CSC263 Week 2

If you feel rusty with probabilities, please read the Appendix C of the textbook. It is only about 20 pages, and is highly relevant to what we need for CSC263.

Appendix A and B are also worth reading.

Problem Set 1 is due this Tuesday!

(Sept 29)

This week topic

→ADT: Priority Queue

→Data structure: Heap

An ADT we already know

Queue:

- → a collection of elements
- → supported operations
 - Enqueue(Q, x)
 - Dequeue(Q)
 - PeekFront(Q)

The new ADT

Oldest person first

33

TELEPHONE 40

18 65

Max-Priority Queue:

- → a collection of elements with priorities, i.e., each element x has x.priority
- → supported operations
 - Insert(Q, x)
 - like enqueue(Q, x)
 - ExtractMax(Q)
 - like dequeue(Q)
 - Max(Q)

25

24

- like PeekFront(Q)
- IncreasePriority(Q, x, k)
 - increase x.priority to k

Applications of Priority Queues

- →Job scheduling in an operating system
 - Processes have different priorities (Normal, high...)
- →Bandwidth management in a router
 - Delay sensitive traffic has higher priority
- →Find minimum spanning tree of a graph
- →etc.

Now, let's implement a (Max)-Priority Queue

40 -> 33 -> 18 -> 65 -> 24 -> 25

Use an unsorted linked list

\rightarrow INSERT(Q, x) # x is a node

• Just insert x at the head, which takes $\Theta(1)$

→IncreasePriority(Q, x, k)

Just change x.priority to k, which takes Θ(1)

→Max(Q)

• Have to go through the whole list, takes $\Theta(n)$

→ExtractMax(Q)

 ◆ Go through the whole list to find x with max priority (O(n)), then delete it (O(1) if doubly linked) and return it, so overall ⊖(n).

65 -> 40 -> 33 -> 25 -> 24 -> 18

Use a reversely sorted linked list

→Max(Q)

Just return the head of the list, Θ(1)

→ExtractMax(Q)

Just delete and return the head, Θ(1)

→INSERT(Q, x)

♦ Have to linearly search the correct location of insertion which takes ⊖(n) in worst case.

→IncreasePriority(Q, x, k)

♦After increase, need to move element to a new location in the list, takes Θ(n) in worst case.

 $\Theta(1)$ is fine, but $\Theta(n)$ is kind-of bad...

unsorted linked list sorted linked list

. . .

Can we link these elements in a smarter way, so that we never need to do $\Theta(n)$?

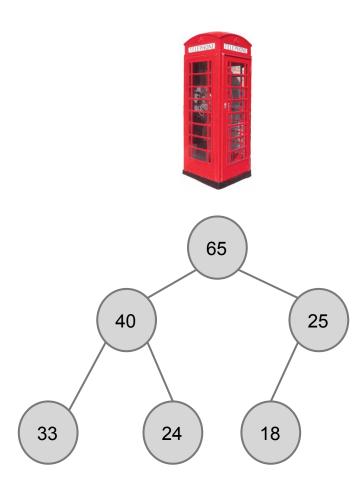
Why does a sorted array also not work?

Yes, we can!

Worst case running times

	unsorted list	sorted list	Неар
Insert(Q, x)	Θ(1)	Θ(n)	Θ(log n)
Max(Q)	Θ(n)	Θ(1)	Θ(1)
ExtractMax(Q)	Θ(n)	Θ(1)	Θ(log n)
IncreasePriority (Q, x, k)	Θ(1)	Θ(n)	Θ(log n)

Binary Max-Heap



A binary max-heap is a

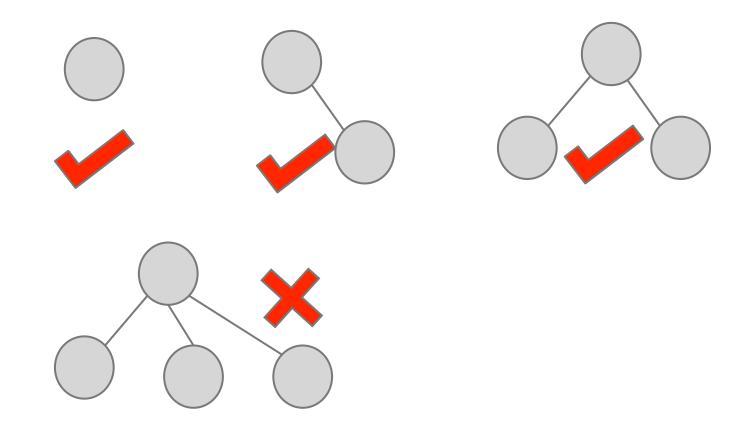
nearly-complete binary

tree that has the max-

heap property.

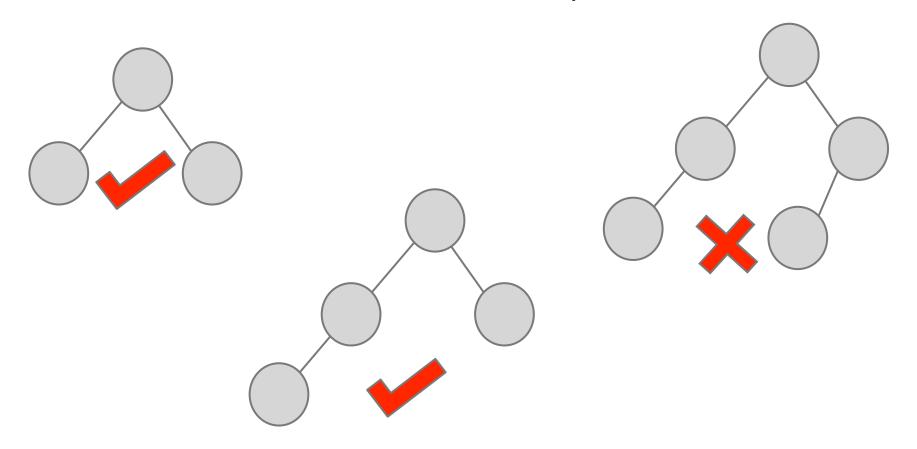
It's a binary tree

Each node has at most 2 children



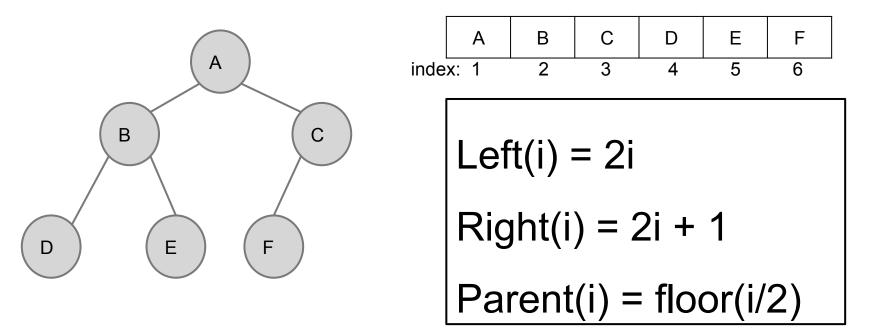
It's a nearly-complete binary tree

Each level is **completely filled**, except the bottom level where nodes are filled to as **far left** as possible



Why is it important to be a nearly-complete binary tree?

