CSC263 Week 2

If you feel rusty with probabilities, please read the Appendix C of the textbook. It is only about 20 pages, and is highly relevant to what we need for CSC263.

Appendix A and B are also worth reading.

Problem Set 1 is due this Tuesday!

(Sept 29)

This week topic

\rightarrow ADT: Priority Queue
\rightarrow Data structure: Heap

An ADT we already know

Queue:

\rightarrow a collection of elements
\rightarrow supported operations

First in first serve

- Enqueue(Q, x)
- Dequeue(Q)
- PeekFront(Q)

The new ADT

Max-Priority Queue:

\rightarrow a collection of elements with priorities, i.e., each element x has x.priority

Oldest person first

- Insert(Q, x)
- like enqueue(Q, x)
- ExtractMax(Q)
- like dequeue(Q)
- $\operatorname{Max}(\mathrm{Q})$
- like PeekFront(Q)
- IncreasePriority(Q, x, k)
- increase x.priority to k

Applications of Priority Queues

\rightarrow Job scheduling in an operating system
\bullet Processes have different priorities (Normal, high...)
\rightarrow Bandwidth management in a router
-Delay sensitive traffic has higher priority
\rightarrow Find minimum spanning tree of a graph
\rightarrow etc.

Now, let's implement a (Max)-Priority Queue

$$
40->33->18->65->24->25
$$

Use an unsorted linked list

$\rightarrow \operatorname{INSERT}(\mathbf{Q}, \mathbf{x})$ \# x is a node

- Just insert x at the head, which takes $\Theta(1)$
\rightarrow IncreasePriority(Q, x, k)
- Just change x.priority to k, which takes $\Theta(1)$
$\rightarrow \operatorname{Max}(\mathbf{Q})$
\bullet Have to go through the whole list, takes $\Theta(n)$
\rightarrow ExtractMax(Q)
- Go through the whole list to find x with max priority $(O(n))$, then delete it $(O(1)$ if doubly linked) and return it, so overall $\Theta(n)$.

$$
65->40->33->25->24->18
$$

Use a reversely sorted linked list

$\rightarrow \operatorname{Max}(\mathrm{Q})$

- Just return the head of the list, $\Theta(1)$
\rightarrow ExtractMax(Q)
- Just delete and return the head, $\Theta(1)$
\rightarrow INSERT(Q, x)
- Have to linearly search the correct location of insertion which takes $\Theta(n)$ in worst case.
\rightarrow IncreasePriority(Q, x, k)
- After increase, need to move element to a new location in the list, takes $\Theta(n)$ in worst case.
$\Theta(1)$ is fine, but $\Theta(n)$ is kind-of bad...
unsorted linked list
sorted linked list

Can we link these elements in a smarter way, so that we never need to do $\Theta(n)$?

Why does a sorted array also not work?

Yes, we can!

Worst case running times

	unsorted list	sorted list	Heap
Insert($\mathbf{Q}, \mathbf{x})$	$\Theta(1)$	$\Theta(n)$	$\Theta(\log n)$
$\operatorname{Max}(\mathbf{Q})$	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$
ExtractMax(Q)	$\Theta(n)$	$\Theta(1)$	$\Theta(\log n)$
IncreasePriority $(\mathbf{Q}, \mathbf{x}, \mathbf{k})$	$\Theta(1)$	$\Theta(n)$	$\Theta(\log n)$

Binary Max-Heap

A binary max-heap is a nearly-complete binary tree that has the maxheap property.

It's a binary tree
Each node has at most 2 children

It's a nearly-complete binary tree

Each level is completely filled, except the bottom level where nodes are filled to as far left as possible

Why is it important to be a nearly-complete binary tree?

Because then we can store the tree in an array, and each node knows which index has its parent and its left/right child.

Assume index starts from 1

Why is it important to be a nearlycomplete binary tree?

Another reason:

The height of a complete binary tree with \mathbf{n} nodes is $\boldsymbol{O}(\log n)$.

This is essentially why those operations would have $\Theta(\log n)$ worst-case running time.

A thing to remember...

A heap is stored in an array.

Binary Max-Heap

A binary max-heap is a nearly-complete binary tree that has the maxheap property.

The max-heap property

Every node has key (priority) greater than or equal to keys of its immediate children.

The max-heap property

Every node has key (priority) greater than or equal to keys of its immediate children.

