If you lost x marks for something, there should be a $-x$ next to the comment. For common mistakes, I've tried to correlate comments written on the paper to the italicized terms in this marking guide, to give a more complete explanation of the mistake.

Question 1

5 marks

- 1 mark: Justify $\alpha / 1-\alpha$ split: the recursive split is between α and $1-\alpha$, but not necessarily with equality. You should justify that to get a minimum or maximum height recursion tree, we will get a split of α and $1-\alpha$ at each step.
- 2 marks: show the minimum. 1 mark for justifying $\alpha^{i} n \leq 1$, one mark for solving this.
- 2 marks: show the maximum.
- Need something for every choice of α : Some people chose a single value of α. Your answer needs to work for every value of α. -3 marks for this.

Question 2

10 marks

- 5 marks: Algorithm
- 3 marks: hash the terms x_{i} and/or $w_{j}=z-y_{j}$, compare the elements in the hash tables to check for equal values
- 1 mark: specify hash table size
- 1 mark: how do you handle collisions?
- $O\left(n^{2}\right)$ algorithm: not more than 2 marks total.
- 1 mark off for using a specific universal hash family that was not actually a universal hash family.
- 5 marks: Time Analysis:
- 1 mark: show each loop is size $O(n)$.
- 4 marks: Justify $O(1)$ with defn of universal hashing: You should use the definition of a universal hash family (or invoke a theorem) to show that the chains in the hash table are a constant length. Equivalently, show lookups take $O(1)$ time. This implies that the inside of each loop takes only $O(1)$ time.
* Good analysis for a single hash function h (no universal family) is worth 2 marks.
* Showing $\operatorname{Pr}($ collision $)=\frac{1}{n}$ but not showing this implies expected insert/lookup time is $O(1)$ is worth 2 marks.
- 2 bonus marks: Do the above with a specific universal hashing scheme properly (probably one from class/textbook)

Question 3

a) 4 marks

- 3 marks: lower bound
- want worst case lower bound: In this context, finding a lower bound means finding a specific sequence
- 1 mark: upper bound:
- In this context, finding a upper bound on the worst case means showing no sequence of operations can take longer than $O(m)$.
b) 6 marks:
- 2 marks: give credit scheme:
- there was a lot of flexibility given in what counted as an "operation" (and therefore what a valid credit scheme could be) but ENQUEUE should be one operation; for DEQUEUE, inside body of the loop should be one operation, and the pop from H should be one operation.
- If you charge 0 for DEQUEUE, then your scheme will fail for a sequence of dequeues on an empty stack. No marks off for this.
- 2 marks: give a credit invariant: it was ok if you stated this informally.
- 2 marks: prove credit invariant
- If you have a faulty credit scheme/invariant, it was still possible to get these marks.

Question 4

a) 6 marks

- 2 marks: recognize amortized analysis and choose an appropriate method (accounting method, others also work) to approach the problem
- 2 marks: recognize that for an array of size n, increasing from size $\frac{2 n}{3}+1$ to size $n+1$ takes $O(n)$ operations, including the cost for increasing the array to size $2 n$ when the last element is inserted.
- 2 marks: give an argument that works.
- Many people didn't recognize that

$$
\sum_{i=1}^{\log _{3 / 2} m}\left(\frac{3}{2}\right)^{i} \leq m+\frac{2}{3} m+\left(\frac{2}{3}\right)^{2} m+\ldots \leq 3 m
$$

b) 4 marks

- 2 marks: recognize that it is now $\Omega\left(m^{2}\right)$.
- 2 marks: show it correctly (i.e. give an example)
- Want lower bound: Note that an amortized analysis approach for this question doesn't work well. Amortized analysis can prove an upper bound of $O\left(m^{2}\right)$, but this is obvious because even if you grow the array at every insertion, you are only doing m^{2} operations. Counting the cost of a specific example of operations gives a lower bound of $\Omega\left(m^{2}\right)$.

Solutions with an asymtotic complexity that was not simplified (ie, involved a summation or involved an extram) lost one mark.