Because then we can **store** the tree in an **array**, and each node knows which **index** has its parent and its left/right child.



Assume index starts from 1

Why is it important to be a nearlycomplete binary tree?

Another reason:

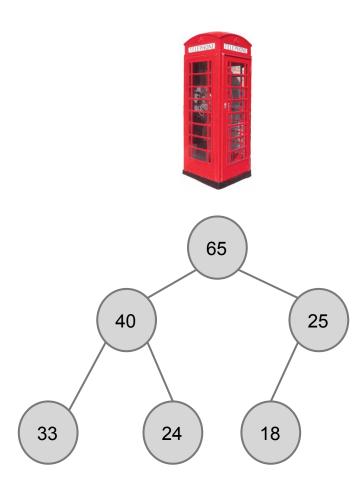
The **height** of a complete binary tree with n nodes is $\Theta(\log n)$.

This is essentially why those operations would have $\Theta(\log n)$ worst-case running time.

A thing to remember...

A heap is stored in an array.

Binary Max-Heap



A binary max-heap is a

nearly-complete binary

tree that has the max-

heap property.

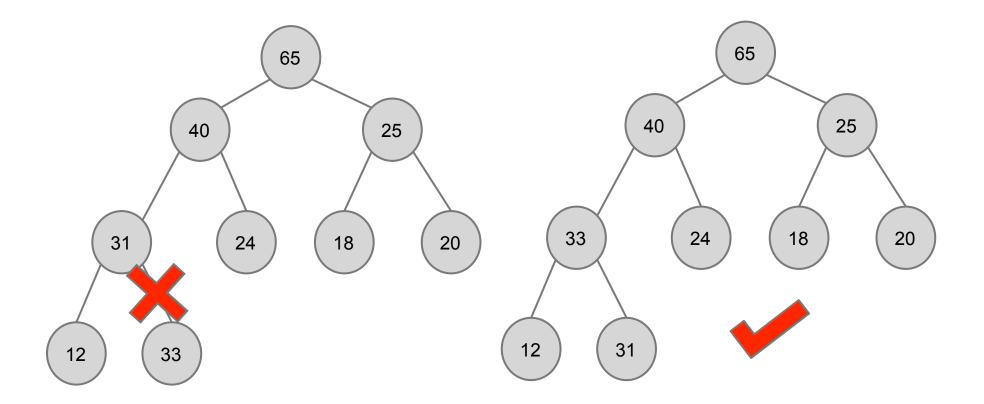
The max-heap property

Every node has key (priority) greater than or equal to keys of its **immediate** children.

65

25

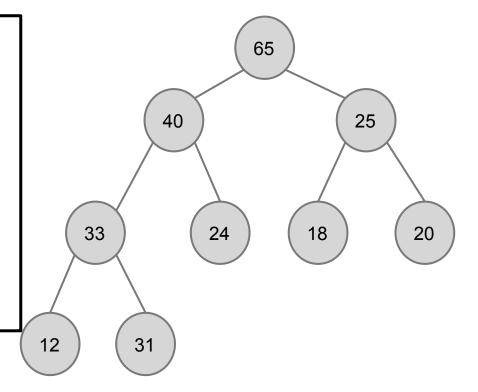
40



The max-heap property

Every node has key (priority) greater than or equal to keys of its **immediate** children.

Implication: every node is larger than or equal to all its descendants, i.e., every subtree of a heap is also a heap.



40

65

25

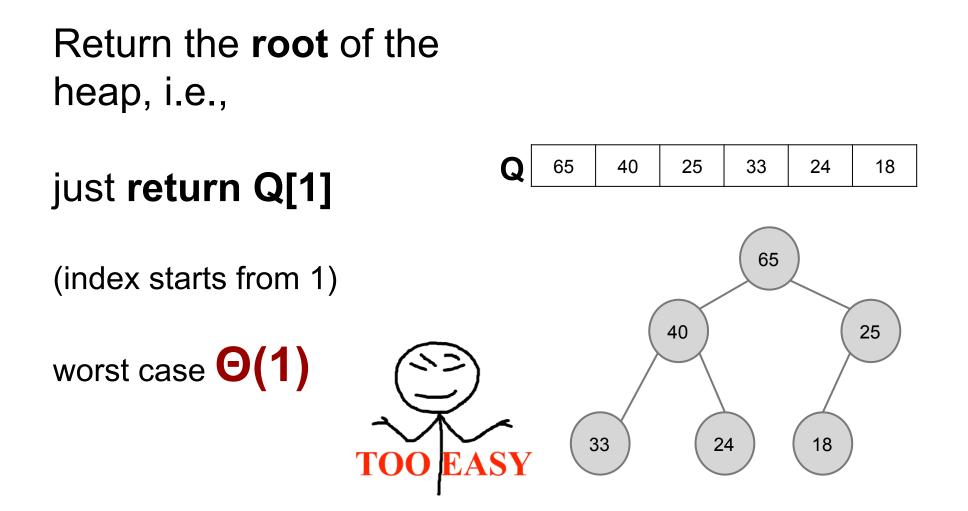
We have a binary max-heap defined, now let's do operations on it.

