Algorithms Lecture 12: Hash Tables [Fa’10]

Calvin: There! | finished our secret code!

Hobbes: Let’s see.

Calvin: | assigned each letter a totally random number, so the code will be hard to
crack. For letter “A”, you write 3,004,572,688. “B” is 28,731,569%.

Hobbes: That’s a good code all right.

Calvin: Now we just commit this to memory.

Calvin: Did you finish your map of our neighborhood?

Hoobes: Not yet. How many bricks does the front walk have?

— Bill Watterson, “Calvin and Hobbes” (August 23, 1990)

12 Hash Tables

12.1 Introduction

A hash table is a data structure for storing a set of items, so that we can quickly determine whether an
item is or is not in the set. The basic idea is to pick a hash function h that maps every possible item x to
a small integer h(x). Then we store x in slot h(x) in an array. The array is the hash table.

Let’s be a little more specific. We want to store a set of n items. Each item is an element of some
finite' set U called the universe; we use u to denote the size of the universe, which is just the number of
items in U. A hash table is an array T[1..m], where m is another positive integer, which we call the
table size. Typically, m is much smaller than u. A hash function is any function of the form

h:U—{0,1,...,m—1},

mapping each possible item in U to a slot in the hash table. We say that an item x hashes to the slot
T [h(x)].

Of course, if u = m, then we can always just use the trivial hash function h(x) = x. In other words,
use the item itself as the index into the table. This is called a direct access table, or more commonly, an
array. In most applications, though, the universe of possible keys is orders of magnitude too large for
this approach to be practical. Even when it is possible to allocate enough memory, we usually need to
store only a small fraction of the universe. Rather than wasting lots of space, we should make m roughly
equal to n, the number of items in the set we want to maintain.

What we’d like is for every item in our set to hash to a different position in the array. Unfortunately,
unless m = u, this is too much to hope for, so we have to deal with collisions. We say that two items x
and y collide if the have the same hash value: h(x) = h(y). Since we obviously can’t store two items
in the same slot of an array, we need to describe some methods for resolving collisions. The two most
common methods are called chaining and open addressing.

12.2 Chaining

In a chained hash table, each entry T [i] is not just a single item, but rather (a pointer to) a linked list of
all the items that hash to T[i]. Let £(x) denote the length of the list T[h(x)]. To see if an item x is in
the hash table, we scan the entire list T [h(x)]. The worst-case time required to search for x is O(1) to

IThis finiteness assumption is necessary for several of the technical details to work out, but can be ignored in practice.
To hash elements from an infinite universe (for example, the positive integers), pretend that the universe is actually finite
but very very large. In fact, in real practice, the universe actually is finite but very very large. For example, on most modern
c;)mputer;,z 3t2h)ere are only 2% integers (unless you use a big integer package like GMB in which case the number of integers is
closer to .

© Copyright 2010 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 12: Hash Tables [Fa’10]

compute h(x) plus O(1) for every element in T [h(x)], or O(1 4+ £(x)) overall. Inserting and deleting x
also take O(1 + £(x)) time.

[GIH[| [[R[O] [A[L]

oy
m

A chained hash table with load factor 1.

In the worst case, every item would be hashed to the same value, so we’d get just one long list of n
items. In principle, for any deterministic hashing scheme, a malicious adversary can always present a set
of items with exactly this property. In order to defeat such malicious behavior, we’d like to use a hash
function that is as random as possible. Choosing a truly random hash function is completely impractical,
but there are several heuristics for producing hash functions that behave randomly, or at least close to
randomly on real data. Thus, we will analyze the performance as though our hash function were truly
random. More formally, we make the following assumption.

Simple uniform hashing assumption: | If x # y then Pr [h(x) =h(y)] =1/m.

In the next section, I'll describe a small set of functions with the property that a random hash function
in this set satisfies the simple uniform hashing assumption. Most actual implementations of has tables
use deterministic hash functions. These clearly violate the uniform hashing assumption—the collision
probability is either 0 or 1, depending on the pair of items! Nevertheless, it is common practice to adopt
the uniform hashing assumption as a convenient fiction for purposes of analysis.

Let’s compute the expected value of £(x) under this assumption; this will immediately imply a bound
on the expected time to search for an item x. To be concrete, let’s suppose that x is not already stored in
the hash table. For all items x and y, we define the indicator variable

Cyy = [h(x) =h(y)].

