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Why take CSC263? 

To land a job! 



Scenario: The interview 
Interviewer: You are given a set of courses, like CSC165, STA247, CSC263, 
CSC373,  where each course stores a list of prerequisites. Devise an algorithm 
that returns a valid ordering of taking these courses. 
 
You: (think for 1 minute… ) Here is my algorithm: 
➔  For a valid ordering to exist, there must be a course X that has no 

prerequisite. 
➔  I choose X first, remove X from the set of courses, then remove X from all 

other courses’ prerequisite list. 
➔  Find the next course in the set that has no prerequisite. 
➔  Repeat this until all courses are removed from the set. 

 
 



SHUT UP AND GO HOME! 



Scenario: The interview, Take 2 
Interviewer: You are given a set of courses, like CSC165, STA247, CSC263, 
CSC373,  where each course stores a list of prerequisites. Devise an algorithm 
that produces a valid ordering of taking these courses. 
 
You: This is a topological sort problem which can be solved using DFS. 





Data structures are smart ways of organizing 
data, based on which we can develop efficient 
algorithms easily, in ways that people who don’t 
take CSC263 can’t even imagine. 
 
Design algorithms like a pro. 



“Bad programmers worry about the code.  
Good programmers worry about the data 
structures and their relationships.”        

   -- Linus Torvalds 



What’s in CSC263? 



(1) Data structures 
 
and 
 
(2) Analysis 



What data structures 

➔ Heaps 

➔ Binary search trees 

➔ Balanced search trees 

➔ Hash tables 

➔ Disjoint set forest 

➔ Graphs (matrix, lists) 

➔ ... 



What data structures 

Ways of storing and organizing data to facilitate 
access and modifications. 
 
We learn the strength and limitations of each 
data structure, so that we know which one to 
use. 



(1) Data structures 
 
and 
 
(2) Analysis 



What analyses 

➔ Worst-case analysis 

➔ Average-case analysis 

➔ Amortized analysis 

➔ Expected worst-case analysis for 
randomized algorithms 

➔ ... 
Math and proofs 



 
Data structures are fun to learn,  
 
but analyses are more important. 

Secret Truth 



Cooking 



A data structure is like a dish. 
 

The analysis is to know the effect of each 
ingredient. 

Analyses enable you to  
invent your own dish. 



Background (Required) 

➔ Theory of computation 
◆ Inductions 
◆ Recursive functions, Master Theorem 
◆ Asymptotic notations, “big-Oh” 

 
➔ Probability theory 
◆ Probabilities and counting 
◆ Random variables 
◆ Distribution 
◆ Expectations 



How to do well in CSC263? 



First of all... 

Be interested. 



www.cs.toronto.edu/~toni/Courses/263-2015 

Course Web Page 

Lecture notes / slides (and everything else) 
will be posted at the course web page. 



Textbook: “CLRS” 
Second and third 
editions are both 
fine. 
 
Available online at 
UofT library 
 
Reading for each 
week is on course 
info sheet. 



Lectures  

➔ Wed 10-12 in RW 117 
➔ Wed 2-4 in WI 1016 
➔ Learn stuff 

   

Practices for homeworks and exams. 
  Tutorials are as important as lectures. 

Starting this week! 

Exception: No tutorial on 
Oct 23, Dec 2 

Tutorials  



A tip for lectures and tutorials... 

Get involved in classroom interactions 
➔ answering a question 
➔ making a guess / bet / vote 
➔ back-of-the envelope calculations 

Emotional involvement makes 
the brain remember better! 





Course Forum 
piazza.com/utoronto.ca/fall2015/csc263h1	
  
	
  
Use UToronto email to sign-up. 

For discussions among students, instructors will be there 
answering questions, too. Very helpful. 

Communicate intelligently! 

Don’t discuss homework solutions before due dates. 



