...

Binary Max-Heap

A binary max-heap is a

nearly-complete binary

tree that has the max-

heap property.

65

25 40

18 24 33

The max-heap property

Every node has key (priority) greater than or
equal to keys of its immediate children.

65

40 25

65

25 40

18 24 31 20

12 33

65

25 40

18 24 33 20

12 31

The max-heap property

Every node has key (priority) greater than or
equal to keys of its immediate children.

65

40 25

65

25 40

18 24 33 20

12 31

Implication: every node
is larger than or equal to
all its descendants, i.e.,
every subtree of a heap
is also a heap.

We have a binary max-heap defined,
now let’s do operations on it.

➔ Max(Q)
➔ Insert(Q, x)
➔ ExtractMax(Q)
➔ IncreasePriority(Q, x, k)

Max(Q)
Return the largest key in Q,

in O(1) time

Max(Q): return the maximum element

65

25 40

18 24 33

65 40 25 33 24 18 Q

Return the root of the
heap, i.e.,

just return Q[1]

(index starts from 1)

worst case Θ(1)

Insert(Q, x)
Insert node x into heap Q,

in O(logn) time

Insert(Q, x): insert a node to a heap

First thing to note:

Which spot to add
the new node?

The only spot that
keeps it a complete
binary tree.

Increment heap size

Insert(Q, x): insert a node to a heap

Second thing to note:
Heap property might be
broken, how to fix it and
maintain the heap
property?

“Bubble-up” the new
node to a proper
position, by swapping
with parent.

65

25 40

18 24 33 20

12 31 42

swap

Insert(Q, x): insert a node to a heap

Second thing to note:
Heap property might be
broken, how to fix it and
maintain the heap
property.

“Bubble-up” the new
node to a proper
position, by swapping
with parent.

65

25 40

18 42 33 20

12 31 24

swap

Insert(Q, x): insert a node to a heap

Second thing to note:
Heap property might be
broken, how to fix it and
maintain the heap
property.

“Bubble-up” the new
node to a proper
position, by swapping
with parent.

65

25 42

18 40 33 20

12 31 24

Worst-case:
Θ(height) = Θ(log n)

ExtractMax(Q)
Delete and return the largest key in Q,

in O(logn) time

ExtractMax(Q): delete and return the
maximum element
First thing to note:

Which spot to remove?

The only spot that keeps
it a complete binary tree.

Decrement heap size

ExtractMax(Q): delete and return the
maximum element
First thing to note:

Which spot to remove?

The only spot that keeps
it a complete binary tree.

65

38 40

18 33 32 20

12 31

65 40 28 32 33 18 20 12 31

Decrement heap size

But the last guy’s key
should NOT be deleted.

THIS guy’s key (root)
should be deleted.

Overwrite root with the last
guy’s key, then delete the last
guy (decrement heap size).

ExtractMax(Q): delete and return the
maximum element
Now the heap
property is broken
again…, need to fix it.

“Bubble-down” by
swapping with…
a child...

31

38 40

18 33 32 20

12

Which child to swap with?

so that, after the swap, max-heap property is
satisfied

38 40

31

The “elder” child!
because it is the largest among the three

38 31

40

ExtractMax(Q): delete and return the
maximum element
Now the heap
property is broken
again…, need to fix it.

“Bubble-down” by
swapping with
the elder child

31

38 40

18 33 32 20

12

swap

ExtractMax(Q): delete and return the
maximum element
Now the heap
property is broken
again…, need to fix it.

“Bubble-down” by
swapping with...
the elder child

40

38 31

18 33 32 20

12

swap

ExtractMax(Q): delete and return the
maximum element
Now the heap
property is broken
again…, need to fix it.

“Bubble-down” by
swapping with
the elder child

40

38 33

18 31 32 20

12

Worst case running time: Θ(height) + some constant work
 Θ(log n)

Quick summary

Insert(Q, x):
➔ Bubble-up, swapping with parent

ExtractMax(Q)
➔ Bubble-down, swapping elder child

Bubble up/down is also called percolate up/down, or sift
up down, or tickle up/down, or heapify up/down, or
cascade up/down.

IncreasePriority(Q, x, k)
Increases the key of node x to k,

in O(logn) time

IncreasePriority(Q, x, k):
increase the key of node x to k

Just increase the key,
then...

Bubble-up by swapping
with parents, to proper
location.

65

38 40

18 33 32 20

12 31

Increase this
guy to 70

70

IncreasePriority(Q, x, k):
increase the key of node x to k

Just increase the key,
then...

Bubble-up by swapping
with parents, to proper
location.

65

38 65

18 33 40 20

12 32

70

Worst case running time: Θ(height) + some constant work
 Θ(log n)

Now we have learned how implement a priority
queue using a heap
➔ Max(Q)
➔  Insert(Q, x)
➔  ExtractMax(Q)
➔  IncreasePriority(Q, x, k)

Next:
➔ How to use heap for sorting
➔ How to build a heap from an unsorted array

HeapSort
Sorts an array, in O(n logn) time

The idea How to get a sorted list
out of a heap with n
nodes?

Keep extracting max for
n times, the keys
extracted will be sorted
in non-ascending order.

65

25 40

24 18 33

Worst-case running
time: each ExtractMax
is O(log n), we do it n
times, so overall it’s...
 O(n logn)

Now let’s be more precise

What’s needed: modify a max-heap-ordered
array into a non-descendingly sorted array

65

25 40

24 18 33

65 40 25 33 18 24

18 24 24 25 40 65

We want to do this “in-place” without using any extra
array space, i.e., just by swapping things around.

Before:

After:

65 40 25 33 18 24

24 40 25 33 18 65

24 40 25 33 18 65

This node is like deleted from the
tree, not touched any more.

