
CSC 263 H1 Assignment # 3 Fall 2015

Worth: 8% Due: By 5:59pm on Tuesday 3 November

Remember to write the full name and student number of every group member prominently on
your submission.

Please read and understand the policy on Collaboration given on the Course Information Sheet.
Then, to protect yourself, list on the front of your submission every source of information you used
to complete this homework (other than your own lecture and tutorial notes). For example, indicate
clearly the name of every student from another group with whom you had discussions, the title
and sections of every textbook you consulted (including the course textbook), the source of every
web document you used (including documents from the course webpage), etc.

For each question, please write up detailed answers carefully. Make sure that you use notation
and terminology correctly, and that you explain and justify what you are doing. Marks will be
deducted for incorrect or ambiguous use of notation and terminology, and for making incorrect,
unjustified, ambiguous, or vague claims in your solutions.

1. Give an algorithm for the following problem. The input is a sequence of n numbers {x1,x2, . . . ,xn},
another sequence of n numbers {y1, y2, . . . , yn}, and a number z. Your algorithm should determine
whether or not z ∈ {xi + yj | 1 ≤ i, j ≤ n}. You should use universal hashing families, and your
algorithm should run in expected time O(n).

Provide justification that your algorithm is correct and runs in the required time. Be very clear
about which theorems from class and/or the text you are using, and how.

2. We can implement a queue Q using two stacks H and T as follows: Think of the stack T as
containing the “tail” of the queue (i.e., the recently inserted items), with the most recently inserted
item at the top. Think of the stack H as containing the “head” of the queue (i.e., the older
items), with the oldest item of the queue at the top. Conceptually, Q consists of T and H placed
“back-to-back”.

To EnQueue an item x on Q, we actually Push x into T . To DeQueue an item, we Pop H , provided
H is not empty. If H is empty, we transfer the items of T to H (by popping each item of T and then
pushing it into H), and then Pop H .

These algorithms are given below in pseudo-code. (We assume that initially the stacks H and T
are empty, and that the function StackEmpty(T ) returns true if T is an empty stack and false
otherwise.)

EnQueue(Q,x) DeQueue(Q)
Push(T ,x) if StackEmpty(H) then

loop
exit when StackEmpty(T )
x := Pop(T )
Push(H,x)

end loop
end if
return Pop(H)

Dept. of Computer Science, University of Toronto, St. George Campus page 1 of 2



CSC 263 H1 Assignment # 3 Fall 2015

Assume that each Push, Pop and StackEmpty operation takes Θ(1) time.

(a) What is the worst-case time complexity of a single operation in a sequence of m EnQueue and
DeQueue operations? Derive matching upper and lower bounds. That is, define an initial
situation by describing what H and T look like at the start, and then define a sequence of m
operations, where the sequence consists of EnQueue’s and DeQueue’s. Then show that one of
the operations in the sequence (probably the last operation) will have the claimed worst-case
time. For the upper bound, show that no operation in any m-operation sequence can ever take
more time than the claimed worst-case time.

(b) Use the accounting method to prove that the amortised time complexity of each operation in
a sequence of m EnQueue and DeQueue operations is O(1).
To solve this problem, first give a credit scheme indicating how many credits to allocate to
each EnQueue and DeQueue operataion. Secondly, state the credit invariant, and thirdly,
prove the credit invariant.

3. Recall that the doubling method enables the implementation of a stack without placing a limit on
the size of the stack, such that the amortized complexity of each operation is O(1). Every time the
array gets full, a new array is allocated whose size is twice the size of the old array, and the old
array is copied to the new array.

(a) Suppose we change the implementation so that the size of the new array is 3/2 times the size
of the old array. What is the time complexity of a sequence of m operations in the worst-case?
Justify your answer.

(b) Suppose we change the implemntation so that the size of the new array is 50 plus the size of
the old array. What is the time complexity of a sequence of m operations in the worst-case?
Justify your answer.

Dept. of Computer Science, University of Toronto, St. George Campus page 2 of 2


