CS 263

Data Structures ASSIGNMENT \# 1

1. Prove or disprove each of the following conjectures.
a. $f(n)=O(g(n))$ implies $g(n)=O(f(n))$.

Solution: This conjecture is false. We disprove by a counterexample. Let $f(n)=n$ and let $g(n)=n^{2}$. Then $f(n)=O(g(n))$ which can be seen by letting $c=1$ and $n_{0}=1$. But $g(n) \neq$ $O(f(n))$ which can be shown as follows. Assume for sake of contradiction that $g(n)=O(f(n))$. Then there is some $c>0$ and $n_{0} \geq 0$ such that $n^{2} \leq c n$ for all $n \geq n_{0}$. But this is true if and only if $n \leq c$ for all $n \geq n_{0}$. But this is not true since for any choice of n_{0} and c, we can pick $n=n_{0}+c+1$ (for example). Clearly n is at least as large as n_{0}, but n is greater than c.
b. $f(n)=O\left((f(n))^{2}\right)$

Solution: This conjecture is false. Again we will disprove by a counterexample. Let $f(n)=1 / n$. Then $f(n)^{2}=1 / n^{2}$. Now assume that $f(n)=O\left(f(n)^{2}\right)$. Then there exists $c>0$ and $n_{0} \geq 0$ such that $1 / n \leq c / n^{2}$. But this is equivalent to $n \leq c$. Again by the above argument this is a contradiction since n is unbounded.
c. $\sum_{x=1}^{n} \frac{x}{2^{x}}=O(1)$.

Solution: The terms in the sum are all positive. Therefore the sum is less than $\sum_{x=1}^{\inf } \frac{x}{2^{x}}$. The only thing we need to show is the convergence of this series which follows from basic calculus.
I.e., we want to show that $\lim _{n \rightarrow \inf } \sum_{x=1}^{n} \frac{x}{2^{x}}$ converges. Use the ratio test:

$$
\frac{a_{n+1}}{a_{n}}=\frac{(n+1) 2^{n}}{2^{n+1} n}=\frac{n+1}{2 n}=1 / 2+1 / n
$$

Thus

$$
\lim _{n \rightarrow \mathrm{inf}} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \mathrm{inf}}(1 / 2+1 / n)=1 / 2<1
$$

Thus it converges to some constant, say k. Pick $c=k+1$ and $n_{0}=1$. Then we have $\sum_{x=1}^{n} \frac{x}{2^{x}} \leq c$ for all $n \geq n_{0}$.
3. Problem 6-2 from the book (edition 3).

Solution:

a. We will represent the heap in an array $A[1, \ldots, n]$. Root is at 1 . The children for node i will be $d(i-1)+1, \ldots, d(i-1)+d . \operatorname{Parent}(i)=\left\lceil\frac{i-1}{d}\right\rceil . \operatorname{Child}(i, j)=(i-1) d+j+1$.
b. Assuming a d-ary tree with only root node has height 0 (a.k.a. edge counting), the maximum number of nodes in a d-ary tree of height h is $1+d+d^{2}+\ldots+d^{h}=\frac{d^{h+1}-1}{d-1}$. If the n elements complete the last layer of the d-ary tree exactly then it is an equality. Otherwise it is less than that. This gives an inclusive upper bound. The lower bound is a complete d-ary tree with height of $h-1$ and is exclusive. We have

$$
\frac{d^{h}-1}{d-1}<n \leq \frac{d^{h+1}-1}{d-1}
$$

from which it follows that

$$
d^{h}<n(d-1)+1 \leq d^{h+1}
$$

and taking the $l g_{d}$:

$$
h<\lg _{d}(n(d-1)+1) \leq h+1
$$

h and $h+1$ are consecutive integers, therefore applying the ceil() always yields an equality from the right inequality:

$$
h=\left\lceil\lg _{d}(n(d-1)+1)\right\rceil-1
$$

Expressed in Big-Oh notation:

$$
h=\left\lceil\frac{\lg (n(d-1)+1}{\operatorname{lgd}}\right\rceil-1=O\left(\frac{\operatorname{lgdn}}{\operatorname{lgd} d}\right)=O\left(\frac{\operatorname{lgn}}{\operatorname{lgd} d}\right) .
$$

c. function ExtractMax(A)

exchange $\mathrm{A}[1]$ with $\mathrm{A}[$ A.heap-size]
A.heap-size $=$ A.heap-size - 1

