
CS 263

Data Structures

ASSIGNMENT # 2
DUE DATE: Tuesday, October 22, 2013

If you are working in a group of 2 or three, please submit one copy with all of your names and student
numbers on each sheet. Please use a fresh sheet of paper for each question.

1. Question 2 from Homework 1. (I gave you an extension on this question.)

Solution: Assume that N the number of elements stored is equal to 2n − 1. Take an array where the
top logn− 1 levels have key k = 2 and then the last nth level has one 2, followed by all 1’s.

For example: Take N = 31 = 25 − 1 (so n = 5). This is what the heap originally looks like:

Consider what happens when we do the first 2n−1 DeleteMax moves. In our example, this is the first
16 DeleteMax moves. This will remove all elements with key 2 from the tree and since the tree always
stays perfectly balanced, and what we are left with should be a balanced tree of height n−1 consisting
of only keys with value 1. In our case, a height 4 tree consisting of ALL 1’s.

In particular, at this point in the algorithm, the last level, the (n− 1)st level, is all 1’s. But how did
these 1’s get there? These got there by first putting them at the root and then bubbling them all the
way down to level n − 1. So all of these elements at level n− 1 should each require (n − 1) swaps in
order to bubble them down from the root. In our example there are 8 of them and in general there are
2n−2 of them, and each of them requires (n−1) swaps for a total of 2n−2(n−1) = Ω(n2n) = Ω(NlogN)
steps.

2. Suppose 3 values A, B, and C are chosen uniformly and independently from the set of integers
{1, . . . , r}, where r ≥ 1.

(a) What is the probability that all three values are the same? Briefly justify your answer.

Solution:
1
r2

= 1
r
× 1

r
.

Once the value for A has been chosen, the probability that B has the same value is 1/r. The
same is true for C. Since these are independent random variables, we can simply multiply the
probabilities.

Alternatively, there are r3 triples of elements, each with the same probability. Of these, r triples
have all three values the same. Thus the probability is r

r3
= 1

r2
.

(b) What is the probability that all three values are different? Briefly justify your answer.

Solution:
(r−1)(r−2)

r2
.

Once the value for A has been chosen, the probability that B has a different value is (r − 1)/r.
Once different values for A and B have been chosen, the probability that C has a different value
is (r − 2)/r. Then Pr[A,B,C distinct] = Pr[A 6= B] · Pr[A,B,C distinct |A 6= B] = r−1

r
· r−2

r
.

Alternatively, of the r3 triples of elements, there are r ways to choose A, r − 1 ways to choose
B different from A and r − 2 ways to choose C different from A and B. Thus the probability is
r(r−1)(r−2)

r3
= (r−1)(r−2)

r2
.

(c) What is the expected number of different values? Briefly justify your answer.

Solution:

1

The probability that there are two different values is 1 − 1
r2
− (r−1)(r−2)

r2
= 3(r−1)

r2
, since this is

the only other possibility.

Thus the expected number of different values is

1 ·
1

r2
+ 2 ·

3(r − 1)

r2
+ 3 ·

(r − 1)(r − 2)

r2
=

1 + 6(r − 1) + 3(r − 1)(r − 2)

r2
=

3r2 − 3r + 1

r2
.

3. Consider the following binary search tree T .

31

41

23

37 62

50 65

89

95

70

10

Solid nodes are black, dotted nodes are red.

(a) Draw the red-black tree that results from inserting the key 15 into T .

Solution:

41

37 62

50 65

89

95

7031

10

15

23

(b) Draw the red-black tree that results from deleting the key 37 from the original tree T .

Solution:

2

41

62

65

89

95

70

10 31

23

50

4. Consider a binary tree T . Let |T | be the number of nodes in T . Let x be a node in T , let Lx be the
left subtree of x and let Rx be the right subtree of x. We say that x has the “approximately balanced
property”, ABP (x), if |Rx| ≤ 2|Lx| and |Lx| ≤ 2|Rx|.

(a) What is the maximum height of a binary tree T on n nodes where ABP (root) holds? Justify your
answer.

Solution:

The worst case is when Lroot and Rroot are just single paths, so that height(Lroot = |Lroot|−1 (and
the same for Rroot). We know |Lroot|+ |Rroot| = n− 1, so it could be that |Lroot| =

1
3 (n− 1) and

|Rroot| =
2
3 (n−1) (or vice versa). Therefore, height(Rroot) =

2
3 (n−1)−1 and height(T) = 2

3 (n−1).

(b) We call T an ABP-tree if ABP (x) holds for every node x in T . Prove that if T is an ABP -tree,
then the height of T is O(log n). More precisely, show that

height(T) ≤ log2 n/ log2
3

2

.

Solution:

We’ll prove that |T | ≥ 3
2

height(T)
(*) by induction on the height of T . If T has height 0 (it is

a single node), then (*) certainly holds. Now consider T of height h. Assume, without loss of
generality, that height(Lroot) ≥ height(Rroot). Then height(T) = height(Lroot) + 1. We know
|T | = |Lroot|+ |Rroot|+1. By ABP (x), this means that |T | ≥ 3

2 |Lroot|+1. Lroot ≥ (|frac32)h−1,
so we get |T | ≥ 3

2 (
3
2)

h−1 + 1 ≥ (32)
h. Now that we hae proven (*), we just take the log of both

sides:

height(T) ≤ log2 n/ log2
3

2
.

