Chapter

Algorithm Analysis

Contents

1.1 Methodologies for Analyzing Algorithms
Pseudo-Code

.......

1.1.2 The Random Access Machine (RAM) Model
1.1.3 Counting Primitive Operations
1.1.4 Apalyzing Recursive Algorithms
Asymptotic Notation
The "Big-Gh" Notation
“Relatives” of the Big-Oh
1.2.3 The Importance of Asymptotics
A Quick Mathematical Review

Summations

1.3.2 Logarithms and Exponents
1.3.3 Simple Justification Techniques
1.3.4 Basic Probability

Case Studies in Algorithm Analysis

..........

A Quadratic-Time Prefix Averages Algorithm
1.42 A Linear-Time Prefix Averages Algorithm
Amortization

Amortization Technigues

1.5.2 Analyzing an Extendable Array Implementation
Expetimentation

.....................

Experimental Setup

1.6.2 Data Analysis and Visualization
1.7 Exercises

..........................

10
12
13
13
16
19

21

23
24
28

32
33

36
39

42
45

Chapter 1. Algorithm Analysis

In a classic story, the famous mathematician Archimedes was asked to deter-
mine if a golden crown commissioned by the king was indeed pure gold, and not
part silver, as an informant had claimed. Archimedes discovered a way to determine
this while stepping into a (Greek) bath. He noted that water spilled out of the bath
in proportion to the amount of him that went in. Realizing the implications of this
fact, he immediately got out of the bath and ran naked through the city shouting,
“Eureka, eureka!” for he had discovered an analysis tool (displacement), which,
when combined with a simple scale, could determine if the king’s new crown was
good or not. This discovery was unfortunate for the goldsmith, however, for when
Archimedes did his analysis, the crown displaced more water than an equal-weight
lump of pure gold, indicating that the crown was not, in fact, pure gold.

In this book, we are interested in the design of “good” algorithms and data
structures. Simply put, an algorithm is a step-by-step procedure for performing
some task in a finite amount of time, and a data structure is a systematic way of
organizing and accessing data. These concepts are central to computing, but to
be able to classify some algorithms and data structures as “good,” we must have
precise ways of analyzing them.

The primary analysis tool we will use in this book involves characterizing the
running times of algorithms and data structure operations, with space usage also
being of interest. Running time is a natural measure of “goodness,” since time is a
precious resource. But focusing on running time as a primary measure of goodness
implies that we will need to use at least a little mathematics to describe running
times and compare algorithms.

We begin this chapter by describing the basic framework needed for analyzing
algorithms, which includes the language for describing algorithms, the computa-
tional model that language is intended for, and the main factors we count when
considering running time. We also include a brief discussion of how recursive al-
gorithmns are analyzed. In Section 1.2, we present the main notation we use to char-
actetize running times—the so-called “big-Oh” notation. These tools comprise the
main theoretical tools for designing and analyzing algorithms.

In Section 1.3, we take a short break from our development of the framework
for algorithm analysis to review some important mathematical facts, including dis-
cussions of summations, logarithms, proof techniques, and basic probability. Given
this background and our notation for algorithm analysis, we present some case stud-
ies on theoretical algorithm analysis in Section 1.4. We follow these examples in
Section 1.5 by presenting an interesting analysis technique, known as amortization,
which allows us to account for the group behavior of many individual operations.
Finally, in Section 1.6, we conclude the chapter by discussing an important and
practical analysis technique—experimentation. We discuss both the main princi-
ples of a good experimental framework as well as technigues for sumnmarizing and
characterizing data from an experimental analysis.

1.1. Methodologies for Analyzing Algorithms 5

1.1 Methodologies for Analyzing Algorithms

The running time of an algorithm or data structure operation typically depends on
a number of factors, so what should be the proper way of measuring it? If an
algorithm has been implemented, we can study its running time by executing it
on various test inputs and recording the actual time spent in each execution. Such
measurements can be taken in an accurate manner by using system calls that are
built info the langnage or operating system for which the algorithm is written. In
general, we are interested in determining the dependency of the running time on the
size of the input. In order to determine this, we can perform several experiments
on many different test inputs of various sizes. We can then visvalize the results
of such experiments by plotting the performance of each run of the algorithm as
a point with x-coordinate equal to the input size, », and y-coordinate equal to the
running time, r. (See Figure 1.1.) To be meaningful, this analysis requires that
we choose good sample inputs and test enough of them to be able to make sound
statistical claims about the algorithm, which is an approach we discuss in more
detail in Section 1.6.

In general, the running time of an algorithm or data structure method increases
with the input size, although it may also vary for distinct inputs of the same size,
Also, the running time is affected by the hardware environment (processor, clock
rate, memory, disk, etc.) and software environment (operating system, program-
ming language, compiler, interpreter, etc.) in which the algorithm is implemented,
compiled, and executed. All other factors being equal, the running time of the same
algorithm on the same input data will be smaller if the computer has, say, a much
faster processor or if the implementation is done in a program compiled into native
machine code instead of an interpreted implementation run on a virtual machine.

f (1as) t{ms) -
£0 =+ 60 -1- uEe
= . HB [
30 -+ 50 +
3 BE A
4 - ; A "y =
40 T u? 40 T . MoE g
] 5mW My
30 4+ - 30 - _ufu s
T LI T &=®
20 4 L gy 01T g =
T wnE =m T
H
w4 B e 10 1
1 hy A
L 1 1 3 1 1 i i 1 il i E) 1. I i { L 1 1 1 L
T T T L ¥ T E] T T T T H T T L3 ¥) L T T T H T
0 50 100 0] 50 1060
(a) (b)

Figure 1.1: Results of an experimental study on the running time of an algorithm.
A dot with coordinates (#,1) indicates that on an input of size », the running time of
the algorithm is 7 milliseconds (ms). (a) The algorithm executed on a fast computer;
(b) the algorithm executed on a slow computer.

Chapter 1. Algorithm Analysis

Requirements for a General Analysis Methodology

Experimental studies on running times are useful, as we explore in Section 1.6, but
they have some limitations:

e Experiments can be done only on a limited set of test inputs, and care must
‘be taken to make sure these are representative. '

o Ttis difficult to compare the efficiency of two algorithms unless experiments
on their running times have been performed in the same hardware and soft-
ware environments.

o It is necessary, to implement and execute an algorithm in order to study its
running time experimentaily.

Thus, while experimentation has an important role to play in algorithm analysis,
it alone is not sufficient. Therefore, in addition to experimentation, we desire an
analytic framework that:

» Takes into account all possible inputs

e Allows us to evaluate the relative efficiency of any two algorithms mn a way
that is independent from the hardware and software environment

e Can be performed by studying a high-level description of the algorithm with-
out actually implementing it or running experiments on it.

This methodology aims at associating with each algorithm a function f{n) that
characterizes the running time of the algorithm in terms of the input size n. Typical
functions that will be encountered include n and n*. For example, we will write
statements of the type “Algorithm A runs in time proportional to n, meaning that
if we were to perform experiments, we would find that the actual running time of
algorithm A on any input of size n never exceeds cn, where ¢ is a constant that
depends on the hardware and software environment used in the experiment. Given
two algorithms A and B, where A runs in time proportional to 7 and B runs in time
proportional to n?, we will prefer A to B, since the function n grows at a smaller
rate than the function n?.

We are now ready to “roll up our sleeves” and start developing our method-
ology for algorithm analysis. There are several components to this methodology,
including the following:

A language for describing algorithms
A computational model that algorithms execute within
A metric for measuring algorithm running time

An approach for characterizing running times, including those for recursive
algorithms.

e & 9 @

We describe these components in more detail in the remainder of this section.

