
Data Structures and Analysis

CSC263 Fall 2015

Toniann Pitassi

Email: toni@cs.toronto.edu

BIG THANKS TO: Larry Zhang

 (for his amazing slides)

The teaching team

Professor:
➔  Toniann Pitassi

Tas:
Daniel Hidru Dhyey Sejpal
Lalla Mouatadid Noah Fleming
Majid Komeili Pan Zhang
Ladislav Rampasek Robert Robere

Why take CSC263?

What is in CSC263?

How to do well in CSC263?

Outline for today

Why take CSC263?

To land a job!

Scenario: The interview
Interviewer: You are given a set of courses, like CSC165, STA247, CSC263,
CSC373, where each course stores a list of prerequisites. Devise an algorithm
that returns a valid ordering of taking these courses.

You: (think for 1 minute…) Here is my algorithm:
➔  For a valid ordering to exist, there must be a course X that has no

prerequisite.
➔  I choose X first, remove X from the set of courses, then remove X from all

other courses’ prerequisite list.
➔  Find the next course in the set that has no prerequisite.
➔  Repeat this until all courses are removed from the set.

SHUT UP AND GO HOME!

Scenario: The interview, Take 2
Interviewer: You are given a set of courses, like CSC165, STA247, CSC263,
CSC373, where each course stores a list of prerequisites. Devise an algorithm
that produces a valid ordering of taking these courses.

You: This is a topological sort problem which can be solved using DFS.

Data structures are smart ways of organizing
data, based on which we can develop efficient
algorithms easily, in ways that people who don’t
take CSC263 can’t even imagine.

Design algorithms like a pro.

“Bad programmers worry about the code.
Good programmers worry about the data
structures and their relationships.”

 -- Linus Torvalds

What’s in CSC263?

(1) Data structures

and

(2) Analysis

What data structures

➔ Heaps

➔ Binary search trees

➔ Balanced search trees

➔ Hash tables

➔ Disjoint set forest

➔ Graphs (matrix, lists)

➔ ...

What data structures

Ways of storing and organizing data to facilitate
access and modifications.

We learn the strength and limitations of each
data structure, so that we know which one to
use.

(1) Data structures

and

(2) Analysis

What analyses

➔ Worst-case analysis

➔ Average-case analysis

➔ Amortized analysis

➔ Expected worst-case analysis for
randomized algorithms

➔ ...
Math and proofs

Data structures are fun to learn,

but analyses are more important.

Secret Truth

Cooking

A data structure is like a dish.

The analysis is to know the effect of each
ingredient.

Analyses enable you to
invent your own dish.

Background (Required)

➔ Theory of computation
◆ Inductions
◆ Recursive functions, Master Theorem
◆ Asymptotic notations, “big-Oh”

➔ Probability theory
◆ Probabilities and counting
◆ Random variables
◆ Distribution
◆ Expectations

How to do well in CSC263?

First of all...

Be interested.

www.cs.toronto.edu/~toni/Courses/263-2015

Course Web Page

Lecture notes / slides (and everything else)
will be posted at the course web page.

Textbook: “CLRS”
Second and third
editions are both
fine.

Available online at
UofT library

Reading for each
week is on course
info sheet.

Lectures

➔ Wed 10-12 in RW 117
➔ Wed 2-4 in WI 1016
➔ Learn stuff

Practices for homeworks and exams.
 Tutorials are as important as lectures.

Starting this week!

Exception: No tutorial on
Oct 23, Dec 2

Tutorials

A tip for lectures and tutorials...

Get involved in classroom interactions
➔ answering a question
➔ making a guess / bet / vote
➔ back-of-the envelope calculations

Emotional involvement makes
the brain remember better!

Course Forum
piazza.com/utoronto.ca/fall2015/csc263h1	

	

Use UToronto email to sign-up.

For discussions among students, instructors will be there
answering questions, too. Very helpful.

Communicate intelligently!

Don’t discuss homework solutions before due dates.

Office Hours

Wednesdays 12:15pm – 1:45pm
Location: SF2305A

Fridays 2-3pm, Mondays 6-7pm
Location Pratt 266

•  They are very helpful and NOT scary at all!
•  Statistically, students who go to office hours get higher

grades.
•  Additional office hours Friday and Mondays before

assignments are due (CHECK WEBPAGE!)

Marking Scheme

➔ 5 assignments: 40% = 8% x 5
➔ 1 midterm: 20%
➔ 1 final exam: 40%
➔ TOTAL 100%

Must get at least 40% on the final to pass.

Assignments (5 of them)

➔  You may work individually or in groups of up to 4
students

➔  Submissions need to be typed into a PDF file and
submitted to MarkUS (link at course web page).

➔  Due dates are Tuesdays 5:59pm

➔  Late assignments: You will receive 4 tokens, each worth
6 hours of lateness. If your group submits late, everyone
in the group will use up tokens.