- →Max(Q)
- →Insert(Q, x)
- →ExtractMax(Q)
- →IncreasePriority(Q, x, k)

Max(Q)

Return the largest key in Q, in O(1) time

Max(Q): return the maximum element



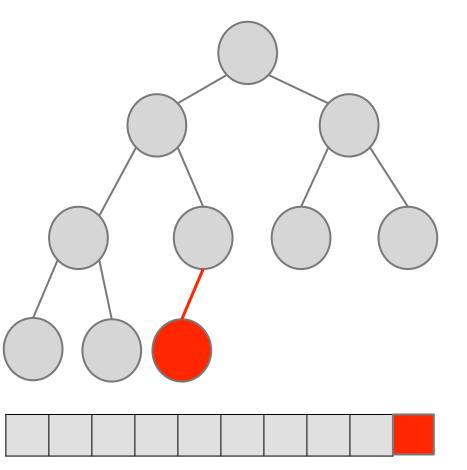
Insert(Q, x)

Insert node x into heap Q, in O(logn) time

First thing to note:

Which spot to add the new node?

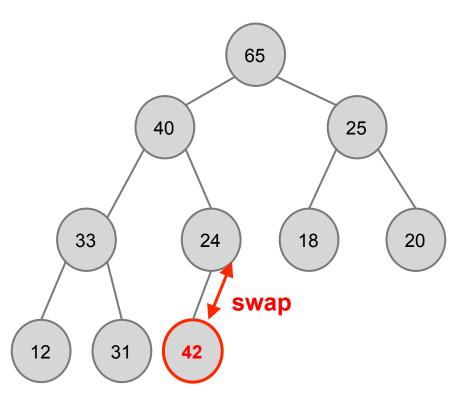
The only spot that keeps it a **complete** binary tree.



Increment heap size

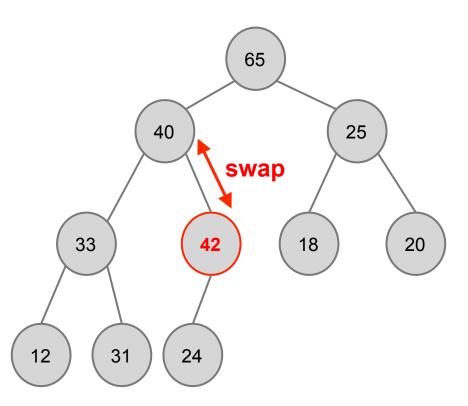
Second thing to note: **Heap property** might be broken, how to fix it and **maintain** the heap property?

"**Bubble-up**" the new node to a proper position, by **swapping** with parent.



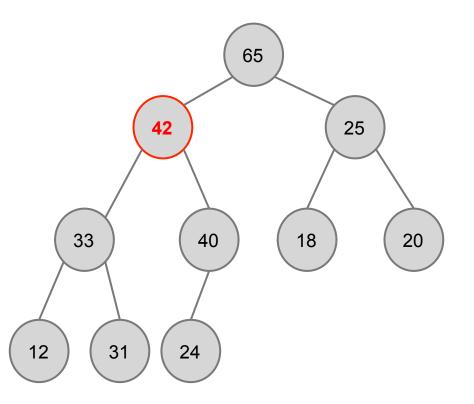
Second thing to note: **Heap property** might be broken, how to fix it and **maintain** the heap property.

"Bubble-up" the new node to a proper position, by swapping with parent.



Second thing to note: **Heap property** might be broken, how to fix it and **maintain** the heap property.

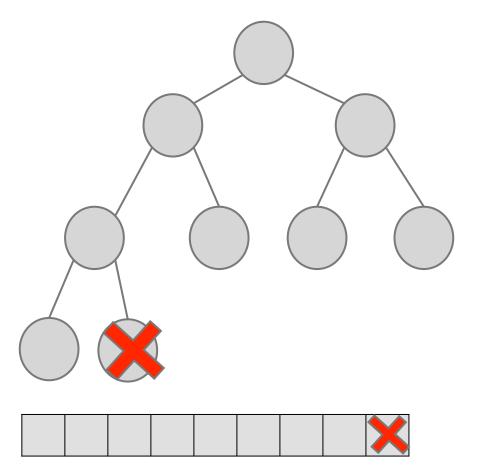
"Bubble-up" the new node to a proper position, by swapping with parent. Worst-case: $\Theta(height) = \Theta(\log n)$



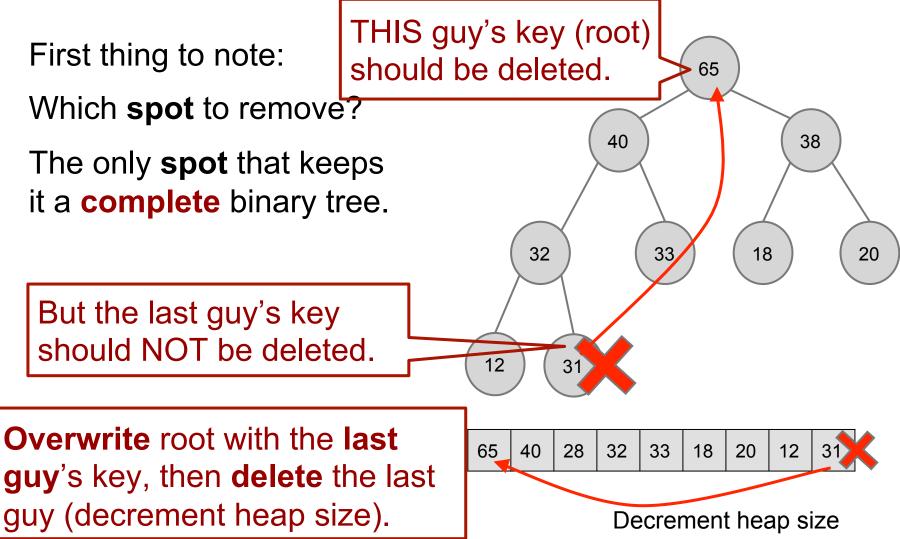
ExtractMax(Q)

Delete and return the largest key in Q, in O(logn) time

First thing to note: Which **spot** to remove? The only **spot** that keeps it a **complete** binary tree.

