Midterm Marking Guide

1

- 1 mark: proper expected value expression
- 1 mark: right answer
- 1 mark: explanation
- 2 marks off for doing the question for only a single value instead of all 3 .
- height off-by-one: no marks off.

2
a:

- If you were close to the full definition, 2 marks. Not very close but right idea: 1 mark.
b:
- a very lacking explanation ("Pr $<1 / \mathrm{m}$ "): 1 mark
- "there's enough space for every element" 2 marks (why does f have this property?)
c:
- saying $n>m \Longrightarrow \operatorname{Pr}(h(i)=h(j))>\frac{1}{m}$ gets 1 mark
- Saying two elements go to the same place: full marks

3
a:

- 1 mark: using more than $3 / 2$ credits
- 2 marks: charge 3 for $0->1,0$ for $1->2$
- 1 mark: charging per bit flip (you should charge per increment, which may have multiple tribit flips)
b:
- 1mark: an invariant that says credits will never go negative
- 2 marks: 1 credit stored on twos (no mention of credits stored on ones)
- 0 marks for failing to prove a "never go negative" invariant
- 1 mark off for not proving the case where multiple 2 s occur.

4

Many people did not augment the tree with anything other than "count". It was very hard (but not impossible) to implement DEC-BIG-COUNT in $O(\log n)$ if you didn't augment the tree. If you could make it work without augmentation, then you could get full marks.
a:

- want max: want a max_count field, that store the maximium count in the subtree rooted at that node
b:
- 2 marks off: need augmented value: If you didn't augment the tree, INCCOUNT is trivial to implement (same as insert). You lost 2 marks here unless your DEC-BIG-COUNT implementation actually worked.
- 1 mark off: update count.
- 2 marks off: how do you find v?
- 2 marks off: update fields: don't do anything to update your added fields
- 0 marks for $O(n)$ solutions.
- If you maintain a "weird" added field that doesn't work for part c), you can get up to full marks here.
c:
It was hard to get any marks here if you hadn't augmented the tree with an appropriate field.
- tree ordered by value, not count: 0 marks. The tree was ordered by the value field, and so you can't search in the tree according to the count field.
- this is $O(n)$: 0 marks. Completely traversing all n nodes in the tree is necessarily $O(n)$.
- what is v ? 0 marks. There is no node v argument to the function. Read the question carefully.
- update fields: 1 mark off. You need to update the max_count field (or whatever field you used) after decrementing.

