1. Prove or disprove each of the following conjectures.
 a. $f(n) = O(g(n))$ implies $g(n) = O(f(n))$.
 b. $f(n) = O((f(n))^2)$
 c. $\sum_{i=1}^{n} \frac{1}{i^2} = O(1)$.

2. Let $T(n)$ be the worst-case time complexity $T(n)$ of the Heapsort algorithm $Heapsort(A)$ given in Chapter 6 of the CLRS textbook (n is the length of the array A). As discussed in the book, $T(n) = O(n \log n)$. Is $T(n) = \Omega(n \log n)$? Prove your answer.

 A d-ary heap is like a binary heap, but (with one possible exception) non-leaf nodes have d children instead of 2 children.
 (a) How would you represent a d-ary heap in an array?
 (b) What is the height of a d-ary heap of n elements in terms of n and d?
 (c) Give an efficient implementation of ExtractMax in a d-ary max heap. Analyze its running time in terms of d and n.
 (d) Give an efficient implementation of Insert in a d-ary max heap. Analyze its running time in terms of d and n.
 (e) Give an efficient implementation of IncreaseKey(A, i, k), which flags an error if $k < A[i]$, but otherwise sets $A[i] = k$ and then updates the d-ary maxheap structure appropriately. Analyze its running time in terms of d and n.

4. Give an algorithm that uses one of the data structures that we have studied so far to perform the following. The input consists of k sorted lists L_1, \ldots, L_k, each one containing a list of n/k integers in increasing order. The algorithm should output a single list L that contains the n integers in A_1, \ldots, A_k, sorted in increasing order.
 a. Give a simple algorithm for solving the above problem with worst-case time complexity $O(n \log k)$. Explain why it works. Give a clear and concise description of your algorithm in English. Do not use pseudocode.
 b. Explain why your algorithm’s worst-case time complexity is $\Omega(n \log k)$.