Chapter

Search Trees and Skip Lists

Contents

3.1

3.2

3.3

3.4

3.5

3.6

Ordered Dictionaries and Binary Search Trees 141
311 Serted Tables o oo 142
31.2 Binary Search Trees, 145
3.1.3 Searching in a Binary Search Tree 146
3.1.4 insertionin a Binary Search Tree 148
3.1.5 Removal in a Binary Search Tree 149
3.1.6 Performance of Binary Search Trees 151

AVL Trees o it v i e e e e i e 152
3.2.1 Update Operations ib4
322 Performance L oL L. 158

Bounded-Depth Search Trees 159
3.3.1 Muki-Way Search Trees 159
332 (24)Trees. o 163
333 Red-Black Trees, 170

Splay Trees 0 i i e e 185
341 Splavingo 185
3.4.2 Amortized Analysis of Splaying 191

SkipLists N e e e ek e e e 195
35.1 Searching 197
3.5.2 Update Operations 198
3.5.3 A Probabilistic Analysis of Skip Lists 200

Java Example: AVL and Red-Black Trees 202
3.6.1 Java Implementation of AVL Trees 206
3.6.2 Java Implementation of Red-Black Trees 209

Exercises

140

Chapter 3. Search Trees and Skip Lists

People like choices. We like to have different ways of solving the same prob-
lem, so that we can explore different trade-offs and efficiencies. This chapter is de-
voted to the exploration of different ways of implementing an ordered dictionary.
We begin this chapter by discussing binary search trees, and how they support a
simple tree-based implementation of an ordered dictionary, but do not guarantee
efficient worst-case performance. Nevertheless, they form the basis of many tree-
based dictionary implementations, and we discuss several in this chapter. One of
the classic implementations is the AVL tree, presented in Section 3.2, which is a
binary search tree that achieves logarithmic-time search and update operations.

In Section 3.3, we introduce the concept of bounded-depth trees, which keep
all external nodes at the same depth or “pseudo-depth.” One such tree is the multi-
way search free, which is an ordered tree where each internal node can store several
iterns and have several children. A multi-way search tree is a generalization of the
binary search tree, and like the binary search tree, it can be specialized into an ef-
ficient data structure for ordered dictionaries. A specific kind of multi-way search
tree discussed in Section 3.3 is the (2,4) tree, which is a bounded-depth search
tree in which each internal node stores 1, 2, or 3 keys and has 2, 3, or 4 children,
respectively. The advantage of these trees is that they have algorithms for insert-
ing and removing keys that are simple and intuitive. Update operations rearrange
a (2,4) tree by means of natural operations that split and merge “nearby” nodes or
transfer keys between them. A (2,4) tree storing » items uses O(n) space and sup-
ports searches, insertions, and removals in O(logn) worst-case time. Another kind
of bounded-depth search tree studied in this section is the red-black tree. These
are binary search trees whose nodes are colored “red” and “black” in such a way
that the coloring scheme guarantees each external node is at the same (logarithmic)
“plack depth.” The pseudo-depth notion of black depth results from an illuminat-
ing correspondence between red-black and (2,4) trees. Using this correspondence,
we motivate and provide intuition for the somewhat more complex algorithms for
insertion and removal in red-black trees, which are based on rotations and recol-
orings. An advantage that a red-black tree achieves over other binary search trees
(such as AVL trees) is that it can be restructured after an insertion or removal with
only O(1) rotations.

In Section 3.4, we discuss splay trees, which are attractive due to the simplicity
of their search and update methods. Splay trees are binary search trees that, after
each search, insertion, or deletion, move the node accessed up to the root by means
of a carefully choreographed sequence of rotations. This simple “move-to-the-
top” heuristic helps this data structure adapt itself to the kinds of operations being
performed. One of the results of this heuristic is that splay trees guarantee that the
amortized running time of each dictionary operation is logarithmic.

Finally, in Section 3.5, we discuss skip lists, which are not a tree data structure,
but nevertheless have a notion of depth that keeps all elements at logarithmic depth.
These structures are randomized, however, so their depth bounds are probabilistic.
Tn particular, we show that with very high probability the height of a skip list storing

3.1. Ordered Dictionaries and Binary Search Trees 141

n elements is O(logn). This is admittedly not as strong as a true worst-case bound,
but the update operations for skip lists are quite simple and they compare favorably
to search trees in practice.

We focus on the practice of implementing binary search trees in Section 3.6,
giving Java implementations for both AVL and red-black trees. We highlight how
both of these data structures can build upon the tree ADT discussed in Section 2.3.

There are admittedly quite a few kinds of search structures discussed in this
chapter, and we recognize that a reader or instructor with limited time might be
interested in studying only selected topics. For this reason, we have designed this
chapter so that each section can be studied independent of any other section except
for the fifst section, which we present next.

Ordered Dictionaries and Binary Search Trees

In an ordered dictionary, we wish to perform the usual dictionary operations, dis-
cussed in Section 2.5.1, such as the operations findElement(k), insertitem(k,e),
and removeEiement(k), but also maintain an order relation for the keys in our dic-
tionary. We can use a comparator to provide the order relation among keys, and, as
we will see, such an ordering helps us to efficiently implement the dictionary ADT.
In addition, an ordered dictionary also supports the following methods:

closestiKeyBefore(k): Return the key of the item with largest key less than or
equal to k.

closestElemBefore(k): Return the element for the item with largest key less than
or equal to k.

closestKeyAfter(k): Return the key of the item with smallest key greater than
or equal to k.

closestElemAfter(k): Return the element for the item with smallest key greater
than or equal fo k.

Each of these methods returns the special NO.SUCH_KEY object if no item in the
dictionary satisfies the query.

The ordered natare of the above operations makes the use of a log file or a
hash table inappropriate for implementing the dictionary, for neither of these data
structures maintains any ordering information for the keys in the dictionary. Indeed,
hash tables achieve their best search speeds when their keys are distributed almost
at random. Thus, we should consider new dictionary implementations when dealing
with ordered dictionaries.

Having defined the dictionary abstract data type, let us now look at some simple
ways of implementing this ADT.

142

Chapter 3. Search Trees and Skip Lists

W3.1.1 Sorted Tables

Tf a dictionaxy D 18 ordered, we can store its items in a vector S by nondecreasing
order of the keys. We specify that S is a vector, rather than a general sequence, for
the ordering of the keys in the vector S allows for faster searching than would be
possible had S been, say, 2 inked list. We refer O this ordered vector implementa-
tion of a dictionary D as 2 lookup table. We contrast this implementation with the
tog file, which uses an unordered sequence O implement the dictionary.

The space requirernent of the Tookup table is @(n), which is similar to the log
file, assuming we grow and shrink the array supporting the vector S to keep the size
of this array proportional {0 the number of items in S. Unlike a log file, however,
performing updates in a Jookup table takes a considerable amount of time. In par-
ticular, performing the neertitem(k,€) operation in a lookup table requires o(n)
time in the worst case, since we need to shift up all the items in the vector with key
greater than & to make room for the new item (k,e). The fookup table implemen-
tation is therefore inferior to the log file in terms of the worst-case running times
of the dictionary update operations. Nevertheless, we cal perform the operation
findElement much faster in a sorted lookup table.

