CS 263
Data Structures
ASSIGNMENT \# 2

DUE DATE: Tuesday, October 22, 2013

If you are working in a group of 2 or three, please submit one copy with all of your names and student numbers on each sheet. Please use a fresh sheet of paper for each question.

1. Question 2 from Homework 1. (I gave you an extension on this question.)

Solution: Assume that N the number of elements stored is equal to $2^{n}-1$. Take an array where the top $\log n-1$ levels have key $k=2$ and then the last $n^{\text {th }}$ level has one 2 , followed by all 1 's.
For example: Take $N=31=2^{5}-1$ (so $\left.n=5\right)$. This is what the heap originally looks like:
Consider what happens when we do the first 2^{n-1} DeleteMax moves. In our example, this is the first 16 DeleteMax moves. This will remove all elements with key 2 from the tree and since the tree always stays perfectly balanced, and what we are left with should be a balanced tree of height $n-1$ consisting of only keys with value 1 . In our case, a height 4 tree consisting of ALL 1's.

In particular, at this point in the algorithm, the last level, the $(n-1)^{s t}$ level, is all 1's. But how did these 1's get there? These got there by first putting them at the root and then bubbling them all the way down to level $n-1$. So all of these elements at level $n-1$ should each require $(n-1)$ swaps in order to bubble them down from the root. In our example there are 8 of them and in general there are 2^{n-2} of them, and each of them requires $(n-1)$ swaps for a total of $2^{n-2}(n-1)=\Omega\left(n 2^{n}\right)=\Omega(N \log N)$ steps.
2. Suppose 3 values A, B, and C are chosen uniformly and independently from the set of integers $\{1, \ldots, r\}$, where $r \geq 1$.
(a) What is the probability that all three values are the same? Briefly justify your answer.

Solution:

$\frac{1}{r^{2}}=\frac{1}{r} \times \frac{1}{r}$.
Once the value for A has been chosen, the probability that B has the same value is $1 / r$. The same is true for C. Since these are independent random variables, we can simply multiply the probabilities.
Alternatively, there are r^{3} triples of elements, each with the same probability. Of these, r triples have all three values the same. Thus the probability is $\frac{r}{r^{3}}=\frac{1}{r^{2}}$.
(b) What is the probability that all three values are different? Briefly justify your answer.

Solution:

$\frac{(r-1)(r-2)}{r^{2}}$.
Once the value for A has been chosen, the probability that B has a different value is $(r-1) / r$. Once different values for A and B have been chosen, the probability that C has a different value is $(r-2) / r$. Then $\operatorname{Pr}[A, B, C$ distinct $]=\operatorname{Pr}[A \neq B] \cdot \operatorname{Pr}[A, B, C$ distinct $\mid A \neq B]=\frac{r-1}{r} \cdot \frac{r-2}{r}$.
Alternatively, of the r^{3} triples of elements, there are r ways to choose $A, r-1$ ways to choose B different from A and $r-2$ ways to choose C different from A and B. Thus the probability is $\frac{r(r-1)(r-2)}{r^{3}}=\frac{(r-1)(r-2)}{r^{2}}$.
(c) What is the expected number of different values? Briefly justify your answer.

Solution:

The probability that there are two different values is $1-\frac{1}{r^{2}}-\frac{(r-1)(r-2)}{r^{2}}=\frac{3(r-1)}{r^{2}}$, since this is the only other possibility.
Thus the expected number of different values is

$$
1 \cdot \frac{1}{r^{2}}+2 \cdot \frac{3(r-1)}{r^{2}}+3 \cdot \frac{(r-1)(r-2)}{r^{2}}=\frac{1+6(r-1)+3(r-1)(r-2)}{r^{2}}=\frac{3 r^{2}-3 r+1}{r^{2}} .
$$

3. Consider the following binary search tree T.

Solid nodes are black, dotted nodes are red.
(a) Draw the red-black tree that results from inserting the key 15 into T.

Solution:

(b) Draw the red-black tree that results from deleting the key 37 from the original tree T.