➔  Collaborate intelligently! (so that everyone can pass
exam)

about typing

LaTeX is beautiful and strongly recommended

➔ We will post our TeX source files, which you can use as
templates.

➔ Many tutorials online. e.g.,

 http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/

➔  Handy tools that do everything in the browser

◆  www.sharelatex.com

◆ www.writelatex.com

Problem Set 1 is out today!

Due Tuesday (Sept 29)

Exams
Midterm:
Thursday, October 22, 8-9pm.

Fill out the form (see course webpage, under Tests) if
you have a time conflict, by Sept 25.

Final exam:
Date to be announced.

Feedback

Feedback at any time is encouraged and appreciated.
➔  Things you like to have more of.
➔  Things you want to have less of.
➔  A topic that you feel difficult to understand.
➔  Anything else related to the course.

Learn from
yesterday, live for
today, hope for
tomorrow. The
important thing is to
tell people how you
feel, once every
week.

Checklist: How to do well
➔  Be interested.

➔  Check course web page regularly.

➔ Go to lectures.

➔ Go to tutorials.

➔  Read textbook and notes.

➔  Discuss on Piazza.

➔  Feel free to go to office hours.

➔ Work on homeworks, and submit on time.

➔  Do well in exams.

Abstract Data Types (ADT)
and Data Structures

Two related but different concepts

In short,
➔ ADT describes what (the interface)
◆ what data is stored
◆ what operation is supported

➔ Data structure describes how (the

implementation)
◆ how the data is store
◆ how to perform the operations

Real-life example
ADT
➔  It stores ice cream.
➔  Supported operations:

◆ start getting ice cream
◆ stop getting ice cream

Data structures
➔  How ice cream is stored.
➔  How are the start and stop

operations implemented.

➔  It’s the inside of the machine

A CS example

Stack is an ADT
➔  It stores a list of elements
➔  supports PUSH(S, v), POP(S), IS_EMPTY(S)

Data structures that can used to implement Stack
➔  Linked list

◆  PUSH: insert at head of the list
◆ POP: remove at head of the list (if not empty)
◆ IS_EMPTY: return “head == None”

➔  Array with a counter (for size of stack) also works

In CSC263, we will learn many ADTs and many
data structures for implementing these ADTs.

Review:
Algorithm Complexity

Complexity

Amount of resource required by an algorithm, measured
as a function of the input size.

Time Complexity

➔  Number of steps (“running time”) executed by an
algorithm

Space Complexity

➔  Number of units of space required by an algorithm

◆  e.g., number of elements in a list

◆ number of nodes in a tree / graph

In CSC263 we will be dealing with
time complexity most of the time.

Example: search a linked list
SearchFortyTwo(L):	

1.	
 	
 	
 z	
 =	
 L.head	

2.	
 	
 	
 while	
 z	
 !=	
 None	
 and	
 z.key	
 !=	
 42:	

3.	
 	
 	
 	
 	
 	
 z	
 =	
 z.next	

4.	
 	
 	
 return	
 z	

Let input L = 41 -> 51 -> 12 -> 42 -> 20 -> 88
How many times Line #2 will be executed?
 4
Now let L = 41 -> 51 -> 12 -> 24 -> 20 -> 88
How many times Line #2 will be run?
 7 (the last one is z == None)

Note

Running time can be measure by counting the
number of times all lines are executed, or the
number of times some lines (such as Line #2
in LinkedSearch) are executed.

It’s up to the problem, or what the question
asks.

best-case
worst-case

average-case

Worst-case running time

➔  tA(x): the running time of algorithm A with input x
➔  If it is clear what A is, we can simply write t(x)
➔  The worst-case running time T(n) is defined as

Slow is bad!

“worst-case” is the case with the longest running time.

Best-case running time

Similarly to worst-case, best-case is the case with the
shortest running time.

Best case is not very interesting, and is rarely studied.

 Because we should prepare for the worst,
not the best!

Example: Search a linked list, again

What is the worst-case running time among all
possible L with length n , i.e., T(n)?

SearchFortyTwo(L):	

1.	
 	
 	
 z	
 =	
 L.head	

2.	
 	
 	
 while	
 z	
 !=	
 None	
 and	
 z.key	
 !=	
 42:	

3.	
 	
 	
 	
 	
 	
 z	
 =	
 z.next	

4.	
 	
 	
 return	
 z	

 T(n) = n + 1
the case where 42 is not in L (compare all n nodes plus a
final None)

Average-case running time

In reality, the running time is NOT always the
best case, and is NOT always the worst case.

The running time is “distributed” between the
best and the worst.

For our SearchFortyTwo(L) algorithm the
running time is distributed between …
 1 and n+1, inclusive

Average-case running time
So, the average-case running time is the
expectation of the running time which is distributed
between 1 and n+1, i.e.,...
Let tn be a random variable whose possible values
are between 1 and n+1

We need to know this!