Binary Search

A sigpificant advantage of using an array-based vector S to implement a1l ordered
dictionary D with n items is that accessing an element of S by its rank takes O(1)
time. We recall from Section 2.2.1 that the cank of an element in a vector is the
number of elements preceding it. Thus, the first element in § has rank 0, and the
last element has rank n - 1.

The elements in 5 are the items of dictionary D, and since S 18 ordered, the item
at rank i has a key 1o smaller than keys of the items at ranks 0,. .- ,i—1, and 1o
larger than keys of the items at ranks -+ 1,...,n— L This observation allows us to
quickly “home in” on a search key k using a variant of the children’s game “high-
low”” We call an item] of D a candidate if, at the current stage of the search, we
cannot rule out that I has key equal to k. The algorithm rnaintains two parameters,
low and high, such that a1l the candidate items have rank at least tow and at most
high in S. Initially, low = 0 and high=n~- 1, and we let key({) denote the key
at rank i, which has elem (i) as its element. We then compare k to the key of the
median candidate, that is, the item with rank

 mid = [{low+ high) /2]

We consider three cases:

o If k = key(mid), then we have found the item we Were jooking for, and the
search terminates successfully returning elem(mid).

o k< key(mid), then we recur on the first half of the vector, that is, oD the
range of ranks from low to mid — 1.

o If k > key(mid), we recur on the range of ranks from mid + 1 to high.

3.1. Ordered Dictionaries and Binary Search Trees 143

This search method is called binary search, and is given in pseudo-code in
Algorithm 3.1. Operation findElement(k) on an n-item dictionary implemented
with a vector S consists of calling BinarySearch(S,k,0,n—1).

Algorithm BinarySearch(S, k, low, high):

Input: An ordered vector S storing n items, whose keys are accessed with
method key(f) and whose elements are accessed with method elem(i); a
search key k; and integers Jow and high

Output: An element of S with key k and rank between low and high, if such an
element exists, and otherwise the special element NO_.SUCH_KEY

if low > high then
return NO_SUCH_KEY
else
mid «— | (low -+ high) /2]
if k= key(mid) then
return elem(mid)
else if k < key(mid) then
return BinarySearch{S,k, low, mid — 1}
else
return BinarySearch(S,k, mid -+ 1, high)

Algorithm 3.1: Binary search in an ordered vector.

We illustrate the binary search algorithm in Figure 3.2.

low mid high

lz!4]5]7|3l9|12[14

low rmid high

[2‘4&517]8[9‘12[14 '25}27[28[33!37]

low mid high

KBTS

]2|4l5 !.7 is|9‘12114]17‘19:’m‘;

low=mid=high

Figure 3.2: Example of a binary seatch to perform operation findElement(22), in a
dictionary with integer keys, implemented with an array-based ordered vector. For
simplicity, we show the keys stored in the dictionary but not the elements.

144

Chapter 3. Gearch Trees and Skip Lists

Considering the running time of binary search, we observe that a constant num-
ber of operations ar€ executed at each secursive call. Hence, the running tinoe is
proportional to the number of recursive calls performed. A crucial fact is that with
each tecursive call the number of candidate items still O be searched in the se-
quence S i8 given by the value high — low -+ 1. Moreover, the number of remaining
candidates 1is reduced by at least one half with each recursive call. Speciﬁcally,
from the definition of mid the mumber of remaining candidates is either

(mid — 1) — low+ L= \low —;htghx Clow < high ~;ow +1

or
h%ghw(mid+1)+1mhigh—\ 3 5

Tnitially, the number of candidate is 73 after the first call to BinarySearch, it is at
most n/2; after the second call, it is at most n/4; and so On. That is, if we let a
function, T{n), represent the Tunning time of this method, then we can characterize
the running time of the recursive binary search algorithm as follows:

b ifn<2
T(r) = { T(nf2)+b else,

where b is a constant. In general, this recurrence equation shows that the pumber
of candidate items remaining after each recursive call is at most 7 J2¢. (We discuss
recurrence equations like this one in more detail in Section 5.2.1.) In the worst ¢as¢
(unsuccessful search), the recursive calls stop when there are no more candidate
items. Hence, the maximum number of recursive calls performed is the smallest
integer m such that 72 jor<1.1In other words (recalling that we omit a logarithm’s
base when it is 2), m = logn. Thus, we nave m = |logn}+1, which implies that
BinarySearch(S,k,0,n— 1) runs in Of{logn) time.

Table 3.3 compares the running times of the methods of a dictionary realized
by either a log file or a lookup table. A log file allows for fast insertions but slow
searches and removals, whereas a lookup table allows for fast searches but slow
insertions and removals.

oleup Table
—fdElemert |00 | OUogn

removeblement
0| 0lloen)

CosestKeyBefore

1ow+highl high — low +1
low gD | 2

it

|

\

Table 3.3: Comparison of the rupning times of the primary methods of an ordered
dictionary realized by means of alog fileora lookup table. We denote the number
of items in the dictionary at the time a method is executed with 7. The performance
of the methods closestEiemBefore, closestKeyAfter, closestElemAfter is similar to
that of closestKeyBefore.

3.1. Ordered Dictionaries and Binary Search Trees | 145

3.1.2 Binary Search Trees

The data structure we discuss in this section, the binary search tree, applies the
motivation of the binary search procedure 10 a tree-based data structure. We define
a binary search tree to be a binary tree in which each internal node v stores an
element e such that the elements stored in the left subtree of v are less than or equal
to e, and the elements stored in the right subtree of v are greater than or equal to e.
Furthermore, let us assume that external nodes store no elements; hence, they could
in fact be null or references to a NULL_NODE object.

An mmorder traversal of a binary search tree visits the elements stored in such
a tree in nondecreasing order. A binary search tree supports searching, where the
question asked at each internal node is whether the element at that node is less than,
equal to, or larger than the element being searched for.

We can use a binary search tree T to locate an element with a certain value x
by traversing down the tree 7. At each internal node we compare the value of the
current node to our search element x. If the answer fo the question is “smaller,”
then the search continues in the left subtree. If the answer is “equal,” then the
search terminates successfully. If the answer js “greater,” then the search continues
in the right subtree. Finally, if we reach an external node (which is empty), then the
search terminates unsuccessfully. (See Figure 3.4.)

Figure 3.4: A binary search tree storing integers. The thick solid path drawn with
thick lines is traversed when searching (successfully) for 36. The thick dashed path
is traversed when searching (unsuccessfully) for 70.

146 | Chapter 3. Search Trees and Skip Lists

3.1.3 Searching in a Binary Search Tree

Formally, a binary search tree is a binary tree T in which each internal node v of T
stores an item (k) of a dictionary D, and keys stored at nodes in the left subtree
of v are less than or equal to k, while keys stored at nodes in the right subtree of v
are greater than or equal to k.