1.1. Methodologies for Analyzing Algorithms 7

1.1.1 Pseudo-Code

Programmers are often asked to describe algorithms in a way that is intended for
human eyes only. Such descriptions are not computer programs, but are more struc-
tured than usual prose. They also facilitate the high-level analysis of a data structure
or algorithm. We call these descriptions pseudo-code. '

An Example of Pseudo-Code

The array-maximum problem is the simple problem of finding the maximum ele-
ment in an array A storing # integers. To solve this problem, we can use an algo-
rithm called arrayMax, which scans through the elements of A using a for loop.

The pseudo-code description of algorithm arrayMax is shown in Algorithm 1.2.

Algorithm arrayMax(A,n):
Input: An array A storing n > 1 integers.
Quiput: The maximum element in A.

currentMax +— A{0)
fori—1ton-—1do
if currentMax < Ali] then
currentMax «— Ali]
retarn currentMax

Algorithm 1.2: Algorithm arrayMax.

Note that the psendo-code is more compact than an equivalent actual software
code fragment would be. In addition, the pseudo-code is easier to read and under-
stand.

Using Pseudo-Code to Prove Algorithm Correctness

By inspecting the pseudo-code, we can argue about the correctness of algorithm
arrayMax with a simple argument. Variable currentMax starts out being equal to
the first element of A. We claim that at the beginning of the /th iteration of the loop,
currentMax is equal to the maximum of the first i elements in A. Since we compare
currentMax to Ali] in iteration i, if this claim is true before this iteration, it will be
true after it for i + 1 (which is the next value of counter 7). Thus, after n— 1 itera-
tions, currentMax will equal the maximum element in A. As with this example, we
want our pseudo-code descriptions to always be detailed enough to fully justify the
correctness of the algorithm they describe, while being simple enough for human
readers to understand.

Chapter 1. Afgorithﬁ: Analysis

What Is Pseudo-Code?

Pseudo-code is 2 mixture of natural language and high-level programming con-
structs that describe the main ideas behind a generic implementation of a data
structure or algorithm. There really is no precise definition of the pseudo-code lan-
guage, however, because of its reliance on natural language. At the same time, to
help achieve clarity, pseudo-code mixes natural language with standard program-
ming language constructs. The programming language constructs we choose are
those consistent with modem high-level languages such as C, C++, and Java. These
constructs include the following:

o Expressions: We use standard mathematical symbols to express numeric
and Boolean expressions. We use the left arrow sign (+-) as the assignment
operator in assignment statements (equivalent to the = operator in C, C++,
and Java) and we use the equal sign (=) as the equality relation in Boolean
expressions (equivalent to the “==" relation in C, C++, and Java).

o Method declarations: Algorithm name(paraml, param?2,.. .) declares anew
method “name” and its parameters.

o Decision siructures: if condition then true-actions [else false-actions]. We
use indentation to indicate what actions should be included in the true-actions
and false-actions.

o While-loops: while condition do actions. We use indentation to indicate
what actions should be included in the loop actions.

¢ Repeat-loops: vepeat actions until condition. ‘We use indentation to indicate
what actions should be included in the loop actions.

o For-loops: for variable-increment-definition de actions. We use indentation
to indicate what actions should be included among the loop actions.

o Array indexing: Ali} represents the ith cell in the array A. The cells of an
n-celled array A are indexed from A[0] to Aln — 1] (consistent with C, C++,
and Java}.

o Method calls: object.method(args) (object is optional if it is understood).

o Method returns: return value. This operation returns the value specified to
the method that called this one. :

When we write pseudo-code, we must keep in mind that we are writing for a
human reader, not a computer. Thus, we should strive to communicate high-level
ideas, not low-level impleréntation details. At the same time, we should not gloss
over important steps. Like many forms of human communication, finding the right
balance is an important skill that is refined through practice.

Now that we have developed a high-level way of describing algorithms, let us
next discuss how we can analytically characterize algorithms written in pseudo-
code.

1.1. Methodologies for Analyzing Algorithms 9

1.1.2 The Random Access Machine (RAM) Model

As we noted above, experimental analysis is valuable, but it has its limitations. If
we wish to analyze a particular algorithm without performing experiments on its
running time, we can take the following more analytic approach directly on the
high-level code or pseudo-code. We define a set of high-level primitive operations
that are largely independent from the programming language used and can be iden-
tified also in the pseudo-code. Primitive operations include the following:

Assigning a value to a variable

Calling a method

Performing an arithmetic operation (for example, adding two numbers)
Comparing two numbers

Indexing into an array

Following an object reference

Returning from a method.

8 & 8 ¢ £ @& &

Specifically, a primitive operation corresponds to a low-level instruction with an
execution time that depends on the hardware and software environment but is nev-
ertheless constant. Instead of trying to determine the specific execution time of
each primitive operation, we will simply count how many primitive operations are
executed, and use this number ¢ as a high-level estimate of the running time of the
algorithm. This operation count will correlate to an actual running time in a spe-
cific hardware and software environment, for each primitive operation corresponds
to a constant-time instruction, and there are only a fixed number of primitive opera-
tions. The implicit assumption in this approach is that the running times of different
primitive operations will be fairly similar. Thus, the number, ¢, of primitive opera-
tions an algorithm performs will be proportional to the actual running time of that
algorithm.

RAM Machine Model Definition

This approach of simply counting primitive operations gives rise to a computational
model called the Random Access Machine (RAM). This model, which should not
be confused with “random access memory,” views a computer simply as a CPU
connected to a bank of memory cells. Each memory cell stores a word, which can
be a number, a character string, or an address, that is, the value of a base type. The
term “random access” refers to the ability of the CPU to access an arbitrary memory
cell with one primitive operation. To keep the model simple, we do not place
any specific limits on the size of numbers that can be stored in words of memory.
We assume the CPU in the RAM model can perform any primitive operation in
a constant number of steps, which do not depend on the size of the input. Thus,
an accurate bound on the number of primitive operations an algorithm performs
corresponds directly to the running time of that algorithm in the RAM model.

10 _A Chapter 1. Algorithm Analysis |

1.1.3 Counting Primitive Operations

We now show how to count the number of primitive operations executed by an al-
gorithm, using as an example algorithm arrayMax, whose pseudo-code was given :
back in Algorithm 1.2. We do this analysis by focusing on each step of the algo- l
rithm and counting the primitive operations that it takes, taking into consideration :
that some operations are repeated, because they are enclosed in the body of a loop.

o Initializing the variable currentMax to A{0] corresponds to two primitive op-
erations (indexing into an array and assigning a value to a variable) and is
executed only once at the beginning of the algorithm. Thus, it contributes
two units to the count.

» At the beginning of the for loop, counter i is initialized to 1. This action corre-
sponds to executing one primitive operation (assigning a value to a variable).

o Before entering the body of the for loop, condition i <n is verified. This
action cotresponds to executing one primitive instruction (comparing two
numbers). Since counter i starts at 0 and is incremented by 1 at the end of
each iteration of the loop, the comparison i < 72 i8 performed n times. Thus,
it contributes » units to the count.

o The body of the for loop is executed n— 1 times (for values 1,2,...,n—1
of the counter). At each iteration, Al is compared with currentMax (two
primitive operations, indexing and comparing), AlcurrentMazx] is possibly
assigned to currentMax (two primitive operations, indexing and assigning), i
and the counter i is incremented (two primitive operations, summing and
assigning). Hence, at each iteration of the loop, either four or six primitive “‘
operations are performed, depending on whether Alf) < currentMax or Ali] >
currentMax. Therefore, the body of the loop contributes between 4(n — 1)
and 6(n— 1) units to the count.

e Returning the value of variable currentMax corresponds to one primitive op-
eration, and is executed only once.