Office Hours 

Wednesdays 12:15pm – 1:45pm 
Location: SF2305A 
 
Fridays 2-3pm, Mondays 6-7pm 
Location Pratt 266 

•  They are very helpful and NOT scary at all! 
•  Statistically, students who go to office hours get higher 

grades. 
•  Additional office hours Friday and Mondays before 

assignments are due (CHECK WEBPAGE!) 



Marking Scheme 

 
➔ 5 assignments:   40% = 8% x 5 
➔ 1 midterm:    20% 
➔ 1 final exam:   40% 
➔ TOTAL    100%   

    
 
Must get at least 40% on the final to pass. 



Assignments (5 of them)  

➔  You may work  individually or in groups of up to 4 
students 

➔  Submissions need to be typed into a PDF file and 
submitted to MarkUS (link at course web page). 

➔  Due dates are Tuesdays 5:59pm 

➔  Late assignments: You will receive 4 tokens, each worth 
6 hours of lateness. If your group submits late, everyone 
in the group will use up tokens. 

➔  Collaborate intelligently! (so that everyone can pass 
exam) 



about typing 

LaTeX is beautiful and strongly recommended 

➔ We will post our TeX source files, which you can use as 
templates. 

➔ Many tutorials online. e.g.,  

      http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/ 

➔  Handy tools that do everything in the browser 

◆  www.sharelatex.com 

◆ www.writelatex.com 

 



Problem Set 1 is out today! 
 
Due Tuesday (Sept 29) 



Exams 
Midterm: 
Thursday, October 22, 8-9pm. 
 
Fill out the form (see course webpage, under Tests) if 
you have a time conflict, by Sept 25. 
 
Final exam: 
Date to be announced. 



Feedback 

Feedback at any time is encouraged and appreciated. 
➔  Things you like to have more of. 
➔  Things you want to have less of. 
➔  A topic that you feel difficult to understand. 
➔  Anything else related to the course. 
 
 
 



Learn from 
yesterday, live for 
today, hope for 
tomorrow. The 
important thing is to  
tell people how you 
feel, once every 
week. 



Checklist: How to do well 
➔  Be interested. 

➔  Check course web page regularly. 

➔ Go to lectures. 

➔ Go to tutorials. 

➔  Read textbook and notes. 

➔  Discuss on Piazza. 

➔  Feel free to go to office hours. 

➔ Work on homeworks, and submit on time. 

➔  Do well in exams. 





Abstract Data Types (ADT)  
and Data Structures 



Two related but different concepts 

In short, 
➔ ADT describes what (the interface) 
◆ what data is stored 
◆ what operation is supported 

 
➔ Data structure describes how (the 

implementation) 
◆ how the data is store 
◆ how to perform the operations 



Real-life example 
ADT 
➔  It stores ice cream. 
➔  Supported operations: 

◆ start getting ice cream 
◆ stop getting ice cream 

Data structures 
➔  How ice cream is stored. 
➔  How are the start and stop 

operations implemented. 

➔  It’s the inside of the machine 



A CS example 

Stack is an ADT 
➔  It stores a list of elements 
➔  supports PUSH(S, v), POP(S), IS_EMPTY(S) 
 
Data structures that can used to implement Stack 
➔  Linked list 

◆  PUSH: insert at head of the list 
◆ POP: remove at head of the list (if not empty) 
◆ IS_EMPTY: return “head == None” 

➔  Array with a counter (for size of stack) also works 



In CSC263, we will learn many ADTs and many 
data structures for implementing these ADTs. 



Review: 
Algorithm Complexity 



Complexity 

Amount of resource required by an algorithm, measured 
as a function of the input size. 

Time Complexity 

➔  Number of steps (“running time”) executed by an 
algorithm 

Space Complexity 

➔  Number of units of space required by an algorithm 

◆  e.g., number of elements in a list 

◆ number of nodes in a tree / graph 

In CSC263 we will be dealing with 
time complexity most of the time. 