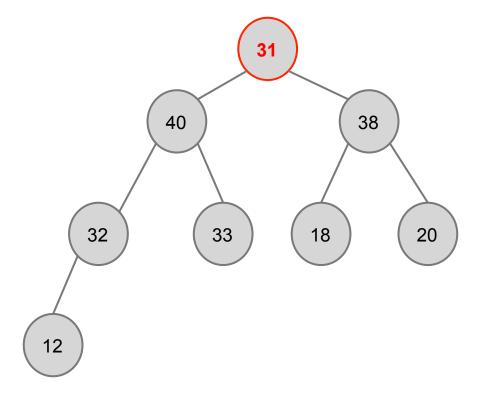


Decrement heap size



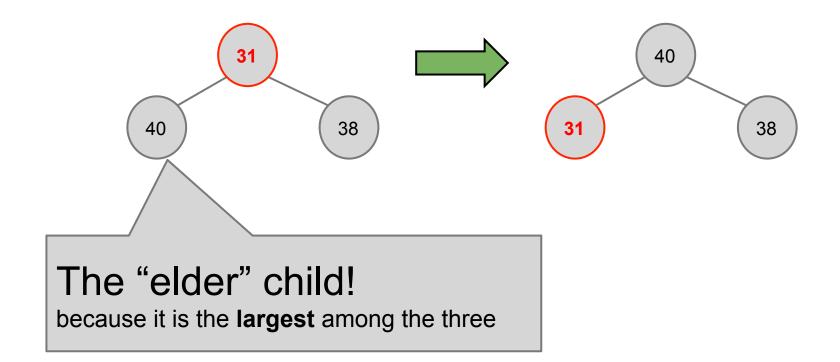
Now the **heap property** is broken again..., need to fix it.

"Bubble-down" by
swapping with...
a child...



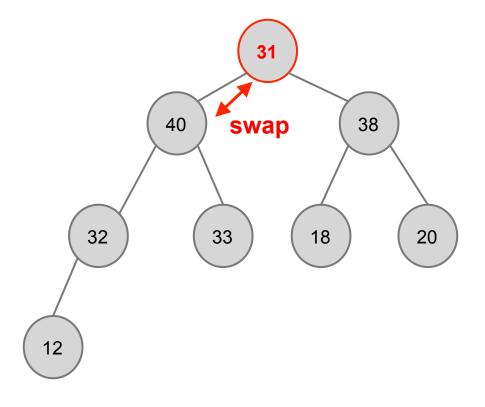
Which child to swap with?

so that, after the swap, max-heap property is satisfied



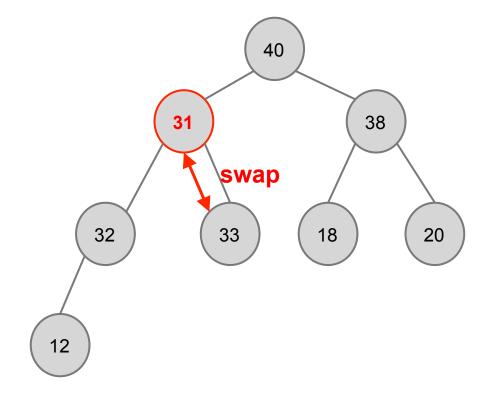
Now the **heap property** is broken again..., need to fix it.

"Bubble-down" by
swapping with
the elder child



Now the **heap property** is broken again..., need to fix it.

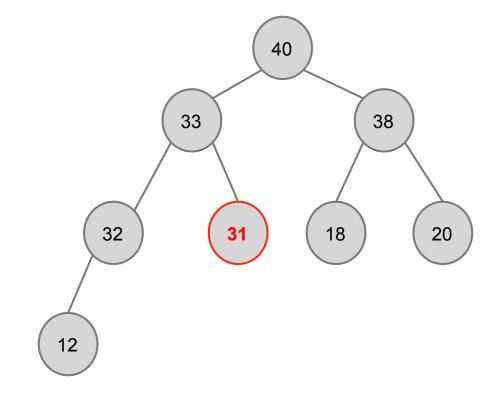
"Bubble-down" by
swapping with...
the elder child



ExtractMax(Q): delete and return the maximum element

Now the **heap property** is broken again..., need to fix it.

"Bubble-down" by swapping with the elder child



Worst case running time: Θ(height) + some constant work Θ(log n)

Quick summary

Insert(Q, x):→Bubble-up, swapping with parent

ExtractMax(Q) →Bubble-down, swapping elder child

Bubble up/down is also called percolate up/down, or sift up down, or tickle up/down, or heapify up/down, or cascade up/down.

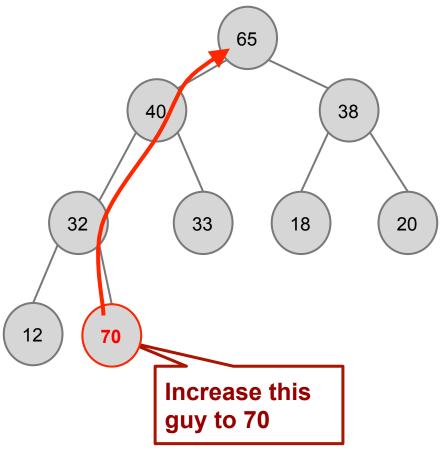
IncreasePriority(Q, x, k)

Increases the key of node x to k, in O(logn) time

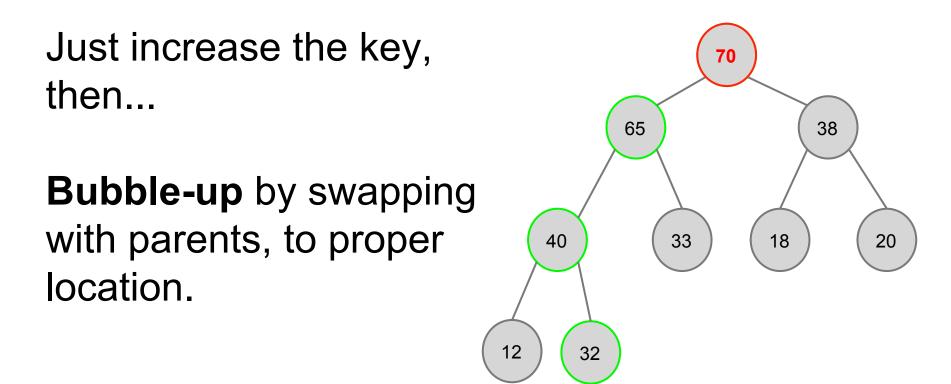
IncreasePriority(Q, x, k): increase the key of node x to k

Just increase the key, then...

Bubble-up by swapping with parents, to proper location.