(In case you've forgotten the bracket notation, C, , = 1 if h(x) = h(y) and C, , = 0 if h(x) # h(y).)
Since the length of T [h(x)] is precisely equal to the number of items that collide with x, we have

((x)=>Cy,.

yeT

We can rewrite the simple uniform hashing assumption as follows:
1
x#y = E[C,,]=Pr[C,,=1]= p—

Now we just have to grind through the definitions.
E[E(x)] Z E [:x’y] Z :
m m
YET YET

We call this fraction n/m the load factor of the hash table. Since the load factor shows up everywhere,
we will give it its own symbol a.

Algorithms Lecture 12: Hash Tables [Fa’10]

n
ai=—
m

Our analysis implies that the expected time for an unsuccessful search in a chained hash table is ©(1+ a).
As long as the number if items n is only a constant factor bigger than the table size m, the search time is
a constant. A similar analysis gives the same expected time bound (with a slightly smaller constant) for
a successful search.

Obviously, linked lists are not the only data structure we could use to store the chains; any data
structure that can store a set of items will work. For example, if the universe U has a total ordering, we
can store each chain in a balanced binary search tree. This reduces the expected time for any search to
O(1 +log£(x)), and under the simple uniform hashing assumption, the expected time for any search is
O(1+loga).

Another natural possibility is to work recursively! Specifically, for each T[i], we maintain a hash
table T; containing all the items with hash value i. Collisions in those secondary tables are resolved
recursively, by storing secondary overflow lists in tertiary hash tables, and so on. The resulting data
structure is a tree of hash tables, whose leaves correspond to items that (at some level of the tree) are
hashed without any collisions. If every hash table in this tree has size m, then the expected time for any
search is O(log,, n). In particular, if we set m = 4/n, the expected time for any search is constant. On the
other hand, there is no inherent reason to use the same hash table size everywhere; after all, hash tables
deeper in the tree are storing fewer items.

Caveat Lector!” The preceding analysis does not imply bounds on the expected worst-case search
time is constant. The expected worst-case search time is O(1 + L), where L = max, £(x). Under the
uniform hashing assumption, the maximum list size L is very likely to grow faster than any constant,
unless the load factor «a is significantly smaller than 1. For example, E[L] = ©(logn/loglogn) when
a = 1. We've stumbled on a powerful but counterintuitive fact about probability: When several individual
items are distributed independently and uniformly at random, the resulting distribution is not uniform
in the traditional sense! Later in this lecture, I'll describe how to achieve constant expected worst-case
search time using secondary hash tables.

12.3 Universal Hashing

Now I'll describe a method to generate random hash functions that satisfy the simple uniform hashing
assumption. We say that a set H of hash function is universal if it satisfies the following property: For
any items x # Yy, if a hash function h is chosen uniformly at random from the set H, then Pr[h(x) =
h(y)] = 1/m. Note that this probability holds for any items x and y; the randomness is entirely in
choosing a hash function from the set J.

To simplify the following discussion, I'll assume that the universe U contains exactly m? items, each
represented as a pair (x, x’) of integers between 0 and m — 1. (Think of the items as two-digit numbers
in base m.) I will also assume that m is a prime number.

For any integers 0 < a, b < m — 1, define the function h, ,: U — {0, 1,...,m — 1} as follows:

hgp(x,x") = (ax + bx") mod m.

Then the set
fH={ha’b) OSa,bSm—l}

of all such functions is universal. To prove this, we need to show that for any pair of distinct items
(x,x") # (y,y"), exactly m of the m? functions in 3 cause a collision.

2Latin for “Beware of cannibals.”

Algorithms Lecture 12: Hash Tables [Fa’10]

Choose two items (x,x”) # (v, y’), and assume without loss of generality® that x # y. A function
hq, € H causes a collision between (x,x’) and (y, y’) if and only if

g p(,x") = he (¥, 5")
(ax + bx")mod m = (ay + by’) mod m
ax+bx"=ay+by’ (modm)
a(x —y)=b(y'—x’) (mod m)
b(y' —x")
X—y

a (mod m).

In the last step, we are using the fact that m is prime and x — y # 0, which implies that x — y has a
unique multiplicative inverse modulo m. (For example, the multiplicative inverse of 12 modulo 17 is 10,
since 12-10 =120 =1 (mod 17).) For each possible value of b, the last identity defines a unique value
of a such that h, , causes a collision. Since there are m possible values for b, there are exactly m hash
functions h, j;, that cause a collision, which is exactly what we needed to prove.

Thus, if we want to achieve the constant expected time bounds described earlier, we should choose a
random element of H as our hash function, by generating two numbers a and b uniformly at random
between 0 and m — 1. This is precisely the same as choosing a element of U uniformly at random.