In Algorithm 3.5, we give a recursive method TreeSearch, based on the above
strategy for searching in a binary search tree T'. Given a search key k and a node
v of T, method TreeSearch returns a node (position) w of the subtree T(vyof T
rooted at v, such that one of the following two cases OCCUrSs:

o wis an internal node of T(v) that stores key k.

o wis an external node of T(v). All the internal nodes of T (v) that precede w
in the inorder traversal have keys smaller than &, and all the internal nodes of
T(v) that follow w in the inorder traversal have keys greater than k.

Thus, method findElement(k) can be performed on dictionary D by calling the
method TreeSearch(k, T.root{)) on T Letw be the node of T returned by this call
of the TreeSearch method. I node w is internal, we return the element stored at w;
otherwise, if w is external, then we return NO.SU CH_KEY.

Algorithm TreeSearch(k, v):
Inpui: A search key k, and a node v of a binary search tree T
Quitput: A node w of the subtree T'(v) of T rooted at v, such that either w is an
internal node storing key k or w is the external node where an item with key
% would belong if it existed

if v is an external node then
return v
if k=key(v) then
return v
else if & < key(v) then
return TreeSearch(k, T.leftChild (v))
else
{we know k > key(v)}
return TreeSearch(k,T rightChild(¥))

Algorithm 3.5: Recursive search in a binary search tree.

Note that the running time of gearching in a binary search tree T is proportional
to the height of T. Since the height of a tree with nodes can be as small as
O(logn) or as large as Q(n), binary search trees are most efficient when they have
small height.

3.1. Ordered Dictionaries and Binary Search Trees

Analysis of Binary Tree Searching

The formal analysis of the worst-case running time of searching in a binary search
tree T is simple. The binary tree search algorithm executes a constant number of
primitive operations for each node it traverses in the tree. Each new step in the
traversal is made on a child of the previous node. That is, the binary tree search
algorithm is performed on the nodes of a path of 7' that starts from the root and
goes down one level at a time. Thus, the number of such nodes is bounded by
h+1, where A is the height of 7. In other words, since we spend O(1) time per
node encountered in the search, method findElement (or any other standard search
operation) runs in O(k) time, where # is the height of the binary search tree T used
to implement the dictionary D. (See Figure 3.6.)

height time per level

'3

total time: O(h)

Figure 3.6: Tllustrating the running time of searching in a binary search tree. The
figure uses standard visualization shortcuts of viewing a binary search tree as a big
triangle and a path from the root as a zig-zag line.

We can also show that a variation of the above algorithm performs operation
findAllElements(k), which finds all the items in the dictionary with key %, in time
O(h +), where 5 is the number of elements returned. However, this method is
slightly more complicated, and the details are left as an exercise (C-3.3).

Admittedly, the height of T can be as large as n, but we expect that it is usually
much smaller. Indeed, we will show in subsequent sections in this chapter how to
maintain an upper bound of O(logr) on the height of a search tree 7. Before we
describe such a scheme, however, let us describe implementations for dictionary
update methods in a possibly unbalanced binary search tree.

Chapter 3. Search Trees and Skip Lists

3 1.4 Insertion in a Binary Search Tree

implementations of the insertitem and removeElement
trivial.

s that are fairly straightforward, buat not
on a dictionary D implemented with a
TreeSearch(k, T-root()) on T

Binary search trees allow
operations using algorithm

To perform the operation insertitem(k,e)
binary search tree T, we start by calling the method
Let w be the node returned by TreeSearch.

o If w is an external node (no item with key I is stored in T), we repiace w
) and two external children, by

with a new internal node storing the item (k, e

means of operation expandExternai(w) on T (see Section 2.3.3). Note that
Ww is the appropriate place 0 insert an item with key k.

item with key k is stored at w), we call
quivalently, TreeSearch(k, leftChild(w)))
the node returned by TreeSearch.

o If w is an internal node (another
TreeSearch(k, rightChild(w)) (o, &
and recursively apply the algorithm {0

The above insettion algorithm eventually traces a path from the root of T down
a pew internal node accommodating

to an external node, which gets replaced with
dds the new item at the “hottom” of the search
Figure 3.7.

the new item. Hence, an insertion a
wree T. An example of insertion into a binary search free is shown in
The analysis of the insertion algorithm is analogous to that for searching. The
rtional to the height hof T in the worst case. Also,
Section 2.3.4), we spend

pumber of nodes visited is propo
assuming a linked structure implementation for T' (see
d. Thus, method insertitem runs in Ofh) time.

O(1) time at each node visite

(2)

an item with key 78 into 2 binary search tree. Finding the

Figure 3.7: Insertion of
and the resuling tree is shown in (b).

position to insert is shown in (a),

3.1. Ordered Dictienaries and Binary Search Trees

3.1.5 Removal in a Binary Search Tree

Performing the removeElement(k) operation on a dictionary D> implemented with
a binary search tree T' is a bit more complex, since we do not wish to create any
“holes” in the tree T. Such a hole, where an internal node would not store an ele-
ment, would make it difficult if not impossible for us to correctly perform searches
in the binary search tree. Indeed, if we have many removals that do not restruc-
ture the tree T, then there could be a large section of internal nodes that store no
elements, which would confuse any future searches.

The removal operation starts out simple enough, since we begin by executing
algorithm TreeSearch(k, T.root()) on T to find a node storing key k. If TreeSearch
returns an external node, then there is no element with key k in dictionary D, and
we return the special element NO_SUCH_KEY and we are done. If TreeSearch
returns an internal node w instead, then w stores an item we wish to remove.

We distinguish two cases (of increasing difficulty) of how to proceed based on
whether w is a node that is easily removed or not:

s If one of the children of node w is an external node, say node z, we sim-
ply remove w and z from T by means of operation removeAboveExternal(z)
on T. This operation (also see Figure 2.26 and Section 2.3.4) restructures 1’
by replacing w with the sibling of z, removing both w and z from 7.

This case is illustrated in Figure 3.8.

Figure 3.8: Removal from the binary search tree of Figure 3.7b, where the key to
remove (32) is stored at a node {w) with an external child: (a) shows the tree be-
fore the removal, together with the nodes affected by the removeAboveExternal(z)
operation on T'; (b) shows the tree 7" after the removal.

150

Chapter 3. Search Trees and Skip Lists

e If both children of node w are internal nodes, we cannot simply remove the
node w from 7', since this would create a “hole” in T. Instead, we proceed as

follows (see Figure 3.9):

1. We find the first internal node y that follows w in an inorder traversal

of T. Node y is the left-most internal node in the right subtree of w,

and is found by going first to the right child of w and then down T’ from

there, following left children. Also, the left child x of y is the external

node that immediately follows node w in the inorder traversal of 7.

We save the element stored at w in a temporary variable £, and move

the item of y into w. This action has the effect of removing the former

item stored at w.

3. We remove x and y from T using operation removeAboveExternal(x)
on T. This action replaces y with x’s sibling, and removes both x and y
from T.