To summarize, the number of primitive operations () executed by algorithm ar-
rayMax is at Jeast

241+n+4n—1)+1=>5n
and at most i
24 14+n+6(n—1)+1=Tn—-2.

The best case (¢(n) = 51) occurs when A[0] is the maximum element, so that vari-
able currentMax is never reassigned. The worst case (¢(n) = 7n — 2) occurs when
the elements are sorted in increasing order, so that variable currentMax is reas-
signed at each iteration of the for loop.

1.1. Methodologies for Analyzing Algorithms
Average-Case and Worst-Case Analysis

Like the arrayMax method, an algorithm may run faster on some inputs than it does
on others. In such cases we may wish to express the running time of such an algo-
rithm as an average taken over all possible inputs. Although such an average case
analysis would often be valuable, it is typically quite challenging. It requires us to
define a probability distribution on the set of inputs, which is typically a difficult
task. Figure 1.3 schematically shows how, depending on the input distribution, the
running time of an algorithm can be anywhere between the worst-case time and the
best-case time. For example, what if inputs are really only of types “A” or “D”?

An average-case analysis also typically requires that we calculate expected run-
ning times based on a given input distrbution. Such an analysis often requires
heavy mathematics and probability theory.

Therefore, except for experimental studies or the analysis of algorithms that are
themselves randomized, we will, for the remainder of this book, typically charac-
terize running times in terms of the worst case. We say, for example, that algorithm
arrayMax executes #(n) = 7n — 2 primitive operations in the worst case, meaning
that the maximum number of primitive operations executed by the algorithm, taken
over all inputs of size n, is 7Tn —~ 2.

This type of analysis is much easier than an average-case analysis, as it does
not require probability theory; it just requires the ability to identify the worst-case
input, which is often straightforward. In addition, taking a worst-case approach can
actually lead to better algorithms. Making the standard of success that of having an
algorithm perform well in the worst case necessarily requires that it perform well on
every input. That is, designing for the worst case can lead to stronger algorithmic
“muscles,” much like a track star who always practices by running up hill.

5 ms

omoem pmowe s e o oew omaow WOESE-Case time

4 ms
QE) average-case time?
=
oo 3 ms
g
g = W best-case time
=]
£ 2ms
ims

A B C D E F G
Input Instance

Figare 1.3: The difference between best-case and worst-case time. Each bar repre-
sents the running time of some algorithm on a different possible input.

12

Chapter 1. Algorithm Analysis

1.1.4 Analyzing Recursive Algorithms

Iteration is not the only interesting way of solving a problem. Another useful tech-
nique, which is employed by many algorithms, is to use recursion. In this tech-
nique, we define a procedure P that is allowed to make calls to itself as a subrou-
tine, provided those calls to P are for solving subproblems of smaller size. The
subroutine calls to P on smaller instances are called “recursive calls”” A recur-
sive procedure should always define a base case, which is small enough that the
algorithm can solve it directly without using recursion.

We give a recursive solution to the array maxmmum problem in Algorithm 1.4.
This algorithm first checks if the array contains justa single item, which in this case
must be the maximum; hence, in this simple base case we can immediately solve
the problem. Otherwise, the algorithm recursively computes the maximum of the
first n— 1 elements in the array and then returns the maximum of this value and the

last element in the array.

As with this example, recorsive algorithms are often quite elegant. Analyzing
the running time of a recursive algorithm takes a bit of additional work, however.
In particular, to analyze such a running time, We use a recurrence equation, which
defines mathematical statements that the numning time of a recursive algorithm must
satisfy. We introduce a function T () that depotes the running time of the algorithm
on an input of size n, and we write equations that T (n) must satisfy. For example,
we can characterize the running time, T{n), of the recursiveMax algorithm as

|3 if n==1
T(m) = { T(n—1)+7 otherwise,

assuming that we count each comparison, array reference, recursive call, max cal-
culation, or retarn as a single primitive operation. Ideally, we would like to char-
acterize a recurrence equation like that above in closed form, where no references
to the function 7' appear on the righthand side. For the recursiveMax algorithm,
it isn’t too hard to see that a closed form would be T(n) = 7{(n—1}+3 ="Tn— 2.
In general, determiming closed form solutions to recurrence equations can be much
more challenging than this, and we study some specific examples of recurrence
equations in Chapter 4, when we study some O ing and selection algorithms. We

study methods for solving recurrence equations of a general form in Section 5.2.

Algorithm recursiveMax(4,n):
Input: An array A storing n > 1 integers.
Output: The maximum element in A.

if n==1 then
return A{0]
return max{recursiveMax(4,n — 1), Aln—1]}

Algorithm 1.4: Algorithm recursiveMax.

1.2. Asymptotic Notation ' 13

1.2 Asymptotic Notation

We have clearly gone into laborious detail for evaluating the running time of such
a simple algorithm as arrayMax and its recursive cousin, recursiveMax. Such an
approach would clearly prove cumbersome if we had to perform it for more compli-
cated algorithms. In general, each step in a pseudo-code description and each state-
ment in a high-level language implementation corresponds to a small number of
primitive operations that does not depend on the input size. Thus, we can perform
a simplified analysis that estimates the number of primitive operations executed up
to a constant factor, by counting the steps of the pseudo-code or the statements of
the high-level language executed. Fortunately, there is a notation that allows us to
characterize the main factors affecting an algorithm’s running time without going
mnto all the details of exactly how many primitive operations are performed for each
constant-time set of instructions.

1.2.1

The "Big-Oh" Notation

Let f(n) and g(n) be functions mapping nonnegative integers to real numbers. We
say that f(n) is O(g{n)) if there is a real constant ¢ > 0 and an integer constant
ng = 1 such that f(n) < cg(n) for every integer n > ng. This definition is often
referred to as the “big-Oh™ notation, for it is sometimes pronounced as “f(r) is big-
Oh of g(n)” Alternatively, we can also say “f(n) is order g(n)”” (This definition
1s illustrated in Figure 1.5.)

Running Time

Input Size

Figure 1.5: Mlustrating the “big-Oh” notation. The function f(n) is O(g(n)), for
f(n) < c-g(n) when n > ng.

14

Chapter 1. A}gorithm Analysis

Example 1.1: 7n—2is O(n).

Proof: By the big-Oh definition, we need to find a real constant ¢ > O and an
integer constant ng > 1 such that Tn — 2 < cn for every integer n > ng. It Is easy to
see that a possible choice is ¢ =7 and ng == 1. Indeed, this is one of infinitely many
choices available because any real number greater than or equal to 7 will work for
¢, and any integer greater than or equal to 1 will work for no.

The big-Oh notation allows us o say that a function of n is “less than or equal
to” another function (by the inequality “<” in the definition), up to a constant factor
(by the constant ¢ in the definition) and in the asympfotic sense as 1 grows toward
infinity (by the staterent “n > no” in the definition).

The big-Oh notation is used widely to characterize running times and space
bounds in terms of some parameter n, which varies from problemn to problem, but
is usually defined as an intuitive notion of the “size” of the problem. For example, if
we are interested in finding the largest element in an atray of integers (see arrayMax
given in Algorithm 1.2), it would be most natural to let n denote the number of
elements of the array. For example, we can write the following precise statement
on the running time of algorithm arrayMax from Algorithm 1.2.

Theorem 1.2: The running time of algorithm arrayMax for computing the maxi-
mum element in an array of n integers is O(n).

Proof: As shown in Section 1.1.3, the number of primitive operations executed
by algorithm arrayMax is at most 7n —72. We may therefore apply the big-Oh
definition with ¢ = 7 and ng = 1 and conclude that the running time of algorithm
arrayMax is O{n).