Solution:

4. Consider a binary tree T. Let $|T|$ be the number of nodes in T. Let x be a node in T, let L_{x} be the left subtree of x and let R_{x} be the right subtree of x. We say that x has the "approximately balanced property", $A B P(x)$, if $\left|R_{x}\right| \leq 2\left|L_{x}\right|$ and $\left|L_{x}\right| \leq 2\left|R_{x}\right|$.
(a) What is the maximum height of a binary tree T on n nodes where $A B P($ root $)$ holds? Justify your answer.

Solution:

The worst case is when $L_{\text {root }}$ and $R_{\text {root }}$ are just single paths, so that height $\left(L_{\text {root }}=\left|L_{\text {root }}\right|-1\right.$ (and the same for $\left.R_{\text {root }}\right)$. We know $\left|L_{\text {root }}\right|+\left|R_{\text {root }}\right|=n-1$, so it could be that $\left|L_{\text {root }}\right|=\frac{1}{3}(n-1)$ and $\left|R_{\text {root }}\right|=\frac{2}{3}(n-1)$ (or vice versa). Therefore, height $\left(R_{\text {root }}\right)=\frac{2}{3}(n-1)-1$ and height $(T)=\frac{2}{3}(n-1)$.
(b) We call T an ABP-tree if $A B P(x)$ holds for every node x in T. Prove that if T is an $A B P$-tree, then the height of T is $O(\log n)$. More precisely, show that

$$
\operatorname{height}(T) \leq \log _{2} n / \log _{2} \frac{3}{2}
$$

Solution:

We'll prove that $|T| \geq \frac{3}{2}^{\text {height }(T)}\left({ }^{*}\right)$ by induction on the height of T. If T has height 0 (it is a single node), then $\left(^{*}\right)$ certainly holds. Now consider T of height h. Assume, without loss of generality, that height $\left(L_{\text {root }}\right) \geq \operatorname{height}\left(R_{\text {root }}\right)$. Then height $(T)=\operatorname{height}\left(L_{\text {root }}\right)+1$. We know $|T|=\left|L_{\text {root }}\right|+\left|R_{\text {root }}\right|+1$. By $A B P(x)$, this means that $|T| \geq \frac{3}{2}\left|L_{\text {root }}\right|+1$. $L_{\text {root }} \geq(\mid \text { frac } 32)^{h-1}$, so we get $|T| \geq \frac{3}{2}\left(\frac{3}{2}\right)^{h-1}+1 \geq\left(\frac{3}{2}\right)^{h}$. Now that we hae proven $\left(^{*}\right)$, we just take the \log of both sides:

$$
\operatorname{height}(T) \leq \log _{2} n / \log _{2} \frac{3}{2}
$$

5. Suppose we are given a bit-vector $A=A[1] \ldots A[n]$ of length n (where $A[i]$ is either 0 or 1). We wish to determine if at least half the elements in A are 1's. Consider the following algorithm:

HalfOnes (A)
 numOnes $\leftarrow 0$

```
numZeros \(\leftarrow 0\)
for \(i=1\) to \(n\) do
    if \(A[i]=1\) then
        numOnes ++
        if numOnes \(\geq n / 2\) then return true
    else
        numZeros ++
        if numZeros \(>n / 2\) then return false
```

Measure the complexity by counting the number of array comparisons performed.
(a) What is the best case complexity of HalfOnes? Do not use asymptotic notation. Justify your answer.
Solution: The algorithm can only end if numOnes reaches $n / 2$ or numNaughts exceeds $n / 2$, and only one of them is incremented with each iteration of the for loop (and hence with each array comparison).
Since numOnes need only reach $n / 2$, the best case occurs when the first $\left\lceil\frac{n}{2}\right\rceil$ bits are all 1 's, giving a running time of $\left\lceil\frac{n}{2}\right\rceil$.
(b) What is the worst case complexity of HalfOnes? Do not use asymptotic notation. Justify your answer.
Solution: In the worst case, we need to perform an array comparison for each possible i, giving a running time of n.
This occurs if $A[1]=0$ and $A[i]=1-A[i-1]$ for $2 \leq i \leq n$.
(c) What is the average case complexity of Halfones, assuming a uniform distribution? Do not use asymptotic notation. Justify your answer. You may express your answer as a sum.
Remember to formally define the sample space, the probability distribution function, and any necessary random variables, as described in class. You do not need to mathematically simplify your answer.
Solution: Define the sample space for all inputs of size n as $S_{n}=\{A: A$ is a $0-1$ vector of length $n\}$ If we assume that the probability of each bit being 1 is $\frac{1}{2}$, each of the 2^{n} possible bit-vectors in S_{n} are equally likely.
Let $t_{n}(A)$ be a random variable represent the number of array comparisons performed on input A. Then $t_{n}= \begin{cases}\text { position of }\left\lceil\frac{n}{2}\right\rceil \text { th } 1 & \text { if } A \text { has at least half } 1 \text { 's } \\ \text { position of }\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right) \text { th } 0 & \text { otherwise }\end{cases}$
The average running time for HalfOnes is