Example: search a linked list 
SearchFortyTwo(L):	
  
1.	
  	
  	
  z	
  =	
  L.head	
  
2.	
  	
  	
  while	
  z	
  !=	
  None	
  and	
  z.key	
  !=	
  42:	
  
3.	
  	
  	
  	
  	
  	
  z	
  =	
  z.next	
  
4.	
  	
  	
  return	
  z	
  

Let input L = 41 -> 51 -> 12 -> 42 -> 20 -> 88 
How many times Line #2 will be executed? 
    4 
Now let L = 41 -> 51 -> 12 -> 24 -> 20 -> 88 
How many times Line #2 will be run? 
    7  (the last one is z == None) 



Note 

Running time can be measure by counting the 
number of times all lines are executed, or the 
number of times some lines (such as Line #2 
in LinkedSearch) are executed. 
 
It’s up to the problem, or what the question 
asks. 



best-case  
worst-case  

average-case 



Worst-case running time 

➔  tA(x): the running time of algorithm A with input x 
➔  If it is clear what A is, we can simply write t(x) 
➔  The worst-case running time T(n) is defined as 

Slow is bad! 

“worst-case” is the case with the longest running time. 



Best-case running time 

Similarly to worst-case, best-case is the case with the 
shortest running time.  
 
 
 

Best case is not very interesting, and is rarely studied. 
 
 
 Because we should prepare for the worst, 
not the best! 



Example: Search a linked list, again 

What is the worst-case running time among all 
possible L with length n , i.e., T(n)? 

SearchFortyTwo(L):	
  
1.	
  	
  	
  z	
  =	
  L.head	
  
2.	
  	
  	
  while	
  z	
  !=	
  None	
  and	
  z.key	
  !=	
  42:	
  
3.	
  	
  	
  	
  	
  	
  z	
  =	
  z.next	
  
4.	
  	
  	
  return	
  z	
  

     T(n) = n + 1  
the case where 42 is not in L (compare all n nodes plus a 
final None) 



Average-case running time 

In reality, the running time is NOT always the 
best case, and is NOT always the worst case. 
 
The running time is “distributed” between the 
best and the worst. 
 
For our SearchFortyTwo(L) algorithm the 
running time is distributed between … 
       1 and n+1, inclusive 



Average-case running time 
So, the average-case running time is the 
expectation of the running time which is distributed 
between 1 and n+1, i.e.,... 
Let tn be a random variable whose possible values 
are between 1 and n+1 

We need to know this! 



Average-case running time 

To know Pr( tn = t ), we need to be given the 
probability distribution of the inputs, i.e., how 
inputs are generated (following what 
distribution). 

Now I give you one: 
For each key in the linked list, we pick an 
integer between 1 and 100 (inclusive), 
uniformly at random. 



For each key in the linked list, we pick an integer between 
1 and 100 (inclusive), uniformly at random. 
What is …. when head is 42 

head is not 42 and 
the second one is 

Figure out Pr( tn = t ) 

None of the n 
keys is 42. 

the first t keys are not 
42 and the t-th is 

... 



Now we are ready to compute the average-
case running time -- E[tn] 

This sum needs a bit of 
a trick, but can be done! 



Calculate the sum (after-class reading) 

sum of geometric series  

take the difference of the above two equations 

You should be comfortable with this type of calculations. 



The final result 

If n = 0, then E[tn] = 1, since it’s always 1 comparison 

If n is very large (e.g., 1000000), E[tn] is close to 100, i.e., 
the algorithm is expected to finish within 100 comparisons, 
even if the worse-case is 1000000 comps. 

Input distribution: for each key in the linked list, we pick an integer between 
1 and 100 (inclusive), uniformly at random. 
 