Let us consider a few additional examples that illustrate the big-Oh notation.
Example 1.3: 20n% + 10nlogn+5 is O(n°).

Proof: 20n° + 10nlogn+5 < 3507, forn > 1.
In fact, any polynomial agn” + i 4o+ ag will always be o(nb).
Example 1.4: 3logn-+loglogn is O{log n).

Proof: 3logn+loglogn < dlogn, forn = 2. Note that loglogn is not even
defined for n = 1. That is why we use n 2 2.

Example 1.5: 2% is O(1).

Proof: 21® < 21001 for n > 1. Note that variable n does not appear in the
inequality, since we are dealing with constant-valued functions.

Example 1.6: 5/nis O(1/n).

Proof: 5/n < 5(1/n), forn > 1 (even though this is actually a decreasing func-
tion).]

1.2. Asymptotic Notation

15

In general, we should use the big-Oh notation to characterize a function as
closely as possible. While it is true that f(n) = 4n® +3n%3 is O(n®), it is more
accurate to say that f(n) is O(n?®). Consider, by way of analogy, a scenario where
a hungry traveler driving along a long country road happens upon a local farmer
walking home from a market. If the traveler asks the farmer how much longer be
must drive before he can find some food, it may be truthful for the farmer to say,
“certainly no longer than 12 hours,” but it is much more accurate {and helpful) for
him to say, “you can find a market just a few minutes’ drive up this road.”

Instead of always applying the big-Oh definition directly to obtain a big-Oh
characterization, we can use the following rules to simplify notation.

Theorem 1.7: Let d(n), e(r), f(n), and g{n) be functions mapping nonnegative
integers to nonnegative reals. Then

Ifd(n) is O(f(n)), then ad(n) is O(f(n)), for any constant a > 0.

Ifd(n) is O(f(n)) and e(n) is O(g(n)), then d(n)+e(n) is O(f(n) +g(n)).
I d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)e(n) is O(f(n)g(n}).
I#d(n) is O(f(n)) and f(n) is O(g(n)), then d(n) is O{g(n}).

If f(n) is a polynomial of degree d (that is, f(n) = ap-+ain+--+ agn®),
then f(n) is O{n%).

n* is O(a") for any fixedx >0 anda > 1.

7. logn* is O(logn) for any fixed x > 0.

8. logtn is O(w?) for any fixed constants x > 0 andy > 0.

A o S

o

It is considered poor taste to include constant factors and lower order terms in
the big-Oh notation. For example, it is not fashionable to say that the function 2n?
is O(4n? + 6nlogn), although this is completely correct. We should strive instead
to describe the function in the big-Oh in simplest terms.

Example 1.8: 21 +4n*logn is O(n*).

Proof: We can apply the rules of Theorem 1.7 as follows:
logn is O(n) (Rule &).

4n*ogn is O(4n3) (Rule 3).

om3 +4n?logn is (2 + 4n) (Rule 2).

23+ 4n3 is O(n®) (Rule 5 or Rule 1).

2n® +dntlogn is O(n®) (Rule 4).

2

a & & @

Some functions appear often in the analysis of algorithms and data structures,
and we often use special terms to refer to them. Table 1.6 shows some terms com-

monly used in algorithm analysis.

logarithmic | linear | quadratic polynomial | exponential
O(logn) | O(n) 02 | o) (k=1) | 0@ (@a>1)

Table 1.6: Terminology for classes of functions.

16

Chapter 1. Algorithm Analysis

Using the Big-Oh Notation

It is considered poor taste, in general, to say “f(n) < O(g{n)),” since the big-Oh
already denotes the “less-than-or-equal-to” concept. Likewise, although common,
it is not completely correct to say “f(n) = O(g(n})” (with the usual understanding
of the “=" relation), and it is actwally incorrect to say “f(rn) = O(g(n))” or “f(n) >
O(g(n)).” Ttis best to say “f(n) is O(g(n)).” For the more mathematically inclined,
it is also correct to say,

“f(n) € O(g(m))

for the big-Oh notation is, technically speaking, denoting a whole collection of
functions. '

Even with this interpretation, there is considerable freedom in how we can use
arithmetic operations with the big-Oh notation, provided the connection to the def-
inition of the big-Oh is clear. For instance, we can say,

“f(n) is g(n) + O(h(n)),”

which would mean that there are constants ¢ > 0 and np > 1 such that f(n) <
g(n)+ ch(n) for n > no. As in this example, we may sometimes wish to give the
exact leading term in an asymptotic characterization. In that case, we would say
that “f(n) is g(n) + O(k(n}),” where h(n) grows slower than g(r). For example,
we could say that 2nlogn +4n+ 104/7 is 2nlogn + O(n).

1.2.2

“Relatives” of the Big-Oh

Just as the big-Oh notation provides an asymptotic way of saying that a function
is “less than or equal to” another function, there are other notations that provide
asymptotic ways of making other types of comparisons.

Big-Omega and Big-Theta

Let f(n) and g(r) be functions mapping integers to real numbers. We say that f (n)
is Q(g(n)) (pronounced “f(n) is big-Omega of g(n)”) if g(n) is O(f (n)); that is,
there is a real constant ¢ > 0 and an integer constant ng > 1 such that f(n) > cg(n),
for n > ny. This definition allows us to say asymptotically that one function is
greater than or equal to another, up to a constant factor. Likewise, we say that f(n)
is ©(g(n)) (pronounced “f(n) is big-Theta of g(n)") if f(n) is O(g(n)) and f {n)is
Q(g(n)); that is, there are real constants ¢’ > 0 and ¢’ > 0, and an infeger constant
ng > 1 such that c'g(n) < f(n) < c"g(n), for n = no.

The big-Theta allows us to say that two functions are asymptotically equal, up
to a constant factor. We consider some examples of these notations below.

1.2. Asymptotic Notation 17

Example 1.9: 3logn-+loglogn is Q(logn).
Proof: 3logn-+loglogn = 3logn, forn > 2.

This example shows that lower order terms are not dominant in establishing
lower bounds with the big-Omega notation. Thus, as the next example sums up,
lower order terms are not dominant in the big-Theta notation either.

Example 1.10: 3logrn+loglogn is ©(logn).
Proof: This follows from Examples 1.4 and 1.9. ®

Some Words of‘Caution

A few words of caution about asymptotic notation are in order at this point. First,
note that the use of the big-Oh and related notations.can be somewhat misleading
should the constant factors they “hide” be very large. For example, while it is true
that the function 10'%x is ©(n), if this is the running time of an algorithm being
compared to one whose running time is 10nlogn, we should prefer the @(nlogn)
time algorithm, even though the linear-time algorithm is asymptotically faster. This
preference is because the constant factor, 10'%, which is called “one googol,” is
believed by many astronomers to be an upper bound on the number of atoms in
the observable universe. So we are unlikely to ever have a real-world problem that
has this number as its input size. Thus, even when using the big-Oh notation, we
should at least be somewhat mindful of the constant factors and lower order terms
we are “hiding.”

The above observation raises the issue of what constitutes a “fast” algorithm.
Generally speaking, any algorithm running in O{nlogn) time (with a reasonable
constant factor) should be considered efficient. Even an O(rn?) time method may be
fast enough in some contexts, that is, when # is small. But an algorithm running in
©(2") time should never be considered efficient. This fact is illustrated by a famous
story about the inventor of the game of chess. He asked only that his king pay him
1 grain of rice for the first square on the board, 2 grains for the second, 4 grains
for the third, 8 for the fourth, and so on. But try to imagine the sight of 284 grains
stacked on the last square! In fact, this number cannot even be represented as a
standard long integer in most programming languages.