One perhaps undesirable ‘feature’ of this construction is that we have a small chance of choosing the
trivial hash function hg 5, which maps everything to 0. So in practice, if we happen to pick a =b =0,
we should reject that choice and pick new random numbers. By taking h, , out of consideration, we
reduce the probability of a collision from 1/m to (m — 1)/(m? — 1) = 1/(m + 1). In other words, the set
H\ {hg,o} is slightly better than universal.

This construction can be easily generalized to larger universes. Suppose u = m' for some constant r,
so that each element x € U can be represented by a vector (xg, x1,...,x,_;) of integers between 0 and
m — 1. (Think of x as an r-digit number written in base m.) Then for each vector a = (ag, a;,...,a,_1),
define the corresponding hash function h, as follows:

ho(x) = (agxo+a;x; +---+a,_1x,_1) mod m.

Then the set of all m" such functions is universal.

*12.4 High Probability Bounds: Balls and Bins

Although any particular search in a chained hash tables requires only constant expected time, but what
about the worst search time? Under a stronger version® of the uniform hashing assumption, this is
equivalent to the following more abstract problem. Suppose we toss n balls independently and uniformly
at random into one of n bins. Can we say anything about the number of balls in the fullest bin?

Lemma 1. Ifn balls are thrown independently and uniformly into n bins, then with high probability;
the fullest bin contains O(logn/loglogn) balls.

3‘without loss of generality’ is a phrase that appears (perhaps too) often in combinatorial proofs. What it means is that
we are considering one of many possible cases, but once we see the proof for one case, the proofs for all the other cases are
obvious thanks to some inherent symmetry. For this proof, we are not explicitly considering what happens when x = y and
x' #y'.

“The simple uniform hashing assumption requires only pairwise independence, but the following analysis requires full
independence.

Algorithms Lecture 12: Hash Tables [Fa’10]

Proof: Let X; denote the number of balls in bin j, and let X= max; X; be the maximum number of balls
in any bin. Clearly, E[X;] =1 for all j.

Now consider the probability that bin j contains exactly k balls. There are (Z) choices for those
k balls; each chosen ball has probability 1/n of landing in bin j; and each of the remaining balls has
probability 1 — 1/n of missing bin j. Thus,

Pr[X; =k] = (Z) G)k (1) %)kk
(302

This bound shrinks super-exponentially as k increases, so we can very crudely bound the probability that
bin 1 contains at least k balls as follows:

==y

To prove the high-probability bound, we need to choose a value for k such that n/k! ~ 1/n° for some
constant c. Taking logs of both sides of the desired approximation and applying Stirling’s approximation,
we find

Ink!~klnk—k~(c+1)Inn
(c+1Dlnn

Ink-1
(c+1)Inn

(c+DInn
1 Ink—-1 1

~o

(c+1)Inn
- Inlnn+In(c+1)—In(lnk—1)—1
(c+1)Inn
~ Inlnn

We have shown (modulo some algebraic hand-waving that is easy but tedious to clean up) that

(c+1)Inn 1
Pri|X;>—— | <—.

Inlnn n¢

This probability bound holds for every bin j. Thus, by the union bound, we conclude that

Pr[maij>w]: [j w

; nlnn for all]]

Inlnn
(c+1)Inn
<2Pr[Inlnn]

_1'

nC

A somewhat more complicated argument implies that if we throw n balls randomly into n bins, then
with high probability, the most popular bin contains at least Q(logn/loglogn) balls.

Algorithms Lecture 12: Hash Tables [Fa’10]

However, if we make the hash table large enough, we can expect every ball to land in its own bin.
Suppose there are m bins. Let C;; be the indicator variable that equals 1 if and only if i 7 j and ball i
and ball j land in the same bin, and let C =), _ ; Gij be the total number of pairwise collisions. Since
the balls are thrown uniformly at random, the probability of a collision is exactly 1/m, so E[C] = (g) /m.
In particular, if m = n?, the expected number of collisions is less than 1/2.

To get a high probability bound, let X; denote the number of balls in bin j, as in the previous proof.
We can easily bound the probability that bin j is empty, by taking the two most significant terms in a
binomial expansion:

1\" o\ [-1)\! n n? n

We can similarly bound the probability that bin j contains exactly one ball:

1 1\ 1 n n—1 n? n nn-1)
X, =1 =n-—(1-—) =—[(1-—+e)] > -~
m m m m m m m

It follows immediately that Pr[X; > 1] <n(n—1)/ m?. The union bound now implies that Pr[X > 1] <
n(n —1)/m. If we set m = n?*¢ for any constant £ > 0, then the probability that no bin contains more
than one ball is at least 1 — 1/n®.

