
CS 263
Data Structures

ASSIGNMENT # 1

1. Prove or disprove each of the following conjectures.

a. f(n) = O(g(n)) implies g(n) = O(f(n)).
Solution: This conjecture is false. We disprove by a counterexample. Let f(n) = n and let
g(n) = n2. Then f(n) = O(g(n)) which can be seen by letting c = 1 and n0 = 1. But g(n) 6=
O(f(n)) which can be shown as follows. Assume for sake of contradiction that g(n) = O(f(n)).
Then there is some c > 0 and n0 ≥ 0 such that n2 ≤ cn for all n ≥ n0. But this is true if and
only if n ≤ c for all n ≥ n0. But this is not true since for any choice of n0 and c, we can pick
n = n0 + c + 1 (for example). Clearly n is at least as large as n0, but n is greater than c.

b. f(n) = O((f(n))2)
Solution: This conjecture is false. Again we will disprove by a counterexample. Let f(n) = 1/n.
Then f(n)2 = 1/n2. Now assume that f(n) = O(f(n)2). Then there exists c > 0 and n0 ≥ 0
such that 1/n ≤ c/n2. But this is equivalent to n ≤ c. Again by the above argument this is a
contradiction since n is unbounded.

c.
∑n

x=1
x
2x = O(1).

Solution: The terms in the sum are all positive. Therefore the sum is less than
∑inf

x=1
x
2x . The

only thing we need to show is the convergence of this series which follows from basic calculus.
I.e., we want to show that limn→inf

∑n
x=1

x
2x converges. Use the ratio test:

an+1

an
=

(n + 1)2n

2n+1n
=

n + 1
2n

= 1/2 + 1/n

Thus
limn→inf

an+1

an
= limn→inf(1/2 + 1/n) = 1/2 < 1.

Thus it converges to some constant, say k. Pick c = k+1 and n0 = 1. Then we have
∑n

x=1
x
2x ≤ c

for all n ≥ n0.

3. Problem 6-2 from the book (edition 3).

Solution:

a. We will represent the heap in an array A[1, . . . , n]. Root is at 1. The children for node i will be
d(i − 1) + 1, . . . , d(i − 1) + d. Parent(i) = d i−1

d e. Child(i, j) = (i − 1)d + j + 1.

b. Assuming a d-ary tree with only root node has height 0 (a.k.a. edge counting), the maximum
number of nodes in a d-ary tree of height h is 1 + d + d2 + . . . + dh = dh+1−1

d−1 . If the n elements
complete the last layer of the d-ary tree exactly then it is an equality. Otherwise it is less than
that. This gives an inclusive upper bound. The lower bound is a complete d-ary tree with height
of h − 1 and is exclusive. We have

dh − 1
d − 1

< n ≤ dh+1 − 1
d − 1

from which it follows that
dh < n(d − 1) + 1 ≤ dh+1

and taking the lgd:
h < lgd(n(d − 1) + 1) ≤ h + 1

1

h and h + 1 are consecutive integers, therefore applying the ceil() always yields an equality from
the right inequality:

h = dlgd(n(d − 1) + 1)e − 1

Expressed in Big-Oh notation:

h = d lg(n(d − 1) + 1
lgd

e − 1 = O(
lgdn

lgd
) = O(

lgn

lgd
).

c. function ExtractMax(A)
maxElement = A[1] . index starts at 1
exchange A[1] with A[A.heap-size]
A.heap-size = A.heap-size - 1
A[A.heap-size + 1] = null . deletes and prevents loitering
SINK(A, 1)
return maxElement

end function

function sink(A, k)
while child(k,1) ≤ A.heap − size do . child(k,1) is the index of the first child of node k

maxIndex = child(k,1)
for i = 2 to d do

if child(k, i) >A.heap-size then . checks for array out of bounds
BREAK

end if
if A[child(k, i)] >A[maxIndex] then . find the index of the children with max value

maxIndex = child(k, i)
end if

end for
if A[k] ≤ A[maxIndex] then . No need to sink anymore

BREAK
end if
exchange A[k] with A[maxIndex]
k = maxIndex . point to new index

end while
end function

In ExtractMax, all lines constant time except for the sink(A, K) call, which has 2 nested loops.
The outer loop takes time proportional to heihg of the heap, whcih we knwo from part b) is
O(lgn

lgd). The inner loop takes time proportional to O(d). Therefore the total running time is
O(dh) = O(dlgn

lgd).
d. function insert(A, newElement)

A.heap-size = A.heap-size + 1 . increase size of heap by 1
A[A.heap-size] = newElement . put new element at end of heap
swim(A, A.heap-size) . floats element up d-ary tree to maintain the heap property

end function

function swim(A, k)
while k >0 AND A[parent(k)] >A[k] do

exchange A[k] with A[parent(k)]
k = parent(k)

end while

2

end function

In Insert, all lines take constant time except for the swim(A, k) call, which has running time
proportional to height of the heap, which we know from part b) is O(lgn

lgd).
e. function IncreaseKey(A, i, k)

if k <A[i] then
throw error

end if
A[i] = k
swim(A,i)

end function

The algorithm is similar to the binary heap algorithm and the running time is proportional to the
height, O(lgn

lgd).

4. Give an algorithm that uses one of the data structures that we have studied so far to perform the
following. The input consists of k sorted lists L1, . . . , Lk, each one containing a list of n/k integers in
increasing order. The algorithm should output a single list L that contains the n integers in A1, . . . , Ak,
sorted in increasing order.

a. Give a simple algorithm for solving the above problem with worst-case time complexity O(n log k).
Explain why it works, and why it has worst-case time complexity O(n log k). Give a clear and
consise description of your algorithm in English. Do not use pseudocode.
Solution: The basic idea is to maintain a MinHeap that contains k elements, specifically the
smallest integer from each one of the k sorted lists A1, . . . , Ak. More precisely:

1) First build a Min Heap that contains the following k elements: (a1, 1), (a2, 2), . . . , (aj , j), . . . , (ak, k)
where each aj is the smallest element in the sorted list Aj , and the aj ’s are used as the heap
keys. Remove each aj from Aj .

2) Then repeatedly do the following.
a) First do an Extract-Min to find and remove the element with the smallest key from the

Min Heap; say this element is (x, i). Output x.
b) Note that the above x came from list Ai. Remove the smallest (remaining) element from

the list Ai, say it is y, and insert (y, i) into the Min Heap. Note: if Ai is empty, then skip
the second step. In this case, the Min Heap size decreases by one because the element
(x, i) that was removed from the Min Heap in step (a) is not replaced.

b. Explain why your algorithm’s worst-case time complexity is O(n log k).

Solution:

1) The initial Min Heap contains k keys. So it takes at most O(k) time to build it using BuildMinHeap
(a procedure that is very similar to BuildMaxHeap of Section 6.3.) If we build it by doing k re-
peated inserts, this takes at most O(k log k) time.

2) Each one of the n outputs requires:

a) one ExtractMin, which takes O(log k) time in the worst case and
b) at most one Insert, which also takes O(log k) time in the worst case. So the worst case time

complexity of the n outputs is O(k log k).

So overall, the worst case time complexity of the above algorithm is O(k) + O(n log k) (or O(k log k) +
O(n log k) if we used k repeated inserts to build the initial Min Heap). Since k ≤ n, the worst-case
time complexity is O(n log k).

3