Therefore, if we must draw a line between efficient and inefficient algorithms,
it is natural to make this distinction be that between those algorithms running in
polynomial time and those requiring exponential time. That is, make the distinction
between algorithms with a running time that is O(n*), for some constant k > 1, and
those with a running time that is ®(c"), for some constant ¢ > 1. Like so many
notions we have discussed in this section, this too should be taken with a “grain of
salt.” for an algorithm running in ©(n!%) time should probably not be considered
“efficient.” Even so, the distinction between polynomial-time and exponential-time
algorithms is considered a robust measure of tractability.

18

Chapter 1. Algorithm Anaijfsis

“Distant Cousing” of the Big-Oh: Little-Oh and Little-Omega

There are also some ways of saying that one function is strictly less than or strictly
greater than another asymptotically, but these are not used as often as the big-Oh,
big-Omega, and big-Theta. Nevertheless, for the sake of completeness, we give
their definitions as well.

Let f(n) and g(n) be functions mapping integers to real numbers. We say that
F(n) is o(g(n)) (pronounced “f(n) is little-oh of g(n)”) if, for any constant ¢ > 0,
there is a constant rg > O such that f(n) < cg(n) for n > no. Likewise, we say that
f(n) is ©(g(n)) (pronounced “f(n) is little-omega of g(n)”) if g{n} is o(f(n}), that
is, if, for any constant ¢ > 0, there is a constant 7ip > 0 such that g(n) < cf(n) for
n > no. Intuitively, o(-) is analogous to “Jess than” in an asymptotic sense, and ®(-)
is analogous to “greater than” in an asymptotic sense.

Example 1.11: The function f(n) = 1212 + 6n is o(n*) and @(n).

Proof: Let us first show that f{(n) is o(r®). Let ¢ > 0 be any constant. If we take
ng = (12 6)/c, then, for n > no, we have

en > 12n% + 607 > 1212 + 6n.
Thus, f(n) is o(n*).

To show that f(n) is ®(n), let ¢ > 0 again be any constant. If we takeny =c¢/12,
then, for n > ng, we have

120* 160 > 120% > cn.
Thus, f(n) is o(r).

For the reader familiar with limits, we note that f(n) is o(g(n}) if and only if

Hm fl _

A0 g~

provided this limit exists. The main difference between the little-oh and big-Oh
notions is that £(r) is O(g(n)) if there exist constants ¢ > 0 and ng = 1 such that
£(n) < cg(n), for n = np; whereas f(n) is o(g(n)) if for all constants ¢ > 0 there is
a constant 7 such that f(n) < cg(n), for n > ng. Intitively, f (n) is o(g(n}) if f(n)
becomes insignificant compared to g(r) as n grows toward infinity. As previously
mentioned, asymptotic notdtion is useful because it allows us to concentrate on the
main factor determining a function’s growth.

To swmmarize, the asymptotic notations of big-Oh, big-Omega, and big-Theta,
as well as little-oh and little-omega, provide a convenient language for us to analyze
data structures and algorithms. As mentioned earlier, these notations provide con-
venience because they let us concentrate on the “big picture” rather than low-level
details.

1.2. Asymptotic Notation 19

1.2.3 The Importance of Asymptotics

Asymptotic notation has many important benefits, which might not be immediately
obvious. Specifically, we illustrate one important aspect of the asymptotic view-
point in Table 1.7. This table explores the maximum size allowed for an input
instance for various running times to be solved in 1 second, 1 minute, and 1 hour,
assumning each operation can be processed in 1 microsecond (1 ws). It also shows
the importance of algorithm design, because an algorithm with an asymptotically
slow running time (for example, one that is O(n*)) is beaten in the long run by
an algorithm with an asymptotically faster ranning time (for example, one that is
O(rnlogn)), even if the constant factor for the faster algorithm is worse.

Running Maximum Problem Size (r)
Time I second 1 minute 1 hour
4000 2,500 150,000 9,000,000

20n[logn) 4,096 166,066 7,826,087

2n? 707 5,477 42.426
nt 31 88 244
2" 19 25 31

Table 1.7: Maximum size of a problem that can be solved in one second, one
minute, and one hour, for various running times measured in microseconds.

The importance of good algorithm design goes beyond just what can be solved
effectively on a given computer, however. As shown in Table 1.8, even if we
achieve a dramatic speedup in hardware, we still cannot overcome the handicap
of an asymptotically slow algorithm. This table shows the new maximum problem
size achievable for any fixed amount of time, assuming algorithms with the given
running times are now run on a computer 256 times faster than the previous one.

Running New Maximum
Time Problem Size
400n 256m
20n[logn} | approx. 256{(logm)/(7 +logm))m
2n* 16m
n* 4m
2" - m-+8

Table 1.8: Increase in the maximum size of a problem that can be solved in a certain
fixed amount of time, by using a computer that is 256 times faster than the previous
one, for various running times of the algorithm. Each entry is given as a function
of m, the previous maximum problem size.

20

Chapter 1. Algorithm Analysis

Ordering Functions by Their Growth Rates

Suppose two algorithms solving the same problem are available: an algorithm A4,
which has a running time of ©(n), and an algorithm B, which has a running time
of ®(n?). Which one is better? The litle-oh notation says that n is o(n?), which

implies that algorithm A is asymptotically better than algorithm B, although for a
given (small) value of », it is possible for algorithm B to have lower running time
than algorithm A. Still, in the long run, as shown in the above tables, the benefits
of algorithm A over algorithm B will become clear.

In general, we can use the litfle-oh notation to order classes of functions by
asymptotic growth rate. In Table 1.9, we show a list of functions ordered by in-
creasing growth rate, that is, if a function f(n) precedes a function g(n) in the Iist,

then f(n) is o(g(n))-

Functions Ordered by Growth Rate
logn
}Log2 m
Vn
n
nlogn
n?
3
2!’2

‘Table 1.6: An ordered list of simple functions. Note that, using common terminol-
ogy, one of the above functions is logarithmic, two are polylogarithmic, three are
sublinear, one is linear, one is quadratic, one is cubic, and one is exponential.

Tn Table 1.10, we illustrate the difference in the growth rate of all but one of the
functions shown in Table 1.9.

[n logr /1 n nlogn n? n "

P T 14 2 p) 4 3 q

4 2 2 4 8 16 64 16

8 3 28 8 24 64 512 256

16 4 4 16 64 256 4,096 65,536
32 5 57 32 160 1,024 32,768 4,294,967,296
64 6 8 64 384 4,096 262,144 1.84 x 10'°
128 7 11 128 896 16,384 2,097,152 3.40 x 108
256 g 16 256 2,048 65,536 16,777,216 1.15% 1077
512 9 23 512 4,608 262,144 134,217,728 1.34 x 1014
1,024 | 10 32 1,024 10,240 1,048,576 1,073,741,824 179 x 10708

Fable 1.10: Growth of several functions.

1.3. A Quick Mathematical Review 21

1.3 A Quick Mathematical Review

In this section, we briefly review some of the fundamental concepts from discrete
mathematics that will arise in several of our discussions. In addition to these fun-
damental concepts, Appendix A includes a list of other useful mathematical facts
that apply in the context of data structure and algorithm analysis.

1.3.1

Summations

A notation that appears again and again in the analysis of data structures and algo-
rithms is the summation, which is defined as

b
2= f@+ flat)+ flat2) 4o+ f().

Summations arise in data structure and algorithm analysis because the runming
times of loops naturally give rise to summations. For example, a summation that
often arises in data structure and algorithm analysis is the geometric summation.