Lemma 2. For any ¢ > 0, if n balls are thrown independently and uniformly into n>*¢

high probability; no bin contains more than one ball.

bins, then with

12.5 Perfect Hashing

So far we are faced with two alternatives. If we use a small hash table, to keep the space usage down,
the resulting worst-case expected search time is ©(logn/loglogn) with high probability, which is not
much better than a binary search tree. On the other hand, we can get constant worst-case search time,
at least in expectation, by using a table of quadratic size, but that seems unduly wasteful.

Fortunately, there is a fairly simple way to combine these two ideas to get a data structure of linear
expected size, whose expected worst-case search time is constant. At the top level, we use a hash table
of size n, but instead of linked lists, we use secondary hash tables to resolve collisions. Specifically, the
jth secondary hash table has size n?, where n j is the number of items whose primary hash value is j.
The expected worst-case search time in any secondary hash table is O(1), by our earlier analysis.

Although this data structure needs significantly more memory for each secondary structure, the
overall increase in space is insignificant, at least in expectation.

Lemma 3. The simple uniform hashing assumption implies E[n?] <2.

Proof: Let X;; be the indicator variable that equals 1 if item i hashes to slot j in the primary hash table.
Linearity of expectation implies that

n n n n n n n
i=1k=1 i=1 k=1 i=1 i=1 k=i+1

Because X;; is an indicator variable, we have Xizj = X;;, which implies that E[Xizj] =E[X;;] =1/nby
the uniform hashing assumption. The uniform hashing assumption also implies that X;; and X;; are

Algorithms Lecture 12: Hash Tables [Fa’10]

independent whenever i # k, so E[X;;X;;] = E[X;;] E[X};] = 1/n?. Thus,

n

1 I i1 n\ 1 1
27 _ - _ — J— - —
B = Yo 42)) 3 = 1+2(2)n2 =2 o

i=1 i=1 k=i+1

This lemma implies that the expected size of our two-level hash table is O(n). By our earlier analysis,
the expected worst-case search time is O(1).

12.6 Open Addressing

Another method used to resolve collisions in hash tables is called open addressing. Here, rather than
building secondary data structures, we resolve collisions by looking elsewhere in the table. Specifically,
we have a sequence of hash functions (hg,hy,hs,...,h,_1), such that for any item x, the probe sequence
(ho(x),hy(x),...,hy_1(x)) is a permutation of (0,1,2,...,m — 1). In other words, different hash
functions in the sequence always map x to different locations in the hash table.

We search for x using the following algorithm, which returns the array index i if T[i] = x, ‘absent’ if
x is not in the table but there is an empty slot, and ‘full’ if x is not in the table and there no no empty
slots.

OPENADDRESSSEARCH(x):
fori—Otom—1
if T[h;(x)] =x
return h;(x)
else if T[h;(x)] =@
return ‘absent’
return ‘full’

The algorithm for inserting a new item into the table is similar; only the second-to-last line is changed to
T[h;(x)] « x. Notice that for an open-addressed hash table, the load factor is never bigger than 1.

Just as with chaining, we’d like to pretend that the sequence of hash values is random. For purposes
of analysis, there is a stronger uniform hashing assumption that gives us constant expected search and
insertion time.

Strong uniform hashing assumption:

For any item x, the probe sequence (hy(x), h;(x),...,h,_1(x)) is equally
likely to be any permutation of the set {0,1,2,...,m — 1}.

Let’s compute the expected time for an unsuccessful search using this stronger assumption. Suppose
there are currently n elements in the hash table. Our strong uniform hashing assumption has two
important consequences:

* The initial hash value hy(x) is equally likely to be any integer in the set {0,1,2,...,m — 1}.

* If we ignore the first probe, the remaining probe sequence (h;(x), hy(x),...,h,,_1(x)) is equally
likely to be any permutation of the smaller set {0,1,2,...,m — 1} \ {hy(x)}.