A A.heap-size +1$]=$ null $\quad \triangleright$ deletes and prevents loitering $\operatorname{SINK}(\mathrm{A}, 1)$
return maxElement
end function
function $\operatorname{sink}(\mathrm{A}, \mathrm{k})$
while child $(\mathrm{k}, 1) \leq$ A.heap - size do $\quad \triangleright \operatorname{child}(\mathrm{k}, 1)$ is the index of the first child of node k maxIndex $=\operatorname{child}(\mathrm{k}, 1)$
for $\mathrm{i}=2$ to d do
if $\operatorname{child}(\mathrm{k}, \mathrm{i})>$ A.heap-size then $\quad \triangleright$ checks for array out of bounds BREAK
end if
if $\mathrm{A}[\operatorname{child}(\mathrm{k}, \mathrm{i})]>\mathrm{A}[$ maxIndex $]$ then \triangleright find the index of the children with max value maxIndex $=\operatorname{child}(\mathrm{k}, \mathrm{i})$
end if end for if $\mathrm{A}[\mathrm{k}] \leq A[\max \operatorname{Index}]$ then \triangleright No need to sink anymore BREAK end if exchange $\mathrm{A}[\mathrm{k}]$ with $\mathrm{A}[$ maxIndex]
$\mathrm{k}=$ maxIndex $\quad \triangleright$ point to new index end while
end function

In ExtractMax, all lines constant time except for the $\operatorname{sink}(A, K)$ call, which has 2 nested loops. The outer loop takes time proportional to heihg of the heap, whcih we knwo from part b) is $O\left(\frac{\operatorname{lgn}}{\operatorname{lgd}}\right)$. The inner loop takes time proportional to $O(d)$. Therefore the total running time is $O(d h)=O\left(\frac{d l g n}{l g d}\right)$.
d. function INSERT(A, newElement)
A.heap-size $=$ A.heap-size $+1 \quad \triangleright$ increase size of heap by 1 A A.heap-size $]=$ newElement $\quad \triangleright$ put new element at end of heap $\operatorname{swim}(A, A . h e a p-s i z e) \quad \triangleright$ floats element up d-ary tree to maintain the heap property end function
function $\operatorname{swim}(\mathrm{A}, \mathrm{k})$
while $\mathrm{k}>0$ AND $\mathrm{A}[$ parent $(\mathrm{k})]>\mathrm{A}[\mathrm{k}]$ do exchange $\mathrm{A}[\mathrm{k}]$ with $\mathrm{A}[$ parent (k)] $\mathrm{k}=\operatorname{parent}(\mathrm{k})$
end while

end function

In Insert, all lines take constant time except for the $\operatorname{swim}(A, k)$ call, which has running time proportional to height of the heap, which we know from part b) is $O\left(\frac{l g n}{l g d}\right)$.
e. function $\operatorname{IncreaseKey}(A, i, k)$
if $\mathrm{k}<\mathrm{A}[\mathrm{i}]$ then
throw error
end if
$\mathrm{A}[\mathrm{i}]=\mathrm{k}$
$\operatorname{swim}(A, i)$
end function

The algorithm is similar to the binary heap algorithm and the running time is proportional to the height, $O\left(\frac{l g n}{l g d}\right)$.
4. Give an algorithm that uses one of the data structures that we have studied so far to perform the following. The input consists of k sorted lists L_{1}, \ldots, L_{k}, each one containing a list of n / k integers in increasing order. The algorithm should output a single list L that contains the n integers in A_{1}, \ldots, A_{k}, sorted in increasing order.
a. Give a simple algorithm for solving the above problem with worst-case time complexity $O(n \log k)$. Explain why it works, and why it has worst-case time complexity $O(n \log k)$. Give a clear and consise description of your algorithm in English. Do not use pseudocode.
Solution: The basic idea is to maintain a MinHeap that contains k elements, specifically the smallest integer from each one of the k sorted lists A_{1}, \ldots, A_{k}. More precisely:

1) First build a Min Heap that contains the following k elements: $\left(a_{1}, 1\right),\left(a_{2}, 2\right), \ldots,\left(a_{j}, j\right), \ldots,\left(a_{k}, k\right)$ where each a_{j} is the smallest element in the sorted list A_{j}, and the a_{j} 's are used as the heap keys. Remove each a_{j} from A_{j}.
2) Then repeatedly do the following.
a) First do an Extract-Min to find and remove the element with the smallest key from the Min Heap; say this element is (x, i). Output x.
b) Note that the above x came from list A_{i}. Remove the smallest (remaining) element from the list A_{i}, say it is y, and insert (y, i) into the Min Heap. Note: if A_{i} is empty, then skip the second step. In this case, the Min Heap size decreases by one because the element (x, i) that was removed from the Min Heap in step (a) is not replaced.
b. Explain why your algorithm's worst-case time complexity is $O(n \log k)$.

Solution:

1) The initial Min Heap contains k keys. So it takes at most $O(k)$ time to build it using BuildMinHeap (a procedure that is very similar to BuildMaxHeap of Section 6.3.) If we build it by doing k repeated inserts, this takes at most $O(k \log k)$ time.
2) Each one of the n outputs requires:
a) one ExtractMin, which takes $O(\log k)$ time in the worst case and
b) at most one Insert, which also takes $O(\log k)$ time in the worst case. So the worst case time complexity of the n outputs is $O(k \log k)$.

So overall, the worst case time complexity of the above algorithm is $O(k)+O(n \log k)($ or $O(k \log k)+$ $O(n \log k)$ if we used k repeated inserts to build the initial Min Heap). Since $k \leq n$, the worst-case time complexity is $O(n \log k)$.