Theorem 1,12: For any integer n > 0 and any real number 0 < a # 1, consider

n

Zai=1+a+a2+~--+an

=0
(remembering that a® = 1 if a > 0). This summation is equal to
1— an»iﬂl
l—-a

Summations as shown in Theorem 1.12 are called geometric summations, be-
cause each term is geometrically larger than the previous one if @ > 1. That is, the
terms in such a geometric summation exhibit exponential growth. For example,
everyone working in computing should know that

142444844271 =271,

for this is the largest integer that can be represented in binary notation using n bits.
Another summation that arises in several contexts is

1]
Ni=l+2+3+-+(n—-2)+(n—1)+n
im=1 :

This summation often arises in the analysis of loops in cases where the number of
operations performed inside the Ioop increases by a fixed, constant amount with
each iteration. This summation also has an interesting history. In 1787, a German
elementary schoolteacher decided to keep his 9- and 10-year-old pupils occupied
with the task of adding up all the numbers from 1 to 100. But almost immediately
after giving this assignment, one of the children claimed to have the answer-3,050.

22

Chapter 1. Algorithh: Analysis

That elementary school student was none other than Karl Gauss, who would
grow up to be one of the greatest mathematicians of the 19th century. It is widely
suspected that young Gauss derived the answer to his teacher’s assignment using
the following identity.

Theorem 1.13: For any integer n > 1, we have

ii:n(n—i—l)

i=1

2

Proof: We give two “visual” justifications of Theorem 1.13 in Figure 1.11, both
of which are based on computing the area of a collection of rectangles representing
the numbers 1 through . In Figure 1.11a we draw a big triangle over an ordering
of the rectangles, noting that the area of the rectangles is the same as that of the
big triangle (n*/2) plus that of n small triangles, each of area /2. In Figure 1.11b,
which applies when 7 is even, we note that 1 plusnisn+1, as is2plusn—1,3
plus 7 — 2, and so on. There are /2 such pairings.]

A

a4l e

Figure 1.11: Visual justifications of Theorem 1.13. Both illustrations visualize the
identity in terms of the total area covered by » unit-width rectangles with heights
1,2,...,n. In(a) the rectangles are shown to cover a big triangle of area n* /2 (base
n and height n) plus n small triangles of area 1/2 each (base 1 and beight 1). In
(b), which applies only when n is even, the rectangles are shown to cover a big
rectangle of base n/2 and height n +- 1.

1.3. A Quick Mathematical Review ‘ 23

1.3.2 Logarithms and Exponents

One of the interesting and sometimes even surprising aspects of the analysis of data
structures and algorithms is the ubiquitous presence of logarithms and exponents,
where we say

logya=c if a=b°.

As is the custom in the computing literature, we omit writing the base b of the
logarithm when b = 2. For example, log 1024 = 10.

There are a nurnber of important rules for logarithms and exponents, including
the following:

Theorem 1.14: Let a, b, and ¢ be positive real numbers. We have:

1. log, ac = log,a+log,c
2. logya/c =log,a~log,c
3. log,a® = clog,a

4. log,a = (log.a)/log. b
5. blagca — alogcb

6. (B*)° = b*

7. b = bote

8. b%/b° = b"C,

Also, as a notational shorthand, we use log®n to denote the function (logn)©
and we use loglogn to denote log(logn). Rather than show how we could derive
each of the above identities, which all follow from the definition of logarithms and
exponents, let us instead illustrate these identities with a few examples of their
usefulness.

Example 1.15: We illustrate some interesting cases when the base of a logarithm
or exponent is 2. The rules cited refer to Theorem 1.14.

log(2nlogn) = 1 +logn +loglogn, by rule 1 (twice)
log(n/2) =logn—1log2 =logn—1, by rule 2
log /7 = log(n)"/* = (logn) /2, by rule 3

loglog +/n = log(logn)/2 == loglogn— 1, by rules 2 and 3
logyn = (logn)/log4 = (logn)/2, by rule 4

log?2" =n, by rule 3

2M08n — . by rule 5

Q2logn . (Ploam\2 — n? by rules 5 and 6

4= (22" =27 by rule 6

n223oer — p2 3 = p3 by rules 5, 6, and 7

4 Jor = 228 [0 = 921 — O by rules 6 and 8

® ® & @ ¢ & @ © @& 3 @

24

Chapter 1. Algorithm Analysis

The Floor and Ceiling Functions

One additional comment concerning Jogarithms is in order. The value of a loga-
rithm is typically not an integer, yet the running time of an algorithm is typically
expressed by means of an integer quantity, such as the number of operations pet-
formed. Thus, an algorithm analysis may sometimes involve the use of the so-called
“foor’ and “ceiling” functions, which are defined respectively as follows:

o |x] = the largest integer Jess than or equal to x.
e [x] = the smallest integer greater than or equal to x.

These functiong give us a way to convert real-valued functions into integer-valued
functions. Even so, functions used to analyze data structures and algorithms are
often expressed simply as real-valued functions (for example, nlogn or n/%). We
should read such a running time as having a “big” ceiling function surrounding it.!

1.3.3

Simple Justification Techniques

We will sometimes wish to make strong claims about a certain data structure or al-
gorithm. We may, for example, wish to show that our algorithm is correct or that it
runs fast. In order to rigorously make such claims, we must use mathematical lan-
guage, and in order to back up such claims, we must justify or prove our statements.
Fortunately, there are several simple ways to do this.

By Example

Some claims are of the generic form, “There is an element x in a set S that has
property P.” To justify such a claim, we need only produce a particular x € S that
has property P. Likewise, some hard-to-believe claims are of the generic form,
“Rvery element x in a set S has property P.” To justify that such a claim is false, we
need to only produce a particular x from S that does not have property P. Such an
instance is called a counterexample.

Example 1.16: A certain Professor Amongus claims that every number of the
form 2 — 1 is a prime, when i is an integer greater than 1. Professor Amongus is
wrong.

Proof: Toprove Professbr Amongus is wrong, we need to find a counter-example.
Fortunately, we need not Jook too far, for 24 -1=15=3-5. B

IReal-valued running-time functions are almost always used in conjunction with the asymptotic
notation described in Section 1.2, for which the use of the ceiling fonction would usually be redundani
anyway. (See Exercise R-1.24.)

1.3. A Quick Mathematical Review 25

The "Contra” Attack

Another set of justification techniques involves the use of the negative. The two
primary such methods are the use of the contrapositive and the contradiction. The
use of the contrapositive method is like looking through a negative mirror. To
justify the statement “if p is true, then g is true” we instead establish that “if g is
not true, then p is not true.” Logically, these two statements are the sarne, but the
latter, which is called the contrapositive of the first, may be easier to think about.

Example 1.17: Ifab is odd, then a is odd or b is even.

Proof: To justify this claim, consider the contrapositive, “If a is even and b is odd,
then ab is even.” So, suppose a = 2i, for some integer i. Then ab = (2i)b = 2(ib);
hence, ab is even.

Besides showing a use of the contrapositive justification technique, the previous
example also contains an application of DeMorgan’s Law. This law belps us deal
with negations, for it states that the negation of a statement of the form “p or ¢ is
“not p and not ¢.” Likewise, it states that the negation of a statement of the form
“pand ¢” is “not p or not ¢.”

Another negative justification technique is proof by contradiction, which also
often involves using DeMorgan’s Law. In applying the proof by contradiction tech-
nique, we establish that a statement g is true by first supposing that g is false and
then showing that this assumption leads to a contradiction (such as 2 #2o0rl>3).
By reaching such a contradiction, we show that no consistent situation exists with
g being false, so g must be true. Of course, in order to reach this conclusion, we
must be sure our situation is consistent before we assume g is false.

Example 1.18: Ifab is odd, then a is odd or b is even.