The first sentence implies that the probability that T [hy(x)] is occupied is exactly n/m. The second
sentence implies that if T [hy(x)] is occupied, our search algorithm recursively searches the rest of the hash
table! Since the algorithm will never again probe T [hy(x)], for purposes of analysis, we might as well

Algorithms Lecture 12: Hash Tables [Fa’10]

pretend that slot in the table no longer exists. Thus, we get the following recurrence for the expected
number of probes, as a function of m and n:

n
E[T(m,n)]=1+ —E[T(m—1,n—1)].
m
The trivial base case is T(m, 0) = 1; if there’s nothing in the hash table, the first probe always hits an
empty slot. We can now easily prove by induction that

EMPHE[T(m,n)] < m/(m —n):

E[T(m,n)] =1+ %E[T(m —1,n—1)]

n m-—1 . . .
<l+—- [induction hypothesis]
m m-—n
n m
<1l+—- [m—1<m]
m m-—n
m
= v [algebra]
m-—n

Rewriting this in terms of the load factor a = n/m, we get E[T(m,n)] < 1/(1 — a). In other words, the
expected time for an unsuccessful search is O(1), unless the hash table is almost completely full.

In practice, however, we can’t generate truly random probe sequences, so we use one of the following
heuristics:

* Linear probing: We use a single hash function h(x), and define h;(x) = (h(x) + i) mod m. This is
nice and simple, but collisions tend to make items in the table clump together badly, so this is not
really a good idea.

* Quadratic probing: We use a single hash function h(x), and define h;(x) = (h(x) + i%) mod m.
Unfortunately, for certain values of m, the sequence of hash values (h;(x)) does not hit every
possible slot in the table; we can avoid this problem by making m a prime number. (That’s often a
good idea anyway.) Although quadratic probing does not suffer from the same clumping problems
as linear probing, it does have a weaker clustering problem: If two items have the same initial
hash value, their entire probe sequences will be the same.

* Double hashing: We use two hash functions h(x) and h’(x), and define h; as follows:
h;(x) = (h(x)+1i-h'(x)) mod m

To guarantee that this can hit every slot in the table, the stride function h’(x) and the table size m
must be relatively prime. We can guarantee this by making m prime, but a simpler solution is to
make m a power of 2 and choose a stride function that is always odd. Double hashing avoids the
clustering problems of linear and quadratic probing. In fact, the actual performance of double
hashing is almost the same as predicted by the uniform hashing assumption, at least when m is
large and the component hash functions h and h’ are sufficiently random. This is the method of
choice!®

12.7 Cuckoo Hashing

| To be written!

5...unless your hash tables are really huge, in which case linear probing has far better cache behavior, especially when the
load factor is small.

Algorithms Lecture 12: Hash Tables [Fa’10]

Exercises

1.

*3

Suppose we are using an open-addressed hash table of size m to store n items, where n < m/2.
Assume that the strong uniform hashing assumption holds. For any i, let X; denote the number of
probes required for the ith insertion into the table, and let X = max; X; denote the length of the
longest probe sequence.

(a) Prove that Pr[X; > k] < 1/2* for all i and k.
(b) Prove that Pr[X; > 21gn] < 1/n? for all i.
(c) Prove that Pr[X > 2Ign] <1/n.

(d) Prove that E[X] = O(lgn).

. Your boss wants you to find a perfect hash function for mapping a known set of n items into a

table of size m. A hash function is perfect if there are no collisions; each of the n items is mapped
to a different slot in the hash table. Of course, this requires that m > n. (This is a different
definition of perfect hashing than the one considered in the lecture notes.) After cursing your
algorithms instructor for not teaching you about perfect hashing, you decide to try something
simple: repeatedly pick random hash functions until you find one that happens to be perfect.
A random hash function h satisfies two properties:

* Pr[h(x) =h(y)] = 1/m for any pair of items x # y.

* Pr[h(x)=1i] =1/m for any item x and any integer 1 <i < m.

(a) Suppose you pick a random hash function h. What is the exact expected number of collisions,
as a function of n (the number of items) and m (the size of the table)? Don’t worry about
how to resolve collisions; just count them.

(b) What is the exact probability that a random hash function is perfect?

(c) What is the exact expected number of different random hash functions you have to test before
you find a perfect hash function?

(d) What is the exact probability that none of the first N random hash functions you try is perfect?

(e) How many random hash functions do you have to test to find a perfect hash function with
high probability?

. Recall that F; denotes the kth Fibonacci number: F; =0, F; = 1, and F; = F;_; + F;_, for all

k > 2. Suppose we are building a hash table of size m = F; using the hash function
h(X’) = (Fk—l : X) mod Fk

Prove that if the consecutive integers 0,1, 2,...,F; — 1 are inserted in order into an initially empty
table, each integer will be hashed into the largest contiguous empty interval in the table. In
particular, show that there are no collisions.

© Copyright 2010 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

9

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

	Hash Tables
	Introduction
	Chaining
	Universal Hashing
	High Probability Bounds: Balls and Bins
	Perfect Hashing
	Open Addressing
	Cuckoo Hashing