We have a binary max-heap defined, now let's do operations on it.
$\rightarrow \operatorname{Max}(\mathrm{Q})$
\rightarrow Insert(Q, x)
\rightarrow ExtractMax(Q)
\rightarrow IncreasePriority(Q, x, k)

$\operatorname{Max}(\mathrm{Q})$

Return the largest key in Q , in $O(1)$ time

$\operatorname{Max}(Q):$ return the maximum element

Return the root of the heap, i.e.,
just return Q[1]

\mathbf{Q}| 65 | 40 | 25 | 33 | 24 | 18 |
| :--- | :--- | :--- | :--- | :--- | :--- |

(index starts from 1)
worst case $\boldsymbol{\Theta}(1)$

Insert(Q, x)

Insert node x into heap Q, in $O(\operatorname{logn})$ time

Insert(Q, x): insert a node to a heap

First thing to note:
Which spot to add the new node?

The only spot that keeps it a complete binary tree.

Increment heap size

Insert(Q, x): insert a node to a heap

Second thing to note: Heap property might be broken, how to fix it and maintain the heap property?
"Bubble-up" the new node to a proper position, by swapping with parent.

Insert(Q, x): insert a node to a heap

Second thing to note: Heap property might be broken, how to fix it and maintain the heap property.
"Bubble-up" the new node to a proper position, by swapping with parent.

Insert(Q, x): insert a node to a heap

Second thing to note: Heap property might be broken, how to fix it and maintain the heap property.
"Bubble-up" the new node to a proper position, by swapping with parent.

Worst-case:
$\Theta($ height $)=\Theta(\log n)$

ExtractMax(Q)

Delete and return the largest key in Q , in O(logn) time

ExtractMax(Q): delete and return the maximum element

First thing to note:
Which spot to remove?
The only spot that keeps it a complete binary tree.

Decrement heap size

ExtractMax(Q): delete and return the maximum element

First thing to note:
Which spot to remove?
The only spot that keeps it a complete binary tree.

But the last guy's key should NOT be deleted.

ExtractMax(Q): delete and return the maximum element

Now the heap
property is broken again..., need to fix it.
"Bubble-down" by swapping with...

a child...

Which child to swap with?

 so that, after the swap, max-heap property is satisfied

ExtractMax(Q): delete and return the maximum element

Now the heap
property is broken again..., need to fix it.
"Bubble-down" by swapping with the elder child

ExtractMax(Q): delete and return the maximum element

Now the heap
property is broken again..., need to fix it.
"Bubble-down" by swapping with...
the elder child

ExtractMax(Q): delete and return the maximum element

Now the heap property is broken again..., need to fix it.
"Bubble-down" by swapping with the elder child

Worst case running time: Θ (height) + some constant work $\Theta(\log n)$

Quick summary

Insert(Q, x):
\rightarrow Bubble-up, swapping with parent
ExtractMax(Q)
\rightarrow Bubble-down, swapping elder child

Bubble up/down is also called percolate up/down, or sift up down, or tickle up/down, or heapify up/down, or cascade up/down.

IncreasePriority($\mathbf{Q}, \mathbf{x}, \mathbf{k}$)

Increases the key of node x to k, in $\mathrm{O}(\operatorname{logn})$ time

IncreasePriority(Q, x, k): increase the key of node x to k

Just increase the key, then...

Bubble-up by swapping with parents, to proper location.

IncreasePriority(Q, x, k): increase the key of node x to k

Just increase the key, then...

Bubble-up by swapping with parents, to proper location.

Worst case running time: Θ (height) + some constant work $\Theta(\log n)$

Now we have learned how implement a priority queue using a heap
$\rightarrow \operatorname{Max}(\mathrm{Q})$
$\rightarrow \operatorname{lnsert}(\mathrm{Q}, \mathrm{x})$
\rightarrow ExtractMax(Q)
\rightarrow IncreasePriority(Q, x, k)

Next:
\rightarrow How to use heap for sorting
\rightarrow How to build a heap from an unsorted array

HeapSort

Sorts an array, in O(n logn) time

The idea

Worst-case running time: each ExtractMax is $\mathbf{O}(\log \mathbf{n})$, we do it \mathbf{n} times, so overall it's... O(n logn)

How to get a sorted list out of a heap with n nodes?

Keep extracting max for n times, the keys
extracted will be sorted in non-ascending order.

Now let's be more precise

What's needed: modify a max-heap-ordered array into a non-descendingly sorted array

We want to do this "in-place" without using any extra array space, i.e., just by swapping things around.

Valid heaps are green rectangled

HeapSort, the pseudo-code

HeapSort(A)
""sort any array A into non-descending order 'Missing!
BuildMaxHeap (A) \# convert any array A into a heap-ordered one
swap $\mathrm{A}[1]$ and $\mathrm{A}[\mathrm{i}]$ \# Step 1: swap the first and the last
A.size \leftarrow A.size - 1 \#Step 2: decrement size of heap

BubbleDown (A, 1) \# Step 3: bubble down the 1st element in A

Does it work?
It works for an array A that is initially heapordered, it does work NOT for any array!

BuildMaxHeap(A)

Converts an array into a max-heap ordered array, in $\mathrm{O}(\mathrm{n})$ time

Convert any array into a heap ordered one

any array

| 18 | 33 | 25 | 65 | 24 | 40 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| 65 | 40 | 25 | 33 | 18 | 24 |
| :---: | :---: | :---: | :---: | :---: | :---: |

In other words...

Idea \#1

```
BuildMaxHeap(A):
    B \leftarrow empty array #empty heap
for x in A:
    Insert(B, x) # heap insert
A}\leftarrow\textrm{B}\quad#\mathrm{ overwrite A with B
```


Running time:

Each Insert takes $\mathbf{O}(\log \mathbf{n})$, there are \mathbf{n} inserts... so it's O(n log n), not very exciting.
Not in-place, needs a second array.

WTAIT IFITOLD YOU
 YOUCONDO BETERTHNTHIS

Idea \#2

Fix heap order, from bottom up.

Idea \#2

Adjust heap order, from bottom up.

Idea \#2

Adjust heap order, from bottom up.

Idea \#2

Adjust heap order, from bottom up.

Idea \#2

Adjust heap order, from bottom up.

Idea \#2

Adjust heap order, from bottom up.

Idea \#2

Adjust heap order, from bottom up.

Idea \#2

> NOT a heap only because root is out of order, so fix it by bubble-down the root

Adjust heap order, from bottom up.

Idea \#2

Adjust heap order, from bottom up.

Idea \#2: The starting index

Idea \#2: The starting index

Idea \#2: Pseudo-code!

```
BuildMaxHeap(A):
for i }\leftarrowfloor(n/2) downto 1
    BubbleDown(A, i)
```


Advantages of Idea \#2:
\rightarrow It's in-place, no need for extra array (we did nothing but bubble-down, which is basically swappings).
\rightarrow It's worst-case running time is $\mathbf{O}(\mathbf{n})$ instead of $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ of Idea \#1.

Analysis:

 Worst-case running time of BuildMaxHeap(A)

Intuition

A complete binary tree with \mathbf{n} nodes...

So, total number of swaps

$$
\begin{aligned}
T(n) & =1 \cdot \frac{n}{4}+2 \cdot \frac{n}{8}+3 \cdot \frac{n}{16}+\ldots \\
& =\sum_{i=1}^{\log n} i \cdot \frac{n}{2^{i+1}} \leq \sum_{i=1}^{+\infty} i \cdot \frac{n}{2^{i+1}} \\
& =n \sum_{i=1}^{+\infty} \frac{i}{2^{i+1}} \Rightarrow \text { sementerisas } \\
& =n
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma_{i=0,1, . .} \mathrm{i} / 2^{i}= \Sigma_{\mathrm{k}=0,1, \ldots} \mathrm{kx} x^{\mathrm{k}}, \\
& \text { when } x=1 / 2
\end{aligned}
$$

$$
\Sigma_{\mathrm{k}=0,1, . .} \mathrm{k} x^{\mathrm{k}}=\mathrm{x} /(1-\mathrm{x})^{\wedge} 2
$$

$$
\text { So } \sum_{i=0,1, . .} i / 2^{i}=1 / 2 /(1-1 / 2)^{2}=2
$$

BUID MIM HETP

YOUGANDOINIITEMR TIWE

Summary

HeapSort(A):
\rightarrow Sort a heap-ordered array in-place
$\rightarrow \mathrm{O}(\mathrm{n} \log \mathrm{n})$ worst-case running time
BuildMaxHeap(A):
\rightarrow Convert an unsorted array into a heap, inplace
\rightarrow Fix heap property from bottom up, do bubbling down on each sub-root
$\rightarrow \mathrm{O}(\mathrm{n})$ worst-case running time

Algorithm visualizer

http://visualgo.net/heap.html

Next week

\rightarrow ADT: Dictionary

\rightarrow Data structure: Binary Search Tree