Proof: Let ab be odd. We wish to show that a is odd or b is even. So, with the
hope of leading to a contradiction, let us assume the opposite, namely, suppose a
is even and b is odd. Then a = 2i for some integer i. Hence, ab = (2i)b = 2(ib),
that is, ab is even. But this is a contradiction: ab cannot simultaneously be odd and
even. Therefore a is odd or b is even. &

induction

Most of the claims we make about a running time or a space bound involve an inte-
ger parameter # (usually denoting an intuitive notion of the “size” of the problem).
Moreover, most of these claims are equivalent to saying some statement g{r) is true
“for all n > 1 Since this is making a claim about an infinite set of numbers, we
cannot justify this exhaustively in a direct fashion.

We can often justify claims such as those above as true, however, by using the
technique of induction. This technique amounts to showing that, for any particular
n > 1, there is a finite sequence of implications that starts with something known

26

Chapter 1. Algorithm Analysis

to be true and ultimately leads to showing that g(n) is true. Specifically, we begin
a proof by induction by showing that g(n) is true for n = 1 (and possibly some
other values n = 2,3,...,k, for some constant k). Then we justify that the inductive
“step” is true for n > k, namely, we show “4f g(§) is true for i < n, then g{n) is true.”

The combination of these two pieces completes the proof by induction.

Example 1.19: Consider the Fibonacci sequence: F(1)=1,F(2)=2,andF (n)y=
F(n—1)+F(n—2) forn>2. We claim that F (n) < 2".
Proof: We will show our claim is right by induction.
Base cases: (1 <2). F{1)=1<2=2" and F(2) =2 <4= 22,
Induction step: (n > 2). Suppose our claim is true forn’ < n. Consider F(n). Since
n> 2, F(n) =F(n—1)+F(n—2). Moreover, sincen—1 <nandn—2<n, we
can apply the inductive assumption (sometimes called the “inductive hypothesis”)
to imply that F(n) < on—1 4 2"—2, [n addition,

2ﬂ-~§ + 2?2—2 < 2n-1 +2ﬂ——1 e 211—-1 ez P

This completes the proof. <

Let us do another inductive argument, this time for a fact we have seen before.

Theorem 1.20: (which is the same as Theorem 1.13)
< n{n+1)

fom L
2i="5

Proof: We will justify this equality by induction.
Base case: n = 1. Trivial, for 1 =n{n+1)/2,ifn=1.
Induction step: n > 2. Assume the claim is true for n’ < n. Consider z.

n n—1
Eim n+ 2 i
i=1 i=1

By the induction hypothesis, then
u (n—1)n

Di=nt T

i=1
which we can simplify as
(n—1jn nAnt-n _nttn n(n+1}
5 ST 2 T 2 T2
This completes the proof. =

We may sometimes feel overwhelmed by the task of justifying something true
for all n > 1. We should remember, however, the concreteness of the inductive tech-
nique. It shows that, for any particular », there is a finite step-by-step sequence of
jmplications that starts with something true and leads to the truth about n. In short,
the inductive argument is a formula for building a sequence of direct justifications.

i
i
!
i

1.3. A Quick Mathematical Review . 27

Loop Invariants

The final justification technique we discuss in this section is the loop invariant.

To prove some statement S about a loop is correct, define & in terms
of a series of smaller statements Sy, Sy, .. ., Sk, where:

1. The initial claim, Sy, is troe before the loop begins.

2. Tf 8;..1 is true before iteration i begins, then one can show that &;
will be true after iteration i is over.

3. The final statement, Sy, implies the statement S that we wish to
justify as being true.

We havé, in fact, already seen the loop-invariant justification technique at work
in Section 1.1.1 (for the correctness of arrayMax), but let us nevertheless give one
more example here. In particular, let us consider applying the loop invariant method
to justify the correctness of Algorithm arrayFind, shown in Algorithm 1.12, which
searches for an element x in an array A.

To show arrayFind to be correct, we use a loop invariant argument. That is,
we inductively define statements, &;, for i = 0,1,...,n, that lead to the correctness
of arrayFind. Specifically, we claim the following to be true at the beginning of
iteration i:

S;: x is not equal to any of the first i elements of A.

This claim is true at the beginning of the first iteration of the loop, since there
are no elements among the first 0 in A (this kind of a trivially-true claim is said to
hold vacuously). In iteration i, we compare element x to element A}i] and return the
index i if these two elements are equal, which is clearly correct. If the two elements
x and A[i] are not equal, then we have found one more element not equal to x and we
increment the index i. Thus, the claim S; will be true for this new value of 7, for the
beginning of the next iteration. If the while-loop terminates without ever returning
an index in A, then Sy, is true—there are no elements of A equal to x. Therefore, the
algorithm is correct to retumn the nonindex value —1, as required.

Algorithm arrayFind(x,A):
Input: Anelement x and an n-element array, A.
Quiput: The index i such that x = A[{] or —1 if no element of A is equal to x.
[0
while { < ndo
if x = A[f] then
veturn i
else
Pei--1
retorn —1
Algorithm 1.12: Algorithm arrayFind.

28

Chapter 1. Algorithm Analysis

1.3.4 Basic Probability

When we analyze algorithms that use randomization or if we wish to analyze the
average-case performance of an algorithm, then we need to use some basic facts
from probability theory. The most basic is that any statement about a probability
is defined upon a sample space S, which is defined as the set of all possible out-
comes from some experiment. We leave the terms “outcomes” and “experiment”
undefined in any formal sense, however.

Example 1.21: Consider an experiment that consists of the outcome from flip-
ping a coin five times. This sample space has 95 different outcomes, one for each
different ordering of possible flips that can occur.

Sample spaces can also be infinite, as the following example illustrates.

Example 1.22: Consider an experiment that consists of flipping a coin until it
comes up heads. This sample space is infinite, with each outcome being a sequence
of i tails followed by a single flip that comes up heads, fori € {0,1,2,3,...}.

A probability space is a sample space S together with a probability function,
Pr, that maps subsets of S to real numbers in the interval [0,1]. It captures math-
ematically the notion of the probability of certain “events” occurting. Formally,
each subset A of § is called an event, and the probability function Pr is assumed to
possess the following basic properties with respect to events defined from §:

1. Pr(@) =0.

2. Pr(S) =1.

3. 0<Pr(A) <1, foranyACS.

4 HWABCSandANB =, then PrAUB) = Pr(A) + Pi(B).

Independence

Two events A and B are independent if
Pr(ANB) =Pr{A)-Pr(B).
A collection of events {A1,Az, ..., Au} is mutually independent if
Pr(A;, NA, N -+ NAy) = Pr(A;) Pr{A;) - Pr(Ay).
for any subset {A;,Ag,-- A5}

Example 1.23: Let A be the event that the roll of a die is a 6, let B be the event
that the roll of a second die is a 3, and let C be the event that the sum of these two
dice is 2 10. Then A and B are independent events, but C is not independent with
either A or B.

1.3. A Quick Mathematical Review 29

Conditional Probability

The conditional probability that an event A occurs, given an event B, is denoted as
Pr(A|B), and is defined as

Pr(ANB
Pr{A|B) = mér @),
assuming that Pr(B) > 0.

Example 1.24: Let A be the event that a roll of two dice sums to 10, and let B
be the event that the roll of the first die is a 6. Note that Pr(B) = 1/6 and that
Pr{ANB) = 1/36, for there is only one way two dice can sum to 10 if the first one
is a 6 (namely, if the second is a 4). Thus, Pr(A{B) = (1/36)/(1/6) = 1/6.