IncreasePriority(Q, x, k): increase the key of node x to k



Worst case running time: Θ(height) + some constant work Θ(log n) Now we have learned how implement a priority queue using a heap

- → Max(Q)
- → Insert(Q, x)
- → ExtractMax(Q)
- → IncreasePriority(Q, x, k)

Next:

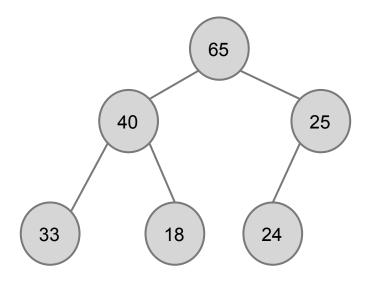
→How to use heap for **sorting**

→How to **build a heap** from an unsorted array

HeapSort

Sorts an array, in O(n logn) time

The idea

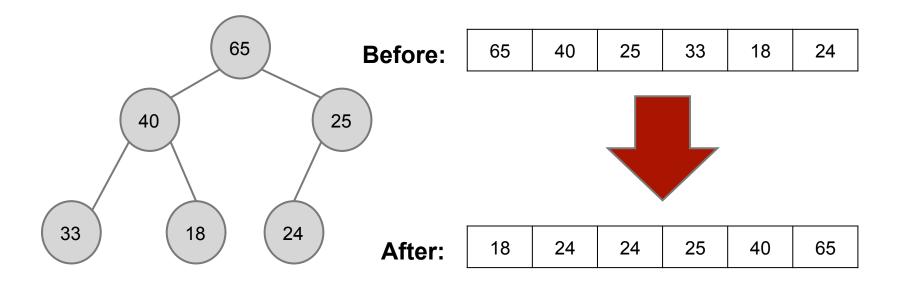


Worst-case running time: each ExtractMax is **O(log n)**, we do it **n** times, so overall it's... **O(n logn)** How to get a sorted list out of a heap with n nodes?

Keep extracting max for n times, the keys extracted will be sorted in non-ascending order.

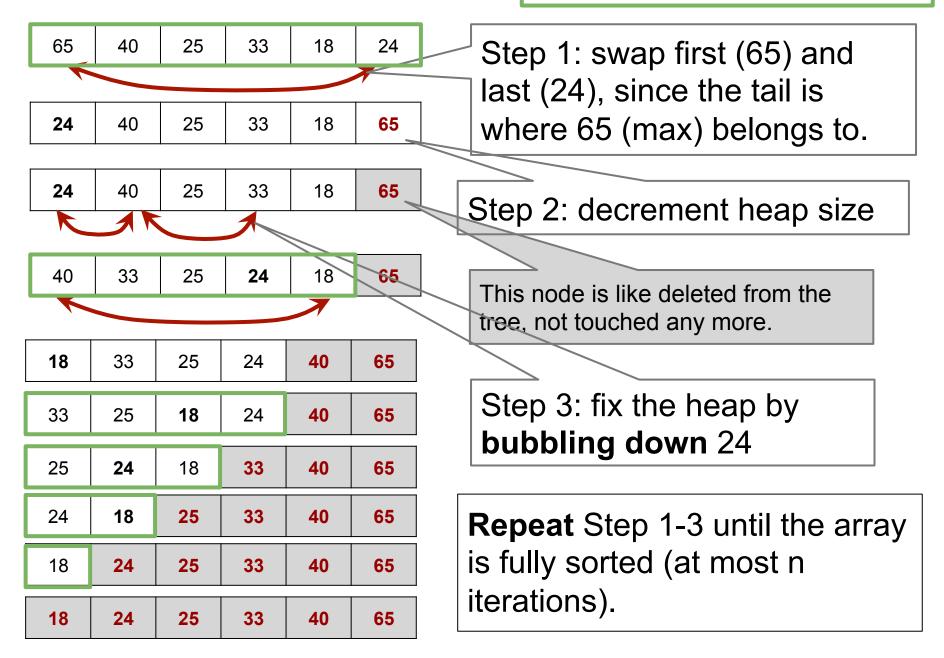
Now let's be more precise

What's needed: modify a max-heap-ordered **array** into a **non-descendingly** sorted **array**

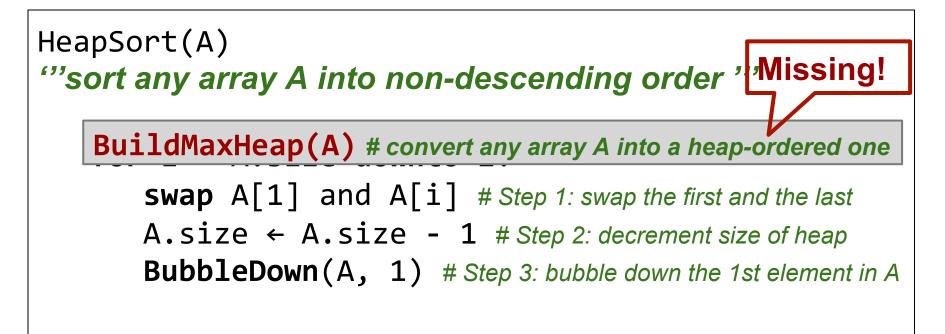


We want to do this "**in-place**" without using any extra array space, i.e., just by **swapping** things around.

Valid heaps are green rectangled



HeapSort, the pseudo-code





Does it work?

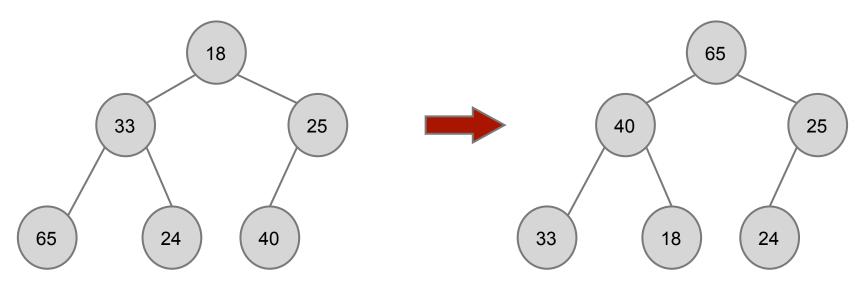
It works for an array A that is initially heapordered, it does work NOT for any array!

BuildMaxHeap(A)

Converts an array into a max-heap ordered array, in O(n) time

Convert any array into a heap ordered one

In other words...



