Worst-case Time Complexity: Proving Asymptotic Bounds.

Let t(x) be the number of steps taken by algorithm \mathcal{A} on input x. Let T(n) be the *worst-case* time complexity of algorithm \mathcal{A} :

 $T(n) = \max_{\text{all inputs } x \text{ of size } n} t(x) = \max \left\{ t(x) : x \text{ is an input of size } n \right\}$

1. To prove that T(n) is O(g(n)), one must show that there is a constant c > 0, and an input size $n_0 > 0$, such that for all $n \ge n_0$:

 $T(n) \leq c \cdot g(n)$ $\Leftrightarrow \max \{t(x) : x \text{ is an input of size } n\} \leq c \cdot g(n)$ $\Leftrightarrow \text{ For every input } x \text{ of size } n, t(x) \leq c \cdot g(n)$ $\Leftrightarrow \text{ For every input of size } n, \mathcal{A} \text{ takes at most } c \cdot g(n) \text{ steps}$

2. To prove that T(n) is $\Omega(g(n))$, one must show that there is a constant c > 0, and an input size $n_0 > 0$, such that for all $n \ge n_0$:

 $T(n) \ge c \cdot g(n)$ $\Leftrightarrow \max \{t(x) : x \text{ is an input of size } n\} \ge c \cdot g(n)$ $\Leftrightarrow \text{For some input } x \text{ of size } n, t(x) \ge c \cdot g(n)$

 \Leftrightarrow For some input of size n, \mathcal{A} takes at least $c \cdot g(n)$ steps

IN SUMMARY:

Let T(n) be the *worst-case* time complexity of algorithm \mathcal{A} .

- 1. T(n) is O(g(n)) iff $\exists c > 0$, $\exists n_0 > 0$, such that $\forall n \ge n_0$: for every input of size n, \mathcal{A} takes at most $c \cdot g(n)$ steps.
- 2. T(n) is $\Omega(g(n))$ iff $\exists c > 0$, $\exists n_0 > 0$, such that $\forall n \ge n_0$: for some input of size n, \mathcal{A} takes at least $c \cdot g(n)$ steps.
- 3. T(n) is $\Theta(g(n))$ iff T(n) is O(g(n)) and T(n) is $\Omega(g(n))$.