A. We return the element previously stored at w, which we had saved in
the temporary variable £.

2

Figure 3.9: Removal from the binary search tree of Figure 3.7b, where the key to
remove (65) is stored at a node whose children are both internal: (a) before the

removal; (b) after the removal.

The analysis of the removal algorithm is analogous to that of the insertion and
search algorithms. We spend O(1) time at each node visited, and, in the worst
case, the number of nodes visited is proportional to the height hof T. Thus, in a
dictionary D implemented with a binary search tree T, the removeElement method
runs in O(k) time, where # is the height of T

We can also show that a variation of the above algorithm performs operation
removeAllElements(k) in time O(h -+ s), where s is the number of elements in the
jterator returned. The details are left as an exercise (C-3.4).

3.1. Ordered Dictionaries and Binary Search Trees - 151

3.1.6 Performance of Binary Search Trees

The performance of a dictionary implemented with a binary search is summarized
in the following theorern and in Table 3.10,

Theorem 3.1: A binary search tree T with height h for n key-element items uses
O(n) space and executes the dictionary ADT operations with the following running
ties. Operations size and isEmpty each take O(1) time. Operations findElement,
insertltem, and removeElement each take time O(h) time. Operations findAliEle-
ments and removeAllElements each take O(h+s) time, where s is the size of the
iterators returned,

Method | Time

size, isEmpty o(1)

findElement, insertitem, removeElement O(h)
findAllElements, removeAllElements O(h+5)

Table 3.10: Running times of the main methods of a dictionary realized by a binary
search tree. We denote with % the carrent height of the tree and with s the size of
the iterators returned by find AliElements and removeAllElements. The space usage
is O(n), where n is the number of items stored in the dictionary.

Note that the running time of search and update operations in a binary search
tree varies dramatically depending on the tree’s height. We can nevertheless take
comfort that, on average, a binary search tree with »n keys generated from a random
series of insertions and removals of keys has expected height O(logn). Such a
statement requires careful mathematical language to precisely define what we mean
by a random series of insertions and removals, and sophisticated probability theory
to justify; hence, its justification is beyond the scope of this book. ‘Thus, we can
be content knowing that random update sequences give rise to binary search trees
that have logarithmic height on average, but, keeping in mind their poor worst-
case performance, we should also take care in using standard binary search trees in
applications where updates are not random,

The relative simplicity of the binary search tree and its good average-case per-
formance make binary search trees a rather attractive dictionary data structure in
applications where the keys inserted and removed follow a random pattern and
occasionally slow response time is acceptable. There are, however, applications
where it is essential to have a dictionary with fast worst-case search and update
time. The data structures presented in the next sections address this need.

s

. 3.3. Bounded-Depth Search Trees 159

3.3 Bounded-Depth Search Trees

Some search trees base their efficiency on rules that explicitly bound their depth.
In fact, such trees typically define a depth function, or a “pseudo-depth” function
closely related to depth, so that every external node is at the same depth or pseudo-
depth. In so doing, they maintain every external node to be at depth O(logn) in a
tree storing n elements. Since tree searches and updates usually run in times that
are proportional to depth, such a depth-bounded tree can be used to implement an
ordered dictionary with O(logn) search and update times.

3.31

Multi-Way Search Trees

Some bounded-depth search trees are multi-way trees, that is, trees with internal
nodes that have two or more children. In this section, we describe how multi-way
trees can be used as search trees, including how multi-way trees store iterns and
how we can perform search operations in multi-way search trees. Recall that the
items that we store in a search tree are pairs of the form (k,x), where £ is the key
and x is the element associated with the key.

Let v be a node of an ordered tree. We say that v is a d-node if v has d children.
We define a multi-way search tree to be an ordered tree T’ that has the following
properties (which are illusirated in Figure 3.17a):

Each internal node of T has at least two children. That is, each internal node
is a d-node, where d >> 2.

s Each internal node of T stores a collection of items of the form (k,x), where
k is a key and x is an element.

o Each d-node v of T, with children vy,...,vg, stores d — 1 items (k1,x1),.. .,
(ka—1,%4—1), where ky < -+ <kg..1.

o Let us define ko = —o0 and ky = -+o0. For each item (k,x) stored at a node
in the subtree of vrooted at v, i=1,...,d, wehave k;_{ <k < k.

That is, if we think of the set of keys stored at v as including the special fictitious
keys ky = —co and kg = o0, then a key k stored in the subtree of T rooted at a
child node v; must be “in between” two keys stored at v. This simple viewpoint
gives rise to the rule that a node with d children stores d — 1 regular keys, and it
also forms the basis of the algorithm for searching in a multi-way search tree.

By the above definition, the external nodes of a multi-way search do not store
any items and serve only as “placeholders.”” Thus, we view a binary search tree
(Section 3.1.2) as a special case of a multi-way search tree. At the other extreme, a
multi-way search tree may have only a single internal node storing all the items. In
addition, while the external nodes could be null, we make the simplifying assump-
tion here that they are actnal nodes that don’t store anything.

Chapter 3. Search Trees and Skip Lists

160

Figare 3.17: (7) A multi-way search tree T; (b) search path in T for key 12 (unsuc-
cessful search); (¢} search path in T for key 24 (successful search).

3.3. Bounded-Depth Search Trees 161

Whether internal nodes of a multi-way tree have two children or many, however,
there is an interesting relationship between the number of items and the number of
external nodes.

Theorem 3.3: A multi-way search tree storing n items has n+ 1 external nodes.

We leave the justification of this theorem as an exercise (C-3.16).

Searching in a Multi-Way Tree

Given a multi-way search tree T, searching for an element with key & is simple. We
perform such a search by tracing a path in 7" starting at the root. (See Figure 3.17b
and ¢.) When we are at a d-node v during this search, we compare the key k with
the keys ki,..., kg stored at v. If k = k; for some i, the search is successfully
completed. Otherwise, we continue the search in the child v; of v such that &;_; <
k < k;. (Recall that we consider kg = —o0 and kg = -+00.) If we reach an external
node, then we know that there is no item with key k in T, and the search terminates
unsuccessfully.

Data Structures for Multi-Way Search Trees

In Section 2.3.4, we discussed different ways of representing general trees. Each of
these representations can also be used for multi-way search trees. In fact, in using
a general multi-way tree to implement a multi-way search tree, the only additional
information that we need to store at each node is the set of items (including keys)
associated with that node. That is, we need to store with v a reference to some
container or collection object that stores the items for v. _

Recall that when we use a binary tree to represent an ordered dictionary D, we
simply store a reference to a single item at each internal node. In using a multi-way
search tree T to represent D, we must store a reference to the ordered set of items
associated with v at each internal node v of 7. This reasoning may at first seem
like a circular argument, since we need a representation of an ordered dictionary
to represent an ordered dictionary. We can avoid any circular arguments, however,
by using the bootstrapping technique, where we use a previous (less advanced)
solution to a problem to create a new (more advanced) solution. In this case, boot-
strapping consists of representing the ordered set associated with each internal node
using a dictionary data structure that we have previously constructed (for example,
a lookup table based on an ordered vector, as shown in Section 3.1.1). In particu-
lar, assuming we already have a way of implementing ordered dictionaries, we can
realize a multi-way search tree by taking a tree T and storing such a dictionary at
each d-node v of T'.

The dictionary we store at each node v is known as a secondary data structure,
for we are using it to support the bigger, prirmary data structure. We denote the
dictionary stored at a node v of T" as D(v). The items we store in D(v) will allow us
to find which child node to move to next during a search operation. Specifically, for

162

Chapter 3. Search Trees and Skip Lists

each node v of T, with children vi,...,vq and items (k1,%1)5 -+ (kd_hxd_;), we
store in the dictionary D(v) the items (k1,%1,v1)5 (K, X2,V2), -+ (kg—1,%d-1 Vd—1)>
(00, null, v4). Thatis, an item (i, x;,vi) of dictionary D(v) has key k; and element
(x;,v). Note that the last itern stores the special key +09.

With the above realization of a multi-way search tree T, processing 2 d-node v
while searching for an element of T with key k can be done by performing a search
operation to find the item (i, Xz, vi) 1D D(v) with smailest key greater than or equal
to k, such as in the closestElemAfter (k) operation (see Section 3.1). We distinguish
two cases:

o If k < k;, then we continue the search by processing child v;. (Note that if the
special key kg = +00 is returned, then k is greater than all the keys stored at
node v, and we continue the search process'mg child vg.)

o Otherwise (k = k;), then the search terminates successfully.

Performance Issues for Multi-Way Search Trees

Consider the space requirement for the above fealization of a multi-way search
tree T storing n items. By Theorem 3.3, using any of the common realizations of
ordered dictionaries (Section 2.5) for the secondary structures of the nodes of 7,
the overall space requirement for T is O(n).

Consider next the time spent answering a search in T. The time spent at a d-
node v of T during a search depends on how we realize the secondary data structare
D(v). X D(v) is realized with a vector-based sorted sequence (that is, a lookup
table), then we can process v in O(logd) time. If instead D{v) is realized using
an unsorted sequence (that is, a log file), then processing v takes O(d) time. Let
dpax denote the maximum number of children of any node of T, and let & denote
the height of 7. The search time in a multi-way search tree is either O(hdmpax) OF
O(hog dmax)- depending on the specific implementation of the secondary structures
at the nodes of T’ (the dictionaries D(v)). I dmax is a constant, the ranning time for
performing a search is O(h), irrespective of the implementation of the secondary
structures.

Thus, the prime efficiency goal for a multi-way search tree is to keep the height
as small as possible, that is, we want htobea logarithmic function of n, the nomber
of total items stored in the dictionary. A search tree with logarithmic height, such
as this, is called a palanced search tree. Bounded-depth search. trees satisfy this

goal by keeping each external node at exactly the same depth level in the tree.

Next, we discuss a bounded-depth search tree that is a multi-way search tree
that caps dmax at 4. In Section 14.1.2, we discuss a more general kind of multi-way
search tree that has applications where our search tree is 100 large to completely fit
into the internal memory of our computer.

3.3. Bounded-Depth Search Trees

3.3.2 (2,4) Trees

In using a multi-way search tree in practice, we desire that it be balanced, that is,
have logarithmic height. The multi-way search tree we study next is fairly easy
to keep balanced. It is the (2,4) tree, which is sometimes also called the 2-4 tree
or 2-3-4 tree. In fact, we can maintain balance in a (2,4) tree by maintaining two
simple properties (see Figure 3.18):

Size Property: Every node has at most four children.

Depth Property: All the external nodes have the same depth.

Enforcing the size property for (2,4) trees keeps the size of the nodes in the
multi-way search tree constant, for it allows us to represent the dictionary D(v)
stored at each internal node v using a constant-sized array. The depth property, on
the other hand, maintains the balance in a (2,4} tree, by forcing it to be a bounded-
depth structure.

Theorem 3.4: The height of a (2,4) tree storing n items is ©(logn).

Proof: Let h be the height of a (2,4) tree T storing » items. Note that, by the
size property, we can have at most 4 nodes at depth 1, at most 4? nodes at depth 2,
and so on. Thus, the number of external nodes in T is at most 4*. Likewise, by the
depth property and the definition of a (2,4) tree, we must have at least 2 nodes at
depth 1, at least 2% nodes at depth 2, and so on. Thus, the number of external nodes
in T is at least 2". In addition, by Theorem 3.3, the number of external nodes in T
is n -+ 1. Therefore, we obtain

P<n4+1 and n+1<4h
Taking the logarithm in base 2 of each of the above terms, we get that
h<log(n+1) and log(r+1)<2h,
which justifies our theorem.

Figare 3.18: A (2,4) tree.

164

Chapter 3. Search Trees and Skip Lists
Insertion in a (2,4) Tree

Theorem 3.4 states that the size and depth properties are sufficient for keeping a
multi-way tree balanced. Maintaining these properties requires some effort after
performing insertions and removals in a (2,4) tree, however. In particular, to insert
a new item {k,x), with key k, into a (2,4) wee T, we first perform a search for k.
Assuming that T has no element with key k, this search terminates unsuccessfully
at an external node z. Let v be the parent of z. We insert the new item into node v
and add a new child w (an external node) to v on the left of z. That is, we add item
(k,x,w) to the dictionary D(v).

Our insertion method preserves the depth property. since we add a new external
node at the same level as existing external nodes. Nevertheless, it may violate the
size property. Indeed, if a node v was previously a 4-node, then it may become a
5.node after the insertion, which causes the tree T to no longer be a (2,4) tree. This
type of violation of the size property is called an overflow at node v, and it must
be resolved in order to restore the properties of a (2,4) tree. Letvy,...,Vs be the
children of v, and let &y, ..., ks be the keys stored at v. To remedy the overflow at
node v, we perform a split operation on v as follows (see Figure 3.19):

o Replace v with two nodes v! and v, where

o v is 2 3-node with children vy,v2,V3 storing keys ky and k2
o v" is a 2-node with children v4,vs storing key k.

o If v was the root of T, create a new root node i; else, let u be the parent of v.
o Insert key kz into # and make v’ and v"' children of u, so that if v was child i
of , then v/ and v’ become children { and i + 1 of u, respectively.

We show a sequence of insertions in a (2,4) tree in Figure 3.20.

(a) ®) ()

Figure 3.19: A node split: (a) overflow at a 5-node v; (b) the third key of v inserted
into the parent u of v; (c) node v replaced with a 3-node v/ and a 2-node v".

A split operation affects a constant number of nodes of the tree and O(1) items
stored at such nodes. Thus, it can be implemented to run in O(1) time.

3.3. Bounded-Depth Search Trees 165

@ (b) (© (d)

Figure 3.20: A sequence of insertions into a (2,4) tree: (a) initial tree with one
item; (b) insertion of 6; (¢) insertion of 12; (d) insertion of 15, which causes an
overflow; (e) split, which causes the creation of a new root node; (f) after the split;
(g) insertion of 3; (h) insertion of 5, which causes an overflow; (i) split; (j) after the
split; (k) insertion of 10; (1) insertion of 8.