Idea #1

```
BuildMaxHeap(A):
    B ← empty array #empty heap
    for x in A:
        Insert(B, x) # heap insert
    A ← B # overwrite A with B
```

Running time:

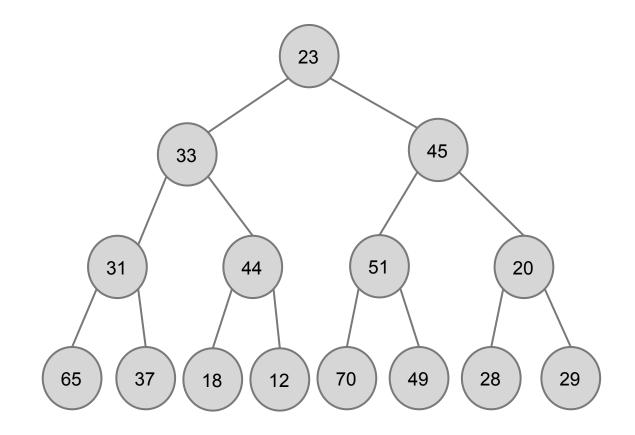
Each Insert takes **O(log n)**, there are **n** inserts... so it's **O(n log n)**, not very exciting. Not **in-place**, needs a second array.

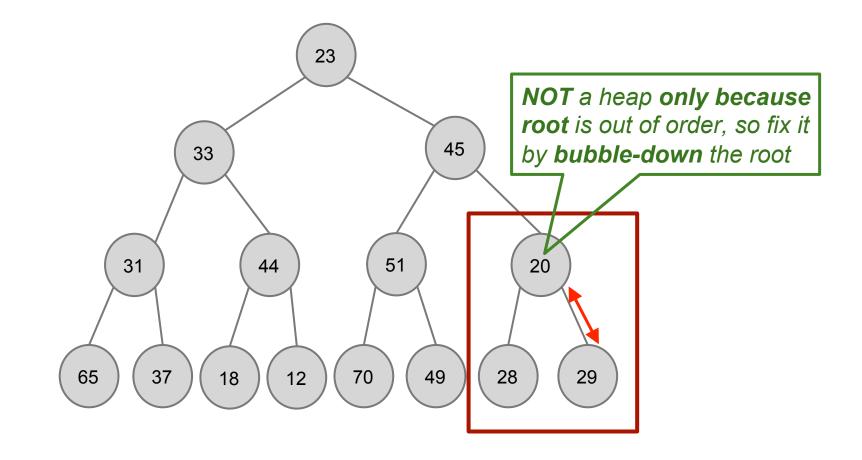
WHAT IFITOLD YOU

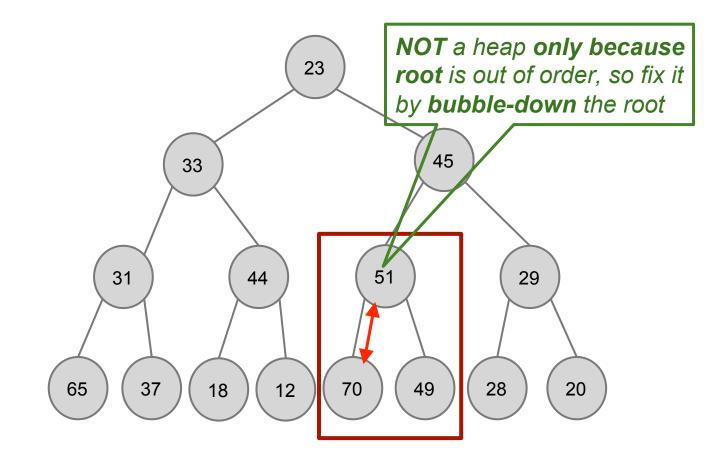
YOU CAN DO BETTER THAN THIS

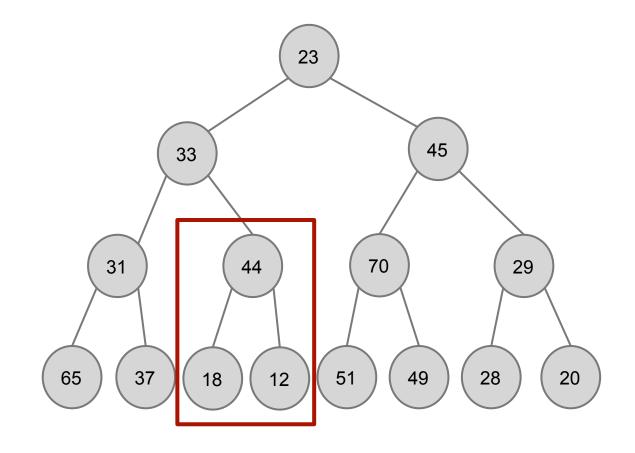
Idea #2

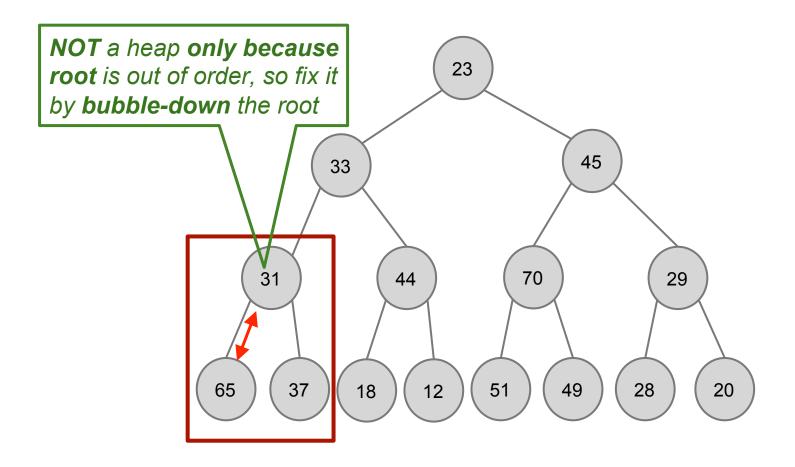
Fix heap order, from bottom up.