Average-case running time

To know Pr(tn = t), we need to be given the
probability distribution of the inputs, i.e., how
inputs are generated (following what
distribution).

Now I give you one:
For each key in the linked list, we pick an
integer between 1 and 100 (inclusive),
uniformly at random.

For each key in the linked list, we pick an integer between
1 and 100 (inclusive), uniformly at random.
What is …. when head is 42

head is not 42 and
the second one is

Figure out Pr(tn = t)

None of the n
keys is 42.

the first t keys are not
42 and the t-th is

...

Now we are ready to compute the average-
case running time -- E[tn]

This sum needs a bit of
a trick, but can be done!

Calculate the sum (after-class reading)

sum of geometric series

take the difference of the above two equations

You should be comfortable with this type of calculations.

The final result

If n = 0, then E[tn] = 1, since it’s always 1 comparison

If n is very large (e.g., 1000000), E[tn] is close to 100, i.e.,
the algorithm is expected to finish within 100 comparisons,
even if the worse-case is 1000000 comps.

Input distribution: for each key in the linked list, we pick an integer between
1 and 100 (inclusive), uniformly at random.

The average-case running time of SearchFortyTwo(L)
(measured by counting Line #2) is:

asymptotic

upper bound
tight bound
lower bound

Asymptotic notations

O(f(n)): the set of functions that grow
no faster than f(n)
➔ if g ∈ O(f), then we say g is asymptotically

upper bounded by f

Ω(f(n)): the set of functions that grow
no slower than f(n)
➔ if g ∈ Ω(f), then we say g is asymptotically

lower bounded by f

Asymptotic notations

if g ∈ O(f) and g ∈ Ω(f),
then we say g ∈ Θ(f)

Θ(f(n)): the set of functions that grow
no slower and no faster than f(n)

we call it the tight bound.

The ideas behind asymptotic notations

➔ We only care about the rate of growth, so
constant factors don’t matter.
◆ 100n² and n² have the same rate of growth (both are

quadrupled when n is doubled)

➔ We only care about large inputs, so only

the highest-degree term matters
◆ n² and n² + 263n + 3202 are the nearly the same

when n is very large

growth rate ranking of typical functions

grow slowly

grow fast

a high-level look at asymptotic notations

It is a simplification of the “real” running time

➔  it does not tell the whole story about how fast a program
runs in real life.

◆ in real-world applications, constant factor matters!
hardware matters! implementation matters!

➔  this simplification makes possible the development of
the whole theory of computational complexity.

◆  HUGE idea!

O is for describing worst-case running time

Ω is for describing best-case running time

O and Ω can both be used to upper-bound and
lower-bound the worst-case running time

O and Ω can both be used to upper-bound and
lower-bound the best-case running time

O and Ω can both be used to upper-bound and
lower-bound the average-case running time

How to argue algorithm A(x)’s worst-
case running time is in O(n²)

We need to argue that, ___________________
input x of size n, the running time of A with
input x, i.e., t(x) is ______________ than cn²,
where c > 0 is a constant.

A. for every
B. there exists an
C. no larger
D. no smaller

for every

no larger

think about the commuting time from school
to home every day

“even the worst day is less than 2 hours”

that means every day is less than 2 hours

We need to argue that, ___________________
input x of size n, the running time of A with
input x, i.e., t(x) is ______________ than cn²,
where c > 0 is a constant.

How to argue algorithm A(x)’s worst-
case running time is in Ω(n²)

there exists an

no smaller

A. for every
B. there exists an
C. no larger
D. no smaller

“the worst day is more than 2 hours”

“Last Friday it took 4 hours, and it was not
even the worst day!”

We need to argue that, ___________________
input x of size n, the running time of A with
input x, i.e., t(x) is ______________ than cn²,
where c > 0 is a constant.

How to argue algorithm A(x)’s best-
case running time is in O(n²)

there exists an

no larger

A. for every
B. there exists an
C. no larger
D. no smaller

We need to argue that, ___________________
input x of size n, the running time of A with
input x, i.e., t(x) is ______________ than cn²,
where c > 0 is a constant.

A. for every
B. there exists an
C. no larger
D. no smaller

How to argue algorithm A(x)’s best-
case running time is in Ω(n²)

for every

no smaller

In CSC263

➔ Most of the time, we study the upper-bound
on worst-case running time.

➔ Sometimes we try to get a tight bound Θ if

we can

➔ Sometimes we study the upper bound on

average-case running time.

Note: exact form & asymptotic notations

In CSC263 homework and exam questions,
sometimes we ask you to express running time
in exact forms, and sometime we ask you to
express running time in asymptotic notations,
so always read the question carefully.

If you feel rusty with probabilities, please read
the Appendix C of the textbook. It is only about
20 pages, and is highly relevant to what we
need for CSC263.

Appendix A and B are also worth reading.

next week

ADT: Priority queue
Data structure: Heap