Chapter 3. Search Trees and Skip Lists

Performance of (2,4) Tree Insertion

As a consequence of a split operation on node v, a new overflow may occur at the
parent « of v. If such an overflow occurs, it triggers, in turn, a split at node u. (See
Figure 3.21.) A split operation either eliminates the overflow or propagates it into
the parent of the current node. Indeed, this propagation can continue all the way up
to the root of the search tree. But if it does propagate all the way to the root, it will
finally be resolved at that point. We show such a sequence of splitting propagations
in Figure 3.21.

Thus, the number of split operations is bounded by the height of the tree, which
is O(logn) by Theorem 3.4. Therefore, the total time to perform an insertion in a
(2,4) tree is O(logn).

Figure 3.21: An insertion in a (2,4) tree that causes a cascading split: (a) before the
insertion; (b) insertion of 17, causing an overflow; (c) a split; (d) after the split a
new overflow occurs; (¢) another split, creating a new root node; (f) final tree.

3.3. Bounded-Depth Search Trees

Removal in a (2,4) Tree

Let us now consider the removal of an item with key k from a (2,4) tree T. We begin
such an operation by performing a search in 7' for an item with key . Removing
such an item from a (2,4) tree can always be reduced to the case where the item to
be removed is stored at a node v whose children are external nodes. Suppose, for
instance, that the item with key k that we wish to remove is stored in the ith item
(k;, %) at a node z that has only internal-node children. In this case, we swap the
itemn (k;,x;) with an appropriate item that is stored af a node v with external-node
children as follows (Figure 3.22d):

1. We find the right-most internal node v in the subtree rooted at the ith child of
z, noting that the children of node v are all external nodes.

2. We swap the item {k;,x;) at z with the last item of v.

Once we ensure that the item to remove is stored at a node v with only external-
node children (because either it was already at v or we swapped it into v), we
simply remove the item from v (that is, from the dictionary D(v)) and remove the
ith external node of v.

Removing an item (and a child) from a node v as described above preserves the
depth property, for we always remove an external node child from a node v with
only external-node children. However, in removing such an external node we may
violate the size property at v. Indeed, if v was previously a 2-node, then it becomes
4 1-node with no items after the removal (Figure 3.22d and e), which is not allowed
in a {2,4) tree. This type of violation of the size property is called an underflow
at node v. To remedy an underflow, we check whether an immediate sibling of v
is a 3-node or a 4-node. If we find such a sibling w, then we perform a fransfer
operation, in which we move a child of w to v, a key of w to the parent u of v and
w, and a key of u to v. (See Figure 3.22b and c.) If v has only one sibling, or if both
immediate siblings of v are 2-nodes, then we perform a fusion operation, in which
we merge v with a sibling, creating a new node v!, and move a key from the parent
uof vtov'. (See Figure 3.23¢ and £f.)

A fusion operation at node v may cause a new underflow to occur at the parent
1 of v, which in tarn triggers a transfer or fusion at u. (See Figure 3.23.) Hence, the
number of fusion operations is bounded by the height of the tree, which is O(logn)
by Theorem 3.4. If an underflow propagates all the way up to the root, then the root
is simply deleted. (See Figure 3.23c and d.) We show a sequence of removals from
a (2,4) tree in Figures 3.22 and 3.23.

Chapter 3. Search Trees and Skip Lists

Figure 3.22: A sequence of removals from a (2,4) tree: (a) removal of 4, causing
an underflow; (b) a transfer operation; (c) after the transfer operation; (d) removal
of 12, causing an underflow; () a fusion operation; (f) after the fusion operation;
{(g) removal of 13; (h) after removing 13.

3.3. Bounded-Depth Search Trees 169

(e), d
Figure 3.23: A propagating sequence of fusions in a (2,4) tre(e:) (a) removal of 14,
which causes an underflow; (b) fusion, which causes another underflow; (c) second
fusion operation, which causes the root to be removed; (d) final tree.

Performance of a (2,4) Tree

Table 3.24 summarizes the running times of the main operations of a dictionary
realized with a (2,4) tree. The time complexity analysis is based on the following:

@ The height of a (2,4) tree storing » items is O(logn), by Theorem 3.4.
e A split, transfer, or fusion operation takes O(1) time.
e A search, insertion, or removal of an item visits O(logn) nodes.

Operation | Time
size, isEmpty | O(1)
findElement, insertitem, removeElement | O(logn)
findAllElements, removeAllElements | O(logn +)

Table 3.24: Performance of an n-element dictionary realized by a {2,4) tree,
where s denotes the size of the iterators returned by findAllElements and
removeAliElements. The space usage is O(n).

Thus, {2,4) trees provide for fast dictionary search and update operations. (2,4)
trees also have an interesting relationship to the data structure we discuss next.

Chapter 3. Search Trees and Skip Lists

3.3.3 Red-Black Trees

The data structure we discuss in this section, the red-black tree, is a binary search
tree that uses a kind of “pseudo-depth” to achieve balance using the approach of
a depth-bounded search tree. In particular, a red-black tree is a binary search tree
with nodes colored red and black in a way that satisfies the following properties:
Root Property: The root is black.

External Property: Every external node is black.

Internal Property: The children of a red node are black.

Depth Property: All the external nodes have the same black depth, which is de-
fined as the number of black ancestors minus one.

An example of a red-black tree is shown in Figure 3.25. Throughout this section,
we use the convention of drawing black nodes and their parent edges with thick
lines.

Figure 3.25: Red-black tree associated with the (2,4) tree of Figure 3.18. Each
external node of this red-black tree has three black ancestors; hence, it has black
depth 3. Recall that we use thick lines to denote black nodes.

As has been the convention in this chapter, we assume that items are stored in
the internal nodes of a red-black tree, with the external nodes being empty place-
holders. Also, we describe our algorithms assuming external nodes are real, but we
note in passing that at the expense of slightly more complicated search and update
methods, external nodes could be null or references to a NULL_NODE object.

3.3. Bounded-Depth Search Trees 171

The red-black tree definition becomes more intuitive by noting an interesting
correspondence between red-black and {(2,4) trees, as illustrated in Figure 3.26.
Namely, given a red-black tree, we can construct a comresponding (2,4) tree by
merging every red node v into its parent and storing the item from v at its parent.
Conversely, we can transform any (2,4) tree into a corresponding red-black tree by
coloring each node black and performing a simple transformation for each internal
node v.

e If vis a 2-node, then keep the (black) children of v as is.

e If v is a 3-node, then create a new red node w, give v's first two (black)
children to w, and make w and v’s third child be the two children of v.

o If v is a 4-node, then create two new red nodes w and z, give v’'s first two
" (black) children to w, give v’s last two (black) children to z, and make w and
7 be the two children of v.

(&

(©)

Figure 3.26: Correspondence between a (2,4) tree and a red-black tree: (a) 2-node;
(b) 3-node; (c) 4-node.