5. Suppose we are given a bit-vector A = A[1] . . . A[n] of length n (where A[i] is either 0 or 1). We wish
to determine if at least half the elements in A are 1’s. Consider the following algorithm:

HalfOnes(A)
numOnes← 0

3

numZeros← 0
for i = 1 to n do

if A[i] = 1 then
numOnes++
if numOnes ≥ n/2 then return true

else
numZeros++
if numZeros > n/2 then return false

Measure the complexity by counting the number of array comparisons performed.

(a) What is the best case complexity of HalfOnes? Do not use asymptotic notation. Justify your
answer.

Solution: The algorithm can only end if numOnes reaches n/2 or numNaughts exceeds n/2,
and only one of them is incremented with each iteration of the for loop (and hence with each
array comparison).

Since numOnes need only reach n/2, the best case occurs when the first ⌈n2 ⌉ bits are all 1’s,
giving a running time of ⌈n2 ⌉.

(b) What is the worst case complexity of HalfOnes? Do not use asymptotic notation. Justify your
answer.

Solution: In the worst case, we need to perform an array comparison for each possible i, giving
a running time of n.

This occurs if A[1] = 0 and A[i] = 1−A[i − 1] for 2 ≤ i ≤ n.

(c) What is the average case complexity of HalfOnes, assuming a uniform distribution? Do not use
asymptotic notation. Justify your answer. You may express your answer as a sum.

Remember to formally define the sample space, the probability distribution function, and any
necessary random variables, as described in class. You do not need to mathematically simplify
your answer.

Solution: Define the sample space for all inputs of size n as Sn = {A : A is a 0-1 vector of length n}
If we assume that the probability of each bit being 1 is 1

2 , each of the 2n possible bit-vectors in
Sn are equally likely.

Let tn(A) be a random variable represent the number of array comparisons performed on input

A. Then tn =

{

position of ⌈n2 ⌉th 1 if A has at least half 1’s
position of (⌊n2 ⌋+ 1)th 0 otherwise

The average running time for HalfOnes is

E[tn] =
∑

A∈Sn

tn(A) · Pr[A]

=

n
∑

i=⌈n

2
⌉

i ·
1

2i

(

i− 1

⌈n2 ⌉ − 1

)

+

n
∑

i=⌊n

2
⌋+1

i ·
1

2i

(

i− 1

⌊n2 ⌋

)

The first term is the summation for the cases where A contains at least half 1’s. If the ⌈n2 ⌉th
1 occurs in position i, i array comparisons are made; the probability of this happening is the
number of ways we can arrange the first ⌈n2 ⌉ − 1 1’s in the first i− 1 positions,

(

i−1
⌈n

2
⌉−1

)

, over all

possible bit combinations in the first i positions, 2i.

Similarly, the second term covers the cases where A does not contain half 1’s. If the ⌊n2 ⌋+ 1th 0
(there must be this many 0’s) occurs in position i, i comparisons are made, and the probability

4

of this happening is the number of ways to arrange the first ⌊n2 ⌋ 0’s in the first i − 1 positions,
(

i−1
⌊n

2
⌋

)

, over all possible bit combinations in the first i positions, 2i.

6. We want to augment Red-Black Trees to support the following query, Average(x), which returns
the average key-value in the subtree rooted at node x (including x itself). The query should work in
worst-case time Θ(1).

(a) What extra information needs to be stored at each node?

Solution:

Each node x should store size(x) - the size of the subtree rooted at x - and sum(x) - the sum of
all the key values in the subtree rooted at x. The query Average(x) can be answered in constant
time by computing sum(x)/size(x).

(b) Describe how to modify Insert to maintain this information, so that its worst-case running time
is still O(log n). Briefly justify your answer.

Solution:

Maintaining size() was covered in lecture. Maintaining sum() is exactly the same: when a node
x gets inserted, we simply increase sum(y) for every ancestor y of x by the amount key(x).

Handling rotations for sum() is exactly the same as size() (just replace each size() by sum()).

Hence, Insert still runs in worst-case time Θ(logn).

(c) Describe how to modify Delete to maintain this information, so that its worst-case running time
is still O(log n). Briefly justify your answer.

Solution:

Again, maintaining size() was covered in lecture. For sum(), assume we want to delete node x. If
x itself is the node removed, the decrease sum(y) for every ancestor y of x by the amount key(x).
If z = succ(x) was removed instead, consider the path from z to the root of the tree. For every
node y in between z and x on this path, decrease sum(y) by the amount key(z). For every node
y on this path between z and the root (including x itself), decrease key(y) by the amount key(x).

Hence Delete still runs in worst-case time Θ(logn).

You may find it helpful to implement Red-Black trees using the code from the text, and then modify
your code to produce an augmented tree for this problem.

5