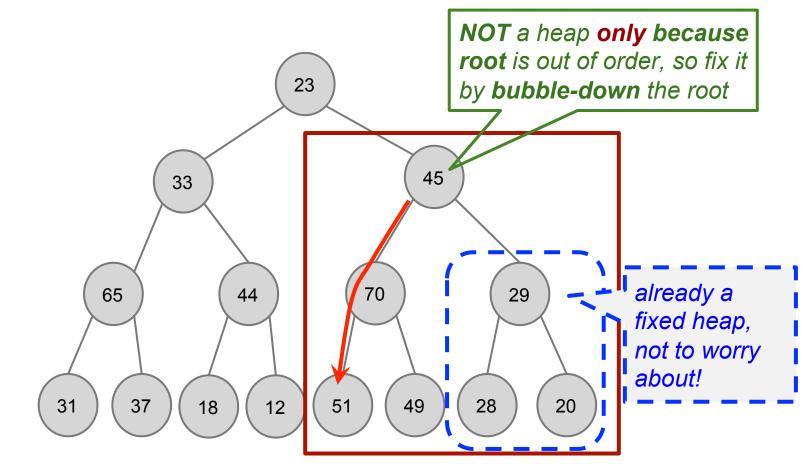


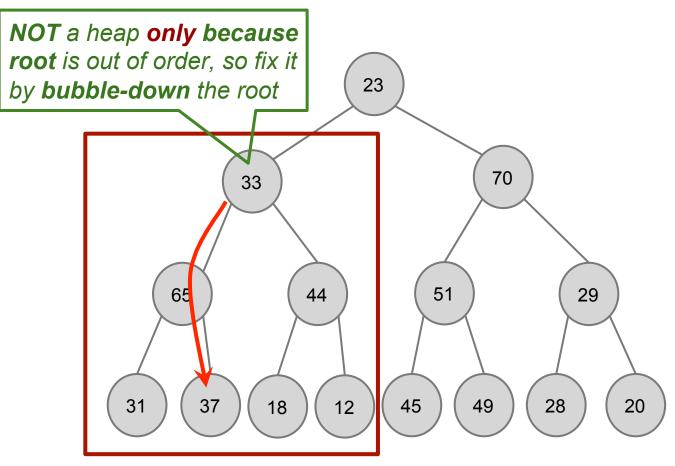


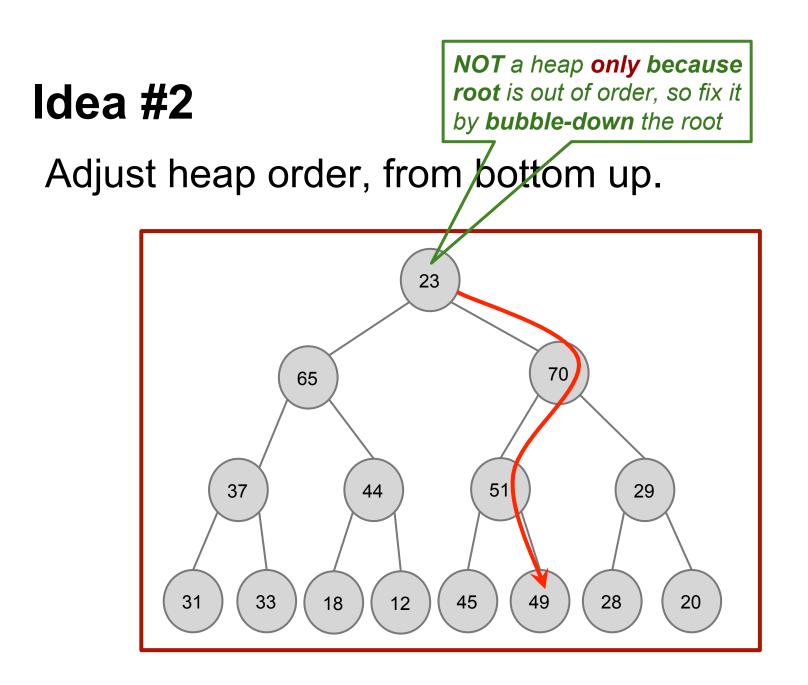


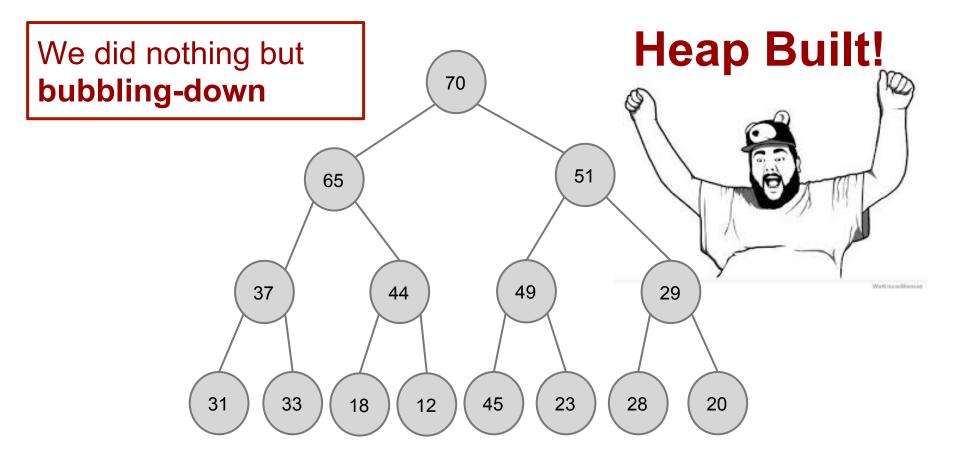




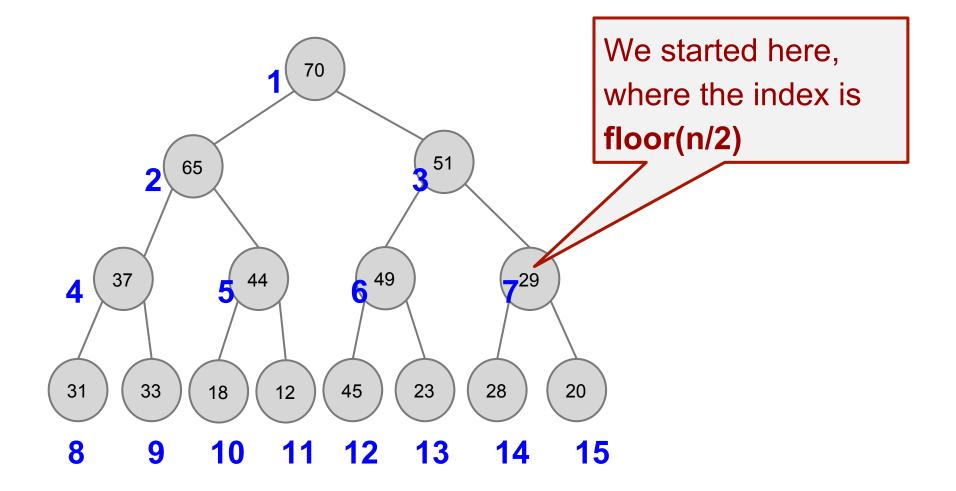




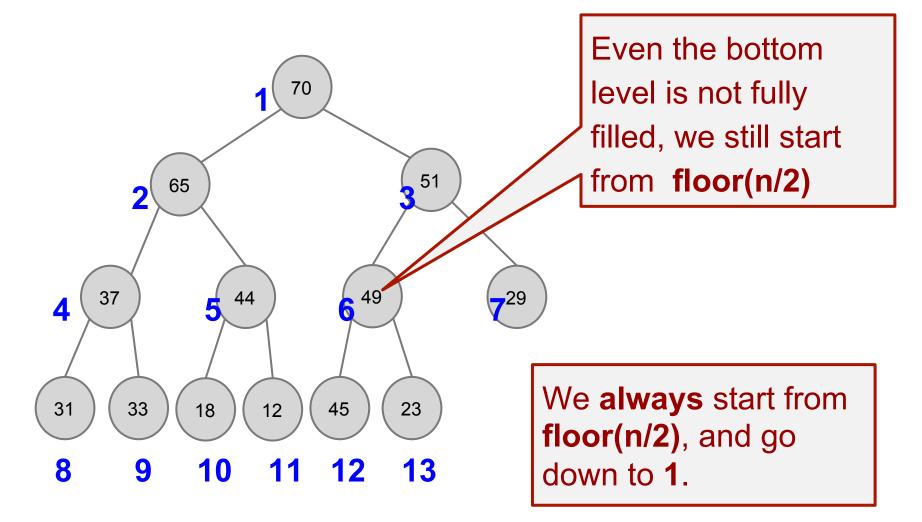




Idea #2: The starting index



Idea #2: The starting index



Idea #2: Pseudo-code!

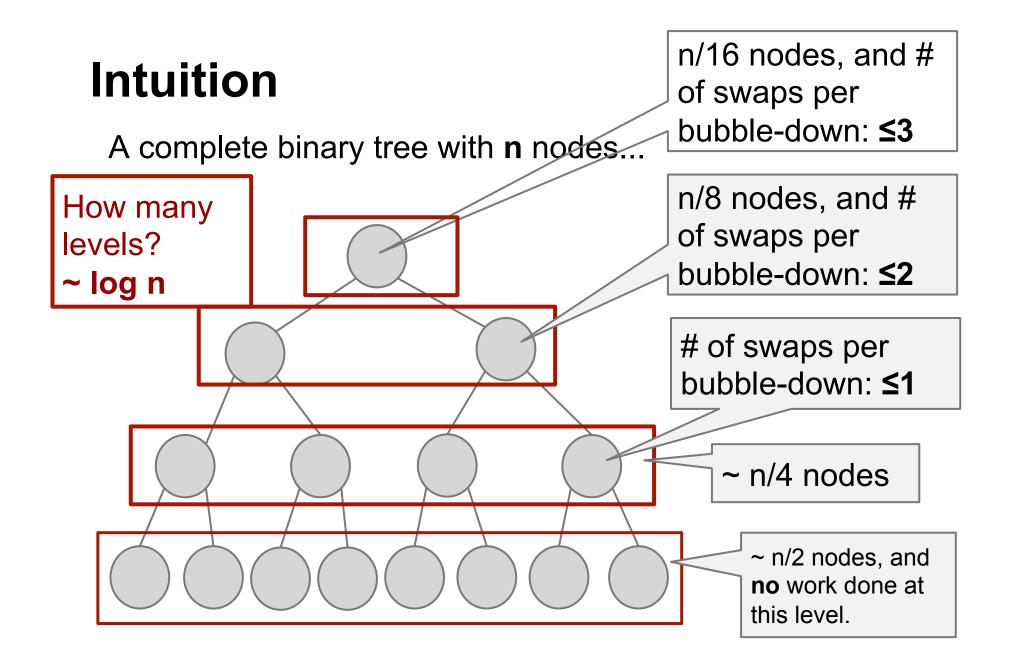
```
BuildMaxHeap(A):
```

for i ← floor(n/2) downto 1:
 BubbleDown(A, i)

Advantages of Idea #2:

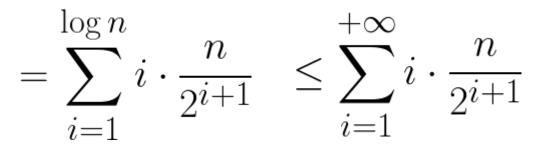
- → It's in-place, no need for extra array (we did nothing but bubble-down, which is basically swappings).
- → It's worst-case running time is O(n), instead of O(n log n) of Idea #1.
 Why?

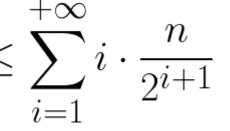
Analysis: Worst-case running time of BuildMaxHeap(A)

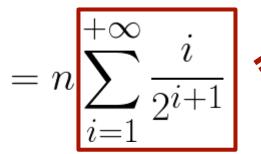