Chapter 3. Search Trees and Skip Lists

This correspondence between (2,4) trees and red-black trees provides impor-
tant intuition that we will use in our discussions. In fact, the update algorithms for
red-black trees are mysteriously complex without this intuition. We also have the

following property for red-black trees.

Theovrem 3.5: The height of a red-black tree storing n items is O(logn).

Proof: Let T be ared-black tree storing # items, and let 2 be the height of T'. We
justify this theorem by establishing the following fact:

log(n+1)Sh< 2log(n+1).

Let d be the common black depth of all the external nodes of T. Let T/ be the (2,4)
tree associated with T', and let 1! be the height of 7/, We know that &' == d. Hence,

by Theorem 3.4, d = h' <log(n+1). Bythe internal node property, i < 2d. Thus,

we obtain # < 2log(n+1). The other inequality, log(n + 1) < h, follows from
Theorem 2.8 and the fact that T has n internal nodes. B
s realized with a linked structure for binary
trees (Section 2.3.4), in which we store a dictionary item and a color indicator at
each node. Thus the space requirement for storing n keys is O{(n). The algorithm
for searching in a red-black tree T is the same as that for a standard binary search
tree (Section 3.1.2). Thus, searching in a red-black tree takes O{log n) time.

Performing the update operations in a red-black tree is similar to that of abinary

search tree, except that we must additionally restore the color properties.

We assume that a red-black tree i

Insertion in a Red-Black Tree

Consider the insertion of an element x with key k into a red-black tree T, keeping
in mind the correspondence between T and its associated (2,4) tree 7' and the
ipsertion algorithm for T ! The insertion algorithm initially proceeds as in a binary
gearch tree (Section 3.1.4). Namely, we search for kin T until we reach an external
node of T, and we replace this node with an internal node z, storing (k,x) and
having two external-node children. If 7 is the root of T, we color z black, else

_ we color z red. We also color the children of z black. This action corresponds to
inserting (k,x) into a node of the (2,4) wee T’ with external children. In addition,
this action preserves the root, external and depth properties of T, but it may violate
the internal property. Indeed, if z is not the root of T and the parent v of z is red,
then we have a parent and a child (namely, v and z) that are both red. Note that
by the root property, v cannot be the root of T', and by the internal property (which
the parent 1 of v must be black. Since z and its parent are

was previously satisfied),
red, but z’s grandparent it is black, we call this violation of the internal property a4

double red at node z.
To remedy a double red, we consider two cases.

3.3. Bounded-Depth Search Trees

173

Case 1: The Sibling w ojéyjl Black. (See Figure 3.27.) In this case, the double

red denotes the fact that we have created a malformed replacement for a

corresponding 4-node of the (2,4) tree T in our red-black tree, which has as

its children the four black children of u, v, and z. Our malformed replacement

has one red node (v) that is the parent of another red node (z), while we want

it to have the two red nodes as siblings instead. To fix this problem, we

perform a trinode restructuring of T. The trinode restructuring is done by

the operation restructure(z), which consists of the following steps (see again
Figure 3.27; this operation is also discussed in Section 3.2):

s Take node z, its parent v, and grandparent u, and temporarily relabel
them as a, b, and ¢, in left-to-right order, so that a, b, and ¢ will be
visited in this order by an inorder tree traversal.

e Replace the grandparent u with the node labeled b, and make nodes a
and ¢ the children of b, keeping inorder relationships unchanged.

After performing the restructure(z) operation, we color b black and we color
a and ¢ red. Thus, the restructuring eliminates the double-red problem.

- N

- W
1

(b)

Figure 3.27: Restructuring a red-black tree to remedy a double red: (a) the four
configurations for u, v, and z before restructuring; (b) after restructuring.

Chapter 3. Search Trees and Skip Lists

Case 2: The Sibling w of v is Red, (See Figure 3.28.) In this case, the double red

denotes an overflow in the corresponding (2,4) tree T. To fix the problem,
we perform the equivalent of a split operation. Namely, we do a recoloring:
we color v and w black and their parent u red (unless u is the root, in which
case, it is colored black). It is possible that, afier such a recoloring, the
double-red problem reappears, albeit higher up in the tree T, since u may
have a red parent. If the double-red problem reappears at u, then we repeat
the consideration of the two cases at u. Thus, a recoloring either eliminates
the double-red problem at node z, or propagates it to the grandparent u of z.
We continue going up T" performing recolorings until we finally resolve the
double-red problem (with either a final recoloring or a trinode restructuring).
Thus, the number of recolorings caused by an insertion is no more than half
the height of tree 7', that is, no more than log(n + 1) by Theorem 3.5.

0 20 30 40

(b)

Figure 3.28: Recoloring to remedy the double-red problem: (a) before recoloring
and the corresponding 5-node in the associated (2,4} tree before the split; (b) after
the recoloring (and corresponding nodes in the associated (2,4} tree after the split).

Figures 3.29 and 3.30 show a sequence of insertions in a red-black tree.

Figare 3.29: A sequence of insertions in a red-black tree: (a) initial tree; (b) inser-
tion of 7; (c) insertion of 12, which causes a double red; (d) after restructuring; (e)
insertion of 15, which causes a double red; (f) after recoloring (the root Temains
black); (g) insertion of 3; (h) insertion of 5; (i) insertion of 14, which causes a
double red; (j) after restructuring; (k) insertion of 18, which causes a double red;
(1) after recoloring. (Continued in Figure 3.30.)

3.3. Bounded-Depth Search Trees 175

176

Chapter 3. Search. Trees and Skiﬁ Lists

Figure 3.30: A sequence of insertions in a red-black tree (continued from Fig-
ure 3.29): (m) insertion of 16, which causes a double red; (n) after restructuring;
(0) insertion of 17, which causes a double red; (p) after recoloring there is again a
double red, to be handled by a restructuring; (q) after restructuring.

3.3. Bounded-Depth Search Trees 177

The cases for insertion imply an interesting property for red-black trees. Namely,
since the Case 1 action eliminates the double-red problem with a single trinode re-
structuring and the Case 2 action performs no restructuring operations, at most one
restructuring is needed in a red-black tree insertion. By the above analysis and the
fact that a restructuring or recoloring takes O(1) time, we have the following:

Theorem 3.6: The insertion of a key-clement item in a red-black tree storing n
items can be done in O(logn) time and requires at most O(logn) recolorings and
one trinode restructuring (a restructure operation).

Removal in a Red-Black Tree

Suppose now that we are asked to remove an item with key & from a red-black
tree 7. Removing such an item initially proceeds as for a binary search tree (Sec-
tion 3.1.5). First, we search for a node u storing such an itemn. If node u does
not have an external child, we find the internal node v following u in the inorder
traversal of T, move the item at v to #, and perform the removal at v. Thus, we may
consider only the removal of an item with key k stored at a node v with an external
child w. Also, as we did for insertions, we keep in mind the correspondence be-
tween red-black tree T and its associated (2,4) tree T’ (and the removal algorithm
forTH.