The average-case running time of SearchFortyTwo(L) 
(measured by counting Line #2) is:  





asymptotic 

upper bound 
tight bound 
lower bound 



Asymptotic notations 

O( f(n) ): the set of functions that grow  
no faster than f(n) 
➔ if g ∈ O(f), then we say  g is asymptotically 

upper bounded by f 
 
Ω( f(n) ): the set of functions that grow  
no slower than f(n) 
➔ if g ∈ Ω(f), then we say  g is asymptotically 

lower bounded by f 



Asymptotic notations 

if g ∈ O(f) and g ∈ Ω(f), 
then we say g ∈ Θ(f)  
 
Θ( f(n) ): the set of functions that grow  
no slower and no faster than f(n) 
 
we call it the tight bound. 



The ideas behind asymptotic notations 

➔ We only care about the rate of growth, so 
constant factors don’t matter. 
◆ 100n² and n² have the same rate of growth (both are 

quadrupled when n is doubled) 

 
➔ We only care about large inputs, so only 

the highest-degree term matters 
◆ n² and n² + 263n + 3202 are the nearly the same 

when n is very large 



growth rate ranking of typical functions 

grow slowly 

grow fast 



a high-level look at asymptotic notations 

It is a simplification of the “real” running time 

➔  it does not tell the whole story about how fast a program 
runs in real life.  

◆ in real-world applications, constant factor matters! 
hardware matters! implementation matters! 

➔  this simplification makes possible the development of 
the whole theory of computational complexity.  

◆  HUGE idea! 





O is for describing worst-case running time 
 
Ω is for describing best-case running time 



O and Ω can both be used to upper-bound and 
lower-bound the worst-case running time 
 
O and Ω can both be used to upper-bound and 
lower-bound the best-case running time 
 
O and Ω can both be used to upper-bound and 
lower-bound the average-case running time 



How to argue algorithm A(x)’s worst-
case running time is in O(n²) 

We need to argue that, ___________________ 
input x of size n, the running time of A with 
input x, i.e., t(x) is ______________ than cn², 
where c > 0 is a constant. 

A. for every 
B. there exists an 
C. no larger 
D. no smaller 

for every 

no larger 



think about the commuting time from school 
to home every day 

“even the worst day is less than 2 hours” 

that means every day is less than 2 hours 



We need to argue that, ___________________ 
input x of size n, the running time of A with 
input x, i.e., t(x) is ______________ than cn², 
where c > 0 is a constant. 

How to argue algorithm A(x)’s worst-
case running time is in Ω(n²) 

there exists an 

no smaller 

A. for every 
B. there exists an 
C. no larger 
D. no smaller 



“the worst day is more than 2 hours” 

“Last Friday it took 4 hours, and it was not 
even the worst day!” 



We need to argue that, ___________________ 
input x of size n, the running time of A with 
input x, i.e., t(x) is ______________ than cn², 
where c > 0 is a constant. 

How to argue algorithm A(x)’s best-
case running time is in O(n²) 

there exists an 

no larger 

A. for every 
B. there exists an 
C. no larger 
D. no smaller 



We need to argue that, ___________________ 
input x of size n, the running time of A with 
input x, i.e., t(x) is ______________ than cn², 
where c > 0 is a constant. 

A. for every 
B. there exists an 
C. no larger 
D. no smaller 

How to argue algorithm A(x)’s best-
case running time is in Ω(n²) 

for every 

no smaller 



In CSC263 

➔ Most of the time, we study the upper-bound 
on worst-case running time. 

 
➔ Sometimes we try to get a tight bound Θ if 

we can 
 
➔ Sometimes we study the upper bound on 

average-case running time. 



Note: exact form & asymptotic notations 

In CSC263 homework and exam questions, 
sometimes we ask you to express running time 
in exact forms, and sometime we ask you to 
express running time in asymptotic notations, 
so always read the question carefully. 



If you feel rusty with probabilities, please read 
the Appendix C of the textbook. It is only about 
20 pages, and is highly relevant to what we 
need for CSC263. 
 
Appendix A and B are also worth reading. 



next week  

ADT: Priority queue 
Data structure: Heap 