So, total number of swaps

$$T(n) = 1 \cdot \frac{n}{4} + 2 \cdot \frac{n}{8} + 3 \cdot \frac{n}{16} + \dots$$

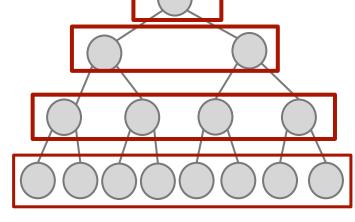






= n

same trick as Week 1's sum



$$\begin{split} \Sigma_{i=0,1,..} & i/2^i = \Sigma_{k=0,1,..} \; k \; x^k \; , \\ & \text{when } x = 1/2 \end{split}$$

$$\Sigma_{k=0,1,..} k x^{k} = x/(1-x)^{2}$$

So $\Sigma_{i=0,1,..}$ $i/2^i = 1/2/(1-1/2)^2 = 2$

YOU CAN DO IN LINEAR TIME

BUILD MAX HEAP

Summary

HeapSort(A):

- →Sort a heap-ordered array in-place
 →O(n log n) worst-case running time
 BuildMaxHeap(A):
 - →Convert an unsorted array into a heap, inplace
 - →Fix heap property from bottom up, do bubbling down on each sub-root
 - →O(n) worst-case running time

Algorithm visualizer

http://visualgo.net/heap.html

Next week

→ADT: Dictionary

→Data structure: Binary Search Tree