
Comparative Performance of Memory Reclamation

Strategies for Lock-free and Concurrently-readable Data

Structures

by

Thomas Edward Hart

A thesis submitted in conformity with the requirements

for the degree of Master of Science
Graduate Department of Computer Science

University of Toronto

Copyright c© 2005 by Thomas Edward Hart

Abstract

Comparative Performance of Memory Reclamation Strategies for Lock-free and

Concurrently-readable Data Structures

Thomas Edward Hart

Master of Science

Graduate Department of Computer Science

University of Toronto

2005

Despite their advantages, lock-free algorithms are often not adopted in practice, partly

due to the perception that they perform poorly relative to lock-based alternatives in

common situations when there is little contention for objects or the CPUs.

We show that memory reclamation can be a dominant performance cost for lock-free

algorithms; therefore, choosing the most efficient memory reclamation method is essential

to having lock-free algorithms perform well. We compare the costs of three memory

reclamation strategies: quiescent-state-based reclamation, epoch-based reclamation, and

safe memory reclamation. Our experiments show that changing the workload or execution

environment can change which of these schemes is the most efficient. We therefore

demonstrate that there is, to date, no panacea for memory reclamation for lock-free

algorithms.

Using a common reclamation scheme, we fairly compare lock-free and concurrently-

readable hash tables. Our evaluation shows that programmers can choose memory recla-

mation schemes mostly independently of the target algorithm.

ii

Acknowledgements

First, I’d like to thank my supervisor, Angela Demke-Brown, for helping me shape my

vague ideas into coherent research, and helping me to take a step back and see which

questions are important and which are not.

Second, I want to thank Paul McKenney, with whom I have enjoyed a very helpful

collaboration during the course of this project. Having such an experienced colleage has

been immensely helpful as I start my research career.

I wish to thank Maged Michael and Keir Fraser for so readily answering questions

about their respective work.

I also want to thank Vassos Hadlizacos for introducing me to practical lock-free syn-

chronization through Greenwald’s work on Cache Kernel, and my colleagues in the Sys-

tems Software Reading Group for introducing me to Read-Copy Update. Without these

colleagues, I never would have become aware of this research topic.

During the course of this project, I solicited advice from many, many colleagues here

at the University of Toronto, all of whom have been very generous in their help. In

particular, I would like to thank Faith Fich, Alex Brodsky, Cristiana Amza, Reza Azimi,

David Tam, Marc Berndl, Mathew Zaleski, Jing Su, and Gerard Baron.

Finally, I would like to thank my lab’s system administrator, Norman Wilson, for

keeping the machines I needed for my experiments running smoothly, and for forgiving

me when I occasionally crashed them.