$$
\begin{aligned}
E\left[t_{n}\right] & =\sum_{A \in S_{n}} t_{n}(A) \cdot \operatorname{Pr}[A] \\
& =\sum_{i=\left\lceil\frac{n}{2}\right\rceil}^{n} i \cdot \frac{1}{2^{i}}\binom{i-1}{\left\lceil\frac{n}{2}\right\rceil-1}+\sum_{i=\left\lfloor\frac{n}{2}\right\rfloor+1}^{n} i \cdot \frac{1}{2^{i}}\binom{i-1}{\left\lfloor\frac{n}{2}\right\rfloor}
\end{aligned}
$$

The first term is the summation for the cases where A contains at least half 1's. If the $\left\lceil\frac{n}{2}\right\rceil$ th 1 occurs in position i, i array comparisons are made; the probability of this happening is the number of ways we can arrange the first $\left\lceil\frac{n}{2}\right\rceil-11$'s in the first $i-1$ positions, $\binom{i-1}{\left\lceil\frac{n}{2}\right\rceil-1}$, over all possible bit combinations in the first i positions, 2^{i}.
Similarly, the second term covers the cases where A does not contain half 1 's. If the $\left\lfloor\frac{n}{2}\right\rfloor+1$ th 0 (there must be this many 0 's) occurs in position i, i comparisons are made, and the probability
of this happening is the number of ways to arrange the first $\left\lfloor\frac{n}{2}\right\rfloor 0$'s in the first $i-1$ positions, $\binom{i-1}{\left\lfloor\frac{n}{2}\right\rfloor}$, over all possible bit combinations in the first i positions, 2^{i}.
6. We want to augment Red-Black Trees to support the following query, Average (x), which returns the average key-value in the subtree rooted at node x (including x itself). The query should work in worst-case time $\Theta(1)$.
(a) What extra information needs to be stored at each node?

Solution:

Each node x should store $\operatorname{size}(x)$ - the size of the subtree rooted at x - and $\operatorname{sum}(x)$ - the sum of all the key values in the subtree rooted at x. The query $\operatorname{Average}(x)$ can be answered in constant time by computing $\operatorname{sum}(x) / \operatorname{size}(x)$.
(b) Describe how to modify Insert to maintain this information, so that its worst-case running time is still $O(\log n)$. Briefly justify your answer.

Solution:

Maintaining size() was covered in lecture. Maintaining $\operatorname{sum}()$ is exactly the same: when a node x gets inserted, we simply increase $\operatorname{sum}(y)$ for every ancestor y of x by the amount $k e y(x)$.
Handling rotations for $\operatorname{sum}()$ is exactly the same as size() (just replace each size() by sum()).
Hence, Insert still runs in worst-case time $\Theta(\log n)$.
(c) Describe how to modify Delete to maintain this information, so that its worst-case running time is still $O(\log n)$. Briefly justify your answer.

Solution:

Again, maintaining size() was covered in lecture. For sum(), assume we want to delete node x. If x itself is the node removed, the decrease $\operatorname{sum}(y)$ for every ancestor y of x by the amount $k e y(x)$. If $z=\operatorname{succ}(x)$ was removed instead, consider the path from z to the root of the tree. For every node y in between z and x on this path, decrease $\operatorname{sum}(y)$ by the amount $k e y(z)$. For every node y on this path between z and the root (including x itself), decrease $k e y(y)$ by the amount $k e y(x)$. Hence Delete still runs in worst-case time $\Theta(\log n)$.

You may find it helpful to implement Red-Black trees using the code from the text, and then modify your code to produce an augmented tree for this problem.