Random Variables and Expectation

An elegant way for dealing with events is in terms of random variables. Intuitively,
random variables are variables whose values depend upon the outcome of some
experiment. Formally, a random variable is a function X that maps outcomes from
some sample space S to real numbers. An indicator random variable is a random
variable that maps outcomes to the set {0,1}. Often in algorithm analysis we use
a random variable X that has a discrete set of possible outcomes to characterize
the running time of a randomized algorithm. In this case, the sample space S is
defined by all possible outcomes of the random sources used in the algorithm. We
are usnally most interested in the typical, average, or “expected” value of such a
random variable. The expected value of a discrete random variable X is defined as

E(X) =y xPr(X =x),
X
where the summation is defined over the range of X.

Theorem 1.25 (The Linearity of Expectation): LetX andY be two arbitrary
random variables. Then E{X +Y) = E(X)+E(Y).

Proof:
EX+Y) = 23 x+yPrX=xnY=y)

= YYXPr(X=xNY=y) + 3 2 yPrX=xNY =y)

x ¥y X
= S¥APr(X=xNY=y) + 3 Y yPr(¥ =y N X=x)
= Y xPr(X=x) + S yPr(Y =y)

X Y

= E(X)+E({Y).

Note that this proof does not depend on any independence assumptions about the
events when X and Y take on their respective values. 2

30

Chapter 1. Algorithm Anafysis

Example 1.26: LetX be a random variable that assigns the outcome of the roll of
rwo fair dice to the sum of the number of dots showing. Then E(X)=

Proof: To justify this claim, let X; and X be random variables corresponding to
the number of dots on each die, respectively. Thus, X1 = Xy (that is, they are two
instances of the same function) and E(X) = E(X; +X2) =E {(X;)+E(Xz). Each
outcome of the roll of a fair die occurs with probability 1 /6. Thus

2 3 4 5 6 7

1
E(Xi)m'6“+6+g+'6‘+"6*'+'6-=§’
7.

fori = 1,2. Therefore, E(X) =

Two random variables X and Y are independent if
Pr(X = x|¥ =y) = Pr(X =x),

for all real numbers x and y.

Theorem 1.27: If two random variables X and Y are independent, then
E(XY)=E(X)E(Y).

Example 1.28: Let X be a random variable that assigns the outcome of a roll of
two fair dice to the product of the number of dots showing. Then E(X)=49/4.

Proof: letXy and X, be random variables denoting the number of dots on each
die. The variables X and X, are clearly independent; hence

E(X) = E(XiXp) = E(X1)E(X) = (7/2)" = 49/4.

Chernoff Bounds

It is often necessary in the analysis of randomized algorithms to bound the sum
of a set of random variables. One set of inequalities that makes this tractable is
the set of Chernoff Bounds. Let X:i,Xa,...,X, be a set of mutually independent
indicator random variables, such that each X; is 1 with some probability p; > 0 and
0 otherwise. Let X = ¥, X; be the sum of these random variables, and let u denote
the mean of X, that is, g = E(X) == $1.; pi. We give the following without proof.

Theorem 1.29: Let X be as above. Then, for &> 0,

66 g

and, for0 <6 <1,

Pr(X < (1-d)u) < e H 2,

1.4. Case Studies in Algorithm Analysis 31

1.4 Case Studies in Algorithm Analysis

Having presented the general framework for describing and analyzing algorithms,
we now consider some case studies in algorithm analysis. Specifically, we show
how to use the big-Oh notation to analyze two algorithms that solve the same prob-
lem but have different running times.

The problem we focus on in this section is the one of computing the so-called
prefix averages of a sequence of numbers. Namely, given an array X storing »
numbers, we want to compute an array A such that A[i] is the average of elements
X[0],...,X{i],fori=0,...,n—1, that is,

i .

i+1
Computing prefix averages has many applications in economics and statistics. For
example, given the year-by-year returns of a mutual fund, an investor will typically
want to see the fund’s average annual returns for the last year, the last three years,
the last five years, and the last ten years. The prefix average is also useful as a
“smnoothing” function for a parameter that is quickly changing, as illustrated in
Figure 1.13.

120

100

80

—p— Values

— Prefix
average

60

40

20

{1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1.13: An illustration of the prefix average function and how it is useful for
smoothing a quickly changing sequence of values.

32 Chapter 1. Algorithm Analysis

141 A Quadratic-Time Prefix Averages Algorithm

Our first algorithm for the prefix averages problem, called prefixAveragesl, is
shown in Algorithm 1.14. It computes every element of A separately, following
the definition.

Algorithm prefixAverages1(X):
Input: An n-element array X of numbers.
OQutput: An n-element array A of numbers such that Afi] is
the average of elements X[0],..., X [i]-

Let A be an array of n numbers.
fori+-Oton—1do
a+ 0
for j«-Otoido
ae-a+X[j]
Al e af(i+1)
return array A

Algorithm 1.14: Algorithm prefixAveragesl.

Let us analyze the prefixAveragesl algorithm.

o Initializing and returning array A at the beginning and end can be done with
a constant number of primitive operations per element, and takes O(n) time.

o There are two nested for loops, which are controlled by counters i and J,
respectively. The body of the outer loop, controlled by counter £, is executed
n times, for i = 0,...,n— 1. Thus, statements @ = 0 and Al =a/(i+1) ate
executed n times each. This implies that these two statements, plus the incre-
menting and testing of counter i, contribute a number of primitive operations

proportional to n, that is, O(n) time.

¢ The body of the inner loop, which is controlled by counter j, is executed
i+ 1 times, depending on the current value of the outer loop counter i. Thus,
staternent a = a--X[j} in the inner loop is executed 14243+ --+n times.
By recalling Theorem 1.13, we know that 1 42434 n=n{n+1}/2,
which implies that the statement in the inner loop contributes O(n*) time.
A similar argument can be done for the primitive operations associated with
incrementing and testing counter j, which also take O(n?) time.

The running time of algorithm prefixAverages] is given by the sum of three terms.
The first and the second term are O(n), and the third term is O(n?). By a simple
application of Theorem 1.7, the running time of prefixAveragesl is o(n?).

1.4. Case Studies in Algorithm Analysis 33

1.4.2 A Linear-Time Prefix Averages Algorithm

In order to compute prefix averages more efficiently, we can observe that two con-
secutive averages A[i — 1] and Ali] are similar:

Ali—1} = (X[0]+X[1]+--+X[i-1])/i
Alll = X[O)+X[1]4+---+X[F-1]+X1])/(E+1).

If we denote with S; the prefix sum X[0] +X[1] + -+ X[i], we can compute
the prefix averages as A[i] = S;/(i-+1). Itis easy to keep track of the current prefix
surn while scanning array X with a loop. We present the details in Algorithm 1.15
(prefixAverages2}.

Algorithm prefixAverages2(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that A[7] is
the average of elements X[0],...,X[i].

Let A be an array of n numbers.
s—0
fori—Q0Qton—1do
§ e s+ X1}
Ali] —s/(i+1)
return array A

Algorithm 1.15: Algorithm prefixAverages?2.

The analysis of the running time of algorithm prefixAverages2 follows:

& Initializing and returning array A at the beginning and end can be done with
a constant number of primitive operations per element, and takes O(n) time.

e Initializing variable s at the beginning takes O(1) time.

e There is a single for loop, which is controlled by counter i. The body of the
loop is executed n times, for i = 0,...,n— 1. Thus, statements s == s+ X[i]
and Afi] = s/(i+ 1) are executed » times each. This implies that these two
staternents plus the incrementing and testing of counter i contribute a number
of primitive operations proportional to », that is, O(n) time.

The running time of algorithm prefixAverages?2 is given by the sum of three terms.
The first and the third term are O(n), and the second term is O(1). By a simple
application of Theorem 1.7, the running time of prefixAverages?2 is O(n), which is
much better than the quadratic-time algorithm prefixAveragesl.