iii

Contents

1 Introduction 1

1.1 Problems with Locking . 1

1.2 Memory Reclamation . 3

1.3 Contributions . 4

1.4 Organization of Thesis . 5

2 Fundamentals 7

2.1 Terminology . 7

2.1.1 Threads . 8

2.1.2 Shared Objects . 8

2.1.3 Hardware Operations . 12

2.2 Memory Consistency Models . 15

3 Lock-free and Concurrently-readable Algorithms 17

3.1 Theory of Non-blocking Synchronization 17

3.2 Practical Non-blocking Algorithms . 18

3.2.1 Higher-level primitives . 19

3.2.2 Algorithms using CAS or LL/SC 20

3.3 Concurrently-Readable Algorithms . 32

4 Memory Reclamation Schemes 35

iv

4.1 Descriptions of Schemes . 35

4.1.1 Blocking Methods . 35

4.1.2 Lock-free Methods . 39

4.2 Applying the Schemes . 43

4.3 Analytic Comparison of Methods . 49

5 Experimental Evaluation 53

5.1 Experimental Setup . 53

5.1.1 Algorithms Compared . 53

5.1.2 Test Program . 54

5.1.3 Operating Environment . 55

5.1.4 Limitations of Experiment . 57

5.2 Performance Analysis . 57

5.2.1 Effects of Traversal Length . 60

5.2.2 Effects of CPU Contention . 63

5.2.3 Relative Severity . 68

5.2.4 Low Overhead of QSBR . 69

5.2.5 Lock-free Versus Concurrently-readable Linked List Algorithms . 71

5.2.6 Summary of Recommendations 75

6 Related Work 79

6.1 Blocking Memory Reclamation for Non-blocking Algorithms 79

6.2 Vulnerabilities of Blocking Memory Reclamation Schemes 81

6.3 Performance Comparisons . 82

7 Conclusions and Future Work 84

Bibliography 87

v

List of Tables

5.1 Characteristics of Machines . 56

7.1 Properties of Memory Reclamation Schemes 85

vi

List of Figures

2.1 Hierarchy of properties of concurrent objects, represented as a partial or-

der. Any property in the hierarchy is strictly stronger than all properties

below it; for example, obstruction-free and almost non-blocking are weaker

than lock-free, but in different ways. 11

2.2 Pseudocode definition of CAS. 12

2.3 Pseudocode definitions of LL and SC. 13

2.4 Pseudocode for implementing CAS using LL/SC. 13

2.5 Illustration of the ABA problem. 14

3.1 The consensus hierarchy. 18

3.2 Pseudocode definition of DCAS. 19

3.3 Example operation of search function for lock-free linked list. 21

3.4 Pseudocode for search function for lock-free list, stripped of memory recla-

mation code. 22

3.5 Example operation of insert function for lock-free linked list. 24

3.6 Error which can occur in a näıve lock-free linked list implementation when

insertions and deletions are interleaved. To prevent such errors, the lock-

free linked list must mark a node’s next pointer before deleting the node

(Figure 3.7). 26

3.7 Example operation of delete function for lock-free linked list. 27

3.8 Dequeue from non-empty lock-free queue. 28

vii

3.9 Pseudocode for dequeue function for lock-free queue, stripped of memory

reclamation code. 29

3.10 Enqueue to non-empty lock-free queue. 30

3.11 Pseudocode for enqueue function for lock-free queue, stripped of memory

reclamation code. 31

3.12 Concurrently-readable node modification example from which read-copy

update derives its name. 33

3.13 Concurrently-readable insertion. 33

3.14 Concurrently-readable deletion. 34

4.1 Illustration of EBR. Threads follow the global epoch. If a thread observes

that all other threads have seen the current epoch, then it may update the

global epoch. Hence, if the global epoch is e, threads in critical sections

can be in either epoch e + 1 or e, but not e − 1 (all mod 3). The time

period [t1, t2] is thus a grace period for thread T1. 36

4.2 Illustration of QSBR. Thick lines represent quiescent states. The time

interval [t1, t2] is a grace period: at time t2, each thread has passed through

a quiescent state since t1, so all nodes logically removed before time t1 can

be physically deleted. 38

4.3 Illustration of SMR. q is logically removed from the linked list on the right

of the diagram, but cannot be physically deleted while T3’s hazard pointer

HP [4] is still pointing to it. 41

4.4 Lock-free queue’s dequeue() function, using SMR. 45

4.5 Lock-free queue’s dequeue() function, using QSBR. 46

4.6 Lock-free queue’s dequeue() function, using EBR. 47

viii

4.7 Illustration of why QSBR is inherently blocking. Here, thread T2 does not

go through a quiescent state for a long period of execution time; hence,

threads T1 and T3 must wait to reclaim memory. A similar argument

holds for EBR. 51

5.1 High-level pseudocode for the test loop of our program. Each thread exe-

cutes this loop. The call to QUIESCENT STATE() is ignored unless we

are using QSBR. 55

5.2 Single-threaded memory reclamation costs on PowerPC. Hash table statis-

tics are for a 32-bucket hash table with a load factor of 1. Queue statistics

are for a single non-empty queue. 58

5.3 Hash table, 32 buckets, load factor 1, read-only workload. Spinlocks scale

poorly as the number of threads increases. 59

5.4 Hash table, 32 buckets, one thread, read-only workload, varying load fac-

tor. 60