40 33 25 24 18 65

Repeat Step 1-3 until the array
is fully sorted (at most n
iterations).

18 33 25 24 40 65

33 25 18 24 40 65

25 24 18 33 40 65

Step 1: swap first (65) and
last (24), since the tail is
where 65 (max) belongs to.

Step 2: decrement heap size

24 18 25 33 40 65

18 24 25 33 40 65

Step 3: fix the heap by
bubbling down 24

18 24 25 33 40 65

Valid heaps are green rectangled

HeapSort, the pseudo-code
HeapSort(A)	
‘’’sort any array A into non-descending order ’’’
	 	 	
	 	 	 for	 i	 ←	 A.size	 downto	 2:	
	 	 	 	 	 	 swap	 A[1]	 and	 A[i]	 # Step 1: swap the first and the last
	 	 	 	 	 	 A.size	 ←	 A.size	 -‐	 1	 # Step 2: decrement size of heap
	 	 	 	 	 	 BubbleDown(A,	 1)	 # Step 3: bubble down the 1st element in A

Does it work?
It works for an array A that is initially heap-
ordered, it does work NOT for any array!

BuildMaxHeap(A) # convert any array A into a heap-ordered one

Missing!

BuildMaxHeap(A)
Converts an array into a max-heap ordered

array, in O(n) time

Convert any array into a heap ordered one

65 40 25 33 18 24 18 33 25 65 24 40

any array heap ordered array

In other words...

18

25 33

40 24 65

65

25 40

24 18 33

Idea #1

BuildMaxHeap(A):	
	
	 	 	 B	 ←	 empty	 array	 # empty heap
	 	 	 for	 x	 in	 A:	
	 	 	 	 	 	 Insert(B,	 x)	 # heap insert
	 	 	 A	 ←	 B	 	 	 # overwrite A with B	 	 	 	 	

Running time:
Each Insert takes O(log n), there are n inserts...
so it’s O(n log n), not very exciting.
Not in-place, needs a second array.

Idea #2

23

45 33

51 44 31 20

65 37 18 12 70 49 28 29

Fix heap order, from bottom up.

Idea #2

23

45 33

51 44 31 20

65 37 18 12 70 49 28 29

Adjust heap order, from bottom up.

NOT a heap only because
root is out of order, so fix it
by bubble-down the root

Idea #2

23

45 33

51 44 31 29

65 37 18 12 70 49 28 20

Adjust heap order, from bottom up.

NOT a heap only because
root is out of order, so fix it
by bubble-down the root

Idea #2

23

45 33

70 44 31 29

65 37 18 12 51 49 28 20

Adjust heap order, from bottom up.

Idea #2

23

45 33

70 44 31 29

65 37 18 12 51 49 28 20

Adjust heap order, from bottom up.

NOT a heap only because
root is out of order, so fix it
by bubble-down the root

Idea #2

23

45 33

70 44 65 29

31 37 18 12 51 49 28 20

Adjust heap order, from bottom up.
NOT a heap only because
root is out of order, so fix it
by bubble-down the root

already a
fixed heap,
not to worry
about!

Idea #2

23

70 33

51 44 65 29

31 37 18 12 45 49 28 20

Adjust heap order, from bottom up.
NOT a heap only because
root is out of order, so fix it
by bubble-down the root

Idea #2

23

70 65

51 44 37 29

31 33 18 12 45 49 28 20

Adjust heap order, from bottom up.

NOT a heap only because
root is out of order, so fix it
by bubble-down the root

Idea #2

70

51 65

49 44 37 29

31 33 18 12 45 23 28 20

Adjust heap order, from bottom up.

Heap Built! We did nothing but
bubbling-down

Idea #2: The starting index

70

51 65

49 44 37 29

31 33 18 12 45 23 28 20

1

2 3

4 5 6 7

 8 9 10 11 12 13 14 15

We started here,
where the index is
floor(n/2)

Idea #2: The starting index

70

51 65

49 44 37 29

31 33 18 12 45 23

1

2 3

4 5 6 7

 8 9 10 11 12 13

Even the bottom
level is not fully
filled, we still start
from floor(n/2)

We always start from
floor(n/2), and go
down to 1.

Idea #2: Pseudo-code!

BuildMaxHeap(A):	
	
	 	 	 for	 i	 ←	 floor(n/2)	 downto	 1:	
	 	 	 	 	 	 BubbleDown(A,	 i)	

Advantages of Idea #2:
➔  It’s in-place, no need for extra array (we did

nothing but bubble-down, which is basically
swappings).

➔  It’s worst-case running time is O(n), instead of
O(n log n) of Idea #1. Why?

Analysis:
Worst-case running time of

BuildMaxHeap(A)

Intuition
A complete binary tree with n nodes...

~ n/2 nodes, and
no work done at
this level.

~ n/4 nodes

of swaps per
bubble-down: ≤1

n/8 nodes, and #
of swaps per
bubble-down: ≤2

n/16 nodes, and #
of swaps per
bubble-down: ≤3

How many
levels?
~ log n

So, total number of swaps

same trick as
Week 1’s sum

Σi=0,1,.. i/2i = Σk=0,1,.. k xk ,
 when x=1/2

Σk=0,1,.. k xk = x/(1-x)^2

So Σi=0,1,.. i/2i = 1/2/(1-1/2)2 = 2

Summary
HeapSort(A):
➔ Sort a heap-ordered array in-place
➔ O(n log n) worst-case running time

BuildMaxHeap(A):
➔ Convert an unsorted array into a heap, in-

place
➔ Fix heap property from bottom up, do

bubbling down on each sub-root
➔ O(n) worst-case running time

Algorithm visualizer

http://visualgo.net/heap.html

Next week

➔ ADT: Dictionary

➔ Data structure: Binary Search Tree