To remove the item with key k from a node v of T with an external child w we
proceed as follows. Let r be the sibling of w and x be the parent of v. We remove
nodes v and w, and make r a child of x. If v was red (hence r is black) or r is red
(hence v was black), we color r black and we are done. If, instead, r is black and v
was black, then, to preserve the depth property, we give r a fictitious double-black
color. We now have a color violation, called the double-black problem. A double
black in T denotes an underflow in the corresponding (2,4) tree T/, Recall that x
is the parent of the double-black node r. To remedy the double-black problem at r,
we consider three cases.

Case 1: The Sibling y of x is Black and has a Red Child z. (See Figure 3.31.)
Resolving this case corresponds to a transfer operation in the (2,4) tree T,
We perform a trinode restructuring by means of operation restructure(z).
Recall that the operation restructure(z) takes the node z, its parent y, and
grandparent x, labels them temporarily left to right as a, b, and ¢, and replaces
x with the node labeled b, making it the parent of the other two. (See also
the description of restructure in Section 3.2.) We color and ¢ black, give b
the former color of x, and color r black. This trinode restructuring eliminates
the double-black problem. Hence, at most one restructuring is performed in
a removal operation in this case.

178

Figure 3.31: Restructuring of a red-black tree to remedy the double-black problem:
() and (b) configurations before the restructuring, where r is a right child and
the associated nodes in the corresponding (2,4) tree before the transfer (two other
symmetric configurations where r is a left child are possible); (c) configuration after
the restructuring and the associated nodes in the corresponding (2,4) tree after the
transfer. Node x in parts (a) and (b) and node b in part (¢) may be either red or
black. ‘

3.3. Bounded-Depth Search Trees 179

Case 2: The Sibling y of r is Black and Both Children of y are Black. (See
Figures 3.32 and 3.33.) Resolving this case corresponds fo a fusion operation
in the corresponding (2,4) tree T'. We do a recoloring; we color r black,
we color y red, and, if x is red, we color it black (Figure 3.32); otherwise, we
color x double black (Figure 3.33). Hence, after this recoloring, the double-
black problem may reappear at the parent x of r. (See Figure 3.33.) That is,
this recoloring either eliminates the double-black problem or propagates it
into the parent of the current node. We then repeat a consideration of these
three cases at the parent. Thus, since Case 1 performs a trinode restructuring
operation and stops (and, as we will soon see, Case 3 is similar), the number
of recolorings caused by a removal is no more than log(n + 1).

(b)

Figure 3.32: Recoloring of a red-black tree that fixes the double-black problem: (a)
before the recoloring and corresponding nodes in the associated (2,4) tree before
the fusion (other similar configurations are possible); (b) after the recoloring and
corresponding nodes in the associated (2,4) tree after the fusion.

Chapter 3. Search Trees and Skip Lists

(b)

Figare 3.33: Recoloring of a red-black tree that propagates the double black prob-
lem: (a) configuration before the recoloring and corresponding nodes in the asso-
ciated (2,4) tree before the fusion (other similar configurations are possible); (b)
configuration after the recoloring and corresponding nodes in the associated (2,4)
tree after the fusion.

3.3. Bounded-Depth Search Trees 181

Case 3: The Sibling y of v is Red. (See Figure 3.34.) In this case, we perform an
adjustment operation, as follows. If y is the right child of x, let z be the right
child of y; otherwise, let z be the left child of y. Execute the trinode restruc-
ture operation restructure(z), which makes y the parent of x. Color y black
and x red. An adjustment corresponds to choosing a different representation
of a 3-node in the (2,4) tree T'/. After the adjustment operation, the sibling
of r is black, and either Case 1 or Case 2 applies, with a different meaning
of x and y. Note that if Case 2 applies, the double-black problem cannot
reappear. Thus, to complete Case 3 we make one more application of either
Case 1 or Case 2 above and we are done. Therefore, at most one adjustment
is performed in a removal operation.

(®)

Figure 3.34: Adjustment of a red-black tree in the presence of a double black prob-
lem: (a) configuration before the adjustment and corresponding nodes in the asso-
ciated (2,4) tree (a symmetric configuration is possible); (b) configuration after the
adjustment with the same cormresponding nodes in the associated (2,4) tree.

Chapter 3. Search Trees and Skip Lists

From the above algorithm description, we see that the tree updating needed
after a removal involves an upward march in the tree T, while performing at most
a constant amount of work (in a restructuring, recoloring, or adjustment) per node.
The changes we make at any node in T during this upward march takes O(1) time,
because it affects a constant number of nodes. Moreover, since the restructuring
cases terminate upward propagation in the tree, we have the following.

Theorem 3.7: The algorithm for removing an item from a red-black tree with
n items takes O(logn) time and performs O(logn) recolorings and at most one
adjustment plus one additional trinode restructuring. Thus, it performs at most two
restructure operations.

In Figures 3.35 and 3.36, we show a sequence of removal operations on a red-
black tree. We illustrate Case 1 restructurings in Figure 3.35¢ and d. We illus-
trate Case 2 recolorings at several places in Figures 3.35 and 3.36. Finally, in
Figure 3.36i and j, we show an example of a Case 3 adjustment.

Figure 3.35: Sequence of removals from a red-black tree: (a) initial tree; (b) removal
of 3; (¢) removal of 12, causing a double black (handled by restructuring); (d) after
restructuring.

3.3. Bounded-Depth Search Trees 183

]
Ly

Figure 3.36: Sequence of removals in a red-black tree (continued): (e) removal
of 17; (f) removal of 18, causing a double black (handled by recoloring); (g) after
recoloring: (h) removal of 15; (i) removal of 16, causing a double black (handled
by an adjustment); (i} after the adjustment, the double black needs to be handled by
a recoloring; (k) after the recoloring.

Chapter 3. Search Trees and Skip Lists

Performance of a Red-Black Tree

Table 3.37 summarizes the running times of the main operations of a dictionary
realized by means of ared-black tree. We illustrate the justification for these bounds

in Figure 3.38.

Operation | Time
size, iskmpty | O(1)
findElement, insertitem, removeklement | O(logn)
findAliElements, removeAllElements | O(logn+-5).

Table 3.37: Performance of an n-element dictionary realized by a red-black
tree, where s denotes the size of the iterators returned by findAllElements and

removeAllElements. The space usage is O(n).

height time per level
———— A mmemmmeeees o(1)
Y
~
red-black tree T
———————— o(1)
O(log n)

——————— o)

¥

worst-case time: O(log n)

Figure 3.38: Illustrating the running time of searches and updates in a red-black
tree. The time performance is O(1) per level, broken into a down phase, which
typically involves searching, and an up phase, which typically involves recolorings
and performing local trinode restructurings (rotations).

Thus, a red-black tree achieves logarithmic worst-case running times for both
searching and updating in a dictionary. The red-black tree data structure is slightly
more complicated than its corresponding (2,4) tree. Even so, a red-black tree hasa
conceptual advantage that only a constant number of trinode restructurings are ever
needed to restore the balance in a red-black tree after an update. '