5.5 Hash table, 32 buckets, one thread, write-only workload, varying load

factor. 61

5.6 Hash table, 32 buckets, one thread, write-only workload, varying load

factor. 62

5.7 100 queues, variable number of threads, Darwin/PPC. 63

5.8 Hash table, 32 buckets, load factor 1, write-only workload, variable number

of threads, Darwin/PPC. 64

5.9 100 queues, variable number of threads, Linux/IA-32. 64

5.10 Hash table, 32 buckets, 16 threads, write-only workload, varying load factor. 66

ix

5.11 Hash table, 32 buckets, load factor 10, write-only workload, varying num-

ber of threads. 66

5.12 Hash table, 32 buckets, load factor 20, write-only workload, varying num-

ber of threads. 67

5.13 Queues, two threads, varying number of queues. 69

5.14 Hash table, 32 buckets, two threads, load factor 5, varying update fraction. 70

5.15 Hash table, 32 buckets, two threads, load factor 5, varying update fraction.

QSBR allows the lock-free algorithm to out-perform RCU for almost any

workload; neither SMR nor EBR achieve this. 71

5.16 Code for fast searches of lock-free list; compare to pseudocode of Figure 3.4. 72

5.17 Hash table, 32 buckets, two threads, load factor 5, varying update fraction

between 0 and 0.1. 72

5.18 Hash table, 32 buckets, two threads, read-only workload, varying load factor. 73

5.19 Hash table, 32 buckets, two threads, write-only workload, varying load

factor. 73

5.20 Decision tree for choosing a memory reclamation scheme. 76

5.21 Decision tree for choosing whether to use the lock-free or concurrently-

readable linked list algorithm. 78

x

Chapter 1

Introduction

Shared memory multiprocessing is becoming important outside the traditional areas of

high-performance computing such as scientific computation, graphics rendering, and web

servers. New technologies such as simultaneous multithreading (SMT) and chip multi-

processing (CMP) are bringing multiprocessing to commodity desktops. Furthermore,

many applications running on these systems, such as web browsers and operating system

kernels, are already multithreaded. It is essential that these concurrent applications per-

form well; we expect that technologies like SMT and CMP will make this requirement

even more important in the future.

The rest of this chapter describes the problems associated with locking, explains the

need for memory reclamation, summarizes the contributions of this thesis, and outlines

the organization of the remainder of this document.

1.1 Problems with Locking

Concurrent applications require a means to coordinate accesses to shared data structures.

Mutual exclusion, implemented via locks or semaphores, is the most common solution

to the synchronization problem. Mutual exclusion is intuitive; however, it has several

drawbacks. Locks, in particular, can be bottlenecks in high-performance shared memory

1

Chapter 1. Introduction 2

programs, and suffer from several problems:

• Poor reliability: a thread that crashes while holding a lock will make the re-

source associated with the lock unavailable to all other threads. This is the most

cited problem with locks in theoretical literature, since fault tolerance is a favorite

problem in the theory of distributed computing; however, few systems researchers

consider this the most compelling disadvantage of locks.

• Poor performance in the face of preemption: a thread that is pre-empted

while holding a lock will make the associated resource unavailable until the thread is

rescheduled and can complete its work. This can result in convoying, which occurs

when a pre-empted or otherwise stalled thread holds a lock, and other threads form

a “convoy” waiting for the lock.

• Priority inversion: a low priority thread may be pre-empted while holding a lock

on a shared resource; a high priority thread requiring the shared resource may then

be scheduled, and have to wait for the lower priority thread.

• Vulnerability to deadlock: if threads must acquire locks on two or more re-

sources, deadlock is possible if those locks are not acquired in the same order. A

thread may even deadlock with itself if it attempts to acquire a lock which it already

holds..

In addition to these deficiencies, lock-based approaches require expensive operations,

such as compare-and-swap, to acquire and release locks — even when the locks are not

contended.

Many researchers are therefore interested in ways to avoid using locks [42, 18, 54, 55].

Using reader-writer locks instead of normal spinlocks increases concurrency by allowing

either multiple readers or a single writer at any given time. Using a concurrently-readable

[34] data structure also permits multiple readers, but in this case they can run concur-

rently with a single writer, and do not need to acquire a lock. Using a lock-free data

Chapter 1. Introduction 3

structure is more complicated, but allows readers and writers both to run concurrently

when logically possible, and sidesteps