CSC263 Week 2

If you feel rusty with probabilities, please read
the Appendix C of the textbook. It is only about

20 pages, and is highly relevant to what we
need for CSC263.

Appendix A and B are also worth reading.

Problem Set 1 is due this Tuesday!

(Sept 29)

This week topic

->ADT: Priority Queue

->Data structure: Heap

An ADT we already know

Queue:
-> a collection of
First in first serve elements
-=> supported operations
¢ Enqueue(Q, x)
: ¢ Dequeue(Q)

VewWww w
| uf ¢ PeekFront(Q)

%2(" N
‘ ‘f \\ :".t \
\

e =< W 4!

e

The new ADT Max-Priority Queue:

-> a collection of elements with
priorities, i.e., each element x
has X.priority

=> supported operations

¢ Insert(Q, x)

e like enqueue(Q, x)
¢ ExtractMax(Q)

| e like dequeue(Q)

¢ Max(Q)

| e like PeekFront(Q)

"« IncreasePriority(Q, x, k)

e increase Xx.priority to k

Oldest person first

Applications of Priority Queues

->Job scheduling in an operating system

¢ Processes have different priorities (Normal, high...)

->Bandwidth management in a router

+ Delay sensitive traffic has higher priority

=>Find minimum spanning tree of a graph

->etc.

Now, let’s implement
a (Max)-Priority Queue

40 ->33 ->18 ->65->24 -> 25
Use an unsorted linked list

=2INSERT(Q, x) # x is a node

+ Just insert x at the head, which takes ©(1)

->IncreasePriority(Q, x, k)
+ Just change x.priority to k, which takes ©(1)
->Max(Q)

+Have to go through the whole list, takes ©(n)

->ExtractMax(Q)

+ Go through the whole list to find x with max priority
(O(n)), then delete it (O(1) if doubly linked) and
return it, so overall ©(n).

65 ->40->33 ->25->24 ->18
Use a reversely sorted linked list

->Max(Q)
o Just return the head of the list, ©(1)

->ExtractMax(Q)
+ Just delete and return the head, ©(1)

->INSERT(Q, x)
+Have to linearly search the correct location of
insertion which takes ©(n) in worst case.
->IncreasePriority(Q, x, k)

+ After increase, need to move element to a new
location in the list, takes ©(n) in worst case.

©(1) is fine, but ©(n) is kind-of bad...

unsorted linked list
sorted linked list

Can we link these elements in a smarter
way, so that we never need to do ©(n)?

Why does a sorted array also not work?

' C

Yes, we can!

Worst case running times

unsorted list sorted list Heap
Insert(Q, x) @(1) @(n) @(IOQ n)
Max(Q) @(n) @(1) @(1)
ExtractMax(Q) @(n) @(1) @(lOg n)
@ e() | o) S(log)

Binary Max-Heap

A binary max-heap is a
nearly-complete binary
tree that has the max-

heap property.

It’s a binary tree

Each node has at most 2 children

v vo Gv
“o%

It’s a nearly-complete binary tree

Each level is completely filled, except the bottom level
where nodes are filled to as far left as possible

v

X

Why is it important to be a
nearly-complete binary tree?

Because then we can store the tree in an
array, and each node knows which index has
its parent and its left/right child.

A B C D E F
Q index: 1 2 3 4 5 6
2 et =2

Q e e Right(i) = 2i + 1
Parent(i) = floor(i/2)

Assume index starts from 1

Why is it important to be a nearly-
complete binary tree?

Another reason:

The height of a complete binary tree with n
nodes is O(log n).

/N

This is essentially why those operations would
have O(log n) worst-case running time.

A thing to remember...

A heap is stored in an array.

Binary Max-Heap

A binary max-heap is a
nearly-complete binary
tree that has the max-

heap property.

Every node has key (priority) greater than or
equal to keys of its immediate children.

OROICRCRONORCKSD
() (») @@ v

The max-heap property

The max-heap property @ @

Every node has key (priority) greater than or
equal to keys of its immediate children.

N\

Implication: every node @

Is larger than or equal to @ e
all its descendants, I.e.,

every subtree of a heap @ @ @ @

IS also a heap.
2

We have a binary max-heap defined,
now let's do operations on it.

->Max(Q)

= Insert(Q, x)
->ExtractMax(Q)
->IncreasePriority(Q, X, k)

Max(Q)

Return the largest key in Q,
in O(1) time

Max(Q): return the maximum element

Return the root of the

heap, i.e.,

. Q 65 40 25 33 24 18
just return Q[1]

(index starts from 1) @

worst case 9(1) g @ e
oopasy @ @ @

Insert(Q, x)

Insert node x into heap Q,
in O(logn) time

Insert(Q, x): insert a node to a heap

First thing to note:

Which spot to add
the new node?

The only spot that
keeps it a complete
binary tree.

Increment heap size

Insert(Q, x): insert a node to a heap

Second thing to note:
Heap property might be
broken, how to fix it and
maintain the heap
property?

“‘Bubble-up” the new
node to a proper
position, by swapping
with parent.

Insert(Q, x): insert a node to a heap

Second thing to note:
Heap property might be
broken, how to fix it and
maintain the heap
property.

“‘Bubble-up” the new
node to a proper
position, by swapping
with parent.

Insert(Q, x): insert a node to a heap

Second thing to note: Worst-case:

Heap property might be O(height) = O(log n)
broken, how to fix it and
maintain the heap @

property. @ @
“‘Bubble-up” the new

node to a proper @ @ @ Q

position, by swapping

with parent. @ e @

ExtractMax(Q)

Delete and return the largest key in Q,
in O(logn) time

ExtractMax(Q): delete and return the
maximum element

First thing to note:
Which spot to remove?

The only spot that keeps
it a complete binary tree.

X

Decrement heap size

ExtractMax(Q): delete and return the
maximum element

First thing to note:

THIS guy’s key (root)
should be deleted.

Which spot to remove?

The only spot that keeps
it a complete binary tree.

But the last guy’s key

should NOT be deleted. —f T

Overwrite root with the

guy’'s key, then delete the last

last 65‘ 40 |28 |32 |33 |18 |20 | 12 3’*

guy (decrement heap size). Decrement heap size

ExtractMax(Q): delete and return the
maximum element

Now the heap °

ty is brok
again.... need to fix it OO
“Bubble-down” by @ @ ° @
swapping with... @

a child...

Which child to swap with? [© @

so that, after the swap, max-heap property is
satisfied

ge ="

The “elder” child!

because it is the largest among the three

ExtractMax(Q): delete and return the
maximum element

Now the heap
property is broken
again..., need to fix it.

“Bubble-down” by
swapping with

the elder child

ExtractMax(Q): delete and return the
maximum element

Now the heap @

ty is brok
again... need to fix it OO
“Bubble-down” by @ @ ° @

swapping with... @
the elder child

ExtractMax(Q): delete and return the
maximum element

Now the heap @

ty is brok
again.... need to fix it OO
“Bubble-down” by @ ° ° @
swapping with @

the elder child

Worst case running time: ©(height) + some constant work
O(log n)

Quick summary

Insert(Q, x):
->Bubble-up, swapping with parent

ExtractMax(Q)
->Bubble-down, swapping elder child

Bubble up/down is also called percolate up/down, or sift
up down, or tickle up/down, or heapify up/down, or
cascade up/down.

IncreasePriority(Q, x, k)

Increases the key of node x to Kk,
in O(logn) time

IncreasePriority(Q, x, k):
increase the key of node x to k

Just increase the key,
then...

Bubble-up by swapping
with parents, to proper
location.

Increase this
guy to 70

IncreasePriority(Q, x, k):
increase the key of node x to k

Just increase the key, °

then... @
Bubble-up by swapping /

with parents, to proper \ ° @

40
location.
32

Worst case running time: ©(height) + some constant work
O(log n)

Now we have learned how implement a priority

gueue using a heap
- Max(Q)

-> Insert(Q, x)

- ExtractMax(Q)

-> IncreasePriority(Q, X, k)

Next:
->How to use heap for sorting
->How to build a heap from an unsorted array

HeapSort

Sorts an array, in O(n logn) time

The idea

Worst-case running
time: each ExtractMax
iIs O(log n), we do it n
times, so overall it’s...
O(n logn)

How to get a sorted list
out of a heap with n
nodes?

Keep extracting max for
n times, the keys
extracted will be sorted
In non-ascending order.

Now let’s be more precise

What's needed: modify a max-heap-ordered
array into a non-descendingly sorted array

@ Before: 65 40 25 33 18 24

@ ©® ‘,

6 0 @ After: 18 24 24 25 40 65

We want to do this “in-place” without using any extra
array space, i.e., just by swapping things around.

Valid heaps are green rectangled

2% | Step 1: swap first (65) and

last (24), since the tail is
where 65 (max) belongs to.

\\

\

~<-Step 2: decrement heap size

\

ThIS node is like deleted from the

mot touched any more.

N

Step 3: fix the heap by
bubbling down 24

65 40 25 33 18
S—_ o
24 40 25 33 18 65
24 40 25 33 18 65
NAR— A
40 ‘ 33 ‘ ‘ 24 ‘ ;5::::;;::
~— JX
18 33 25 24 40
33 25 18 24 40 65
25 24 18 33 40 65
24 18 25 33 40 65
18 24 25 33 40 65
18 24 25 33 40 65

Repeat Step 1-3 until the array
Is fully sorted (at most n
iterations).

HeapSort, the pseudo-code

HeapSort(A)
‘’sort any array A into non-descending order

[Missing!
Lyismg ‘

BuildMaxHeap (A) # convert any array A into a heap-ordered one

swap A[1l] and A[1] # Step 1: swap the first and the last
A.size « A.size - 1 # Step 2: decrement size of heap
BubbleDown (A, 1) # Step 3: bubble down the 1st element in A

B @ Does it work?

It works for an array A that is initially heap-
ordered, it does work NOT for any array!

rd

BuildMaxHeap(A)

Converts an array into a max-heap ordered
array, in O(n) time

Convert any array into a heap ordered one

any array

18

33

25

65

24

40

In other words...

w—

—

heap ordered array

65

40

25

33

18

24

Idea #1

BuildMaxHeap(A):

B « empty array #empty heap
for x in A:

Insert(B, X) #heap insert
A « B # overwrite A with B

Running time:

Each Insert takes O(log n), there are n inserts...
so it's O(n log n), not very exciting.

Not in-place, needs a second array.

WIIA'I' IF‘I‘I\OIII YOU

-
-
.
-
n
y
! b

}

YOUCANDO BE'I"I'EII THAN THIS

Idea #2

Fix heap order, from bottom up.

Idea #2

Adjust heap order, from bottom up.

NOT a heap only because
root is out of order, so fix it
by bubble-down the root

Idea #2

Adjust heap order, from bottom up.

NOT a heap only because
root is out of order, so fix it

by bubble-down the root

Idea #2

Adjust heap order, from bottom up.

Idea #2

Adjust heap order, from bottom up.

NOT a heap only because
root is out of order, so fix it
by bubble-down the root

Idea #2

Adjust heap order, from bottom up.
NOT a heap only because

root is out of order, so fix it
6 by bubble-down the root

already a
fixed heap,
: not to worry
Iabout!

Idea #2

Adjust heap order, from bottom up.
NOT a heap only because

root is out of order, so fix it
by bubble-down the root 6

[

a H

NOT a heap only because

Idea #2 root is out of order, so fix it

by bubble-down the root

Adjust heap order, fronﬁo ‘om up.

7
AN

>
&)

@ @ @ @&
DEOOEOOOE® @

Idea #2

Adjust heap order, from bottom up.

We did nothing but @ Heap Built!

bubbling-down 2
- ! -

Idea #2: The starting index

e We started here,
1 where the index is

e floor(n/2)
2% '

SR COIN SO &

9 10 11 12 13 14 15

Idea #2: The starting index

Even the bottom

1 level is not fully

filled, we still start

2 e from floor(n/2)

a(7) 4= @' 7

6 @ ° G @ e We always start from
floor(n/2), and go

11 12 down to 1.

Idea #2: Pseudo-code!

BuildMaxHeap(A):

for 1 « floor(n/2) downto 1:
BubbleDown(A, 1)

Advantages of Idea #2:

-> It's in-place, no need for extra array (we did
nothing but bubble-down, which is basically
swappings).

-> It's worst-case running time is O(n)_instead of
O(n log n) of Idea #1. ﬁhy?

Analysis:
Worst-case running time of
BuildMaxHeap(A)

n/16 nodes, and #
of swaps per
bubble-down: =3

Intuition

A complete binary tree with n n

How many
levels?

~log n

n/8 nodes, and #
of swaps per
bubble-down: €2

of swaps per
bubble-down: 1

/
[p — -
0000000 Of

this level.

So, total number of swaps

T T T
Tn)=1-249." 13
(") T R T

logn

- Z 2@4—1 = Z 2@+1

—+ 00 . same trick as

1 /\ Week 1's sum
- Z 91+1
1=1 <

—n € 0 9 O

®
00000000

Zico1,. V2'= Zygq KXE,
when x=1/2

zk=0,1’" k Xk — X/(1'X)A2

SO 5.4 /2= 1/2/(1-1/2)2 = 2

(BUILDMAX HERP
)

’
. .
.~
.
.
\. A
\

YOU BAN DOIN lINEAR TIME

Summary

HeapSort(A):
->Sort a heap-ordered array in-place
->0(n log n) worst-case running time
BuildMaxHeap(A):
->Convert an unsorted array into a heap, in-
place
->Fix heap property from bottom up, do
bubbling down on each sub-root
->0(n) worst-case running time

Algorithm visualizer

http://visualgo.net/heap.html

Next week

=>ADT: Dictionary

->Data structure: Binary Search Tree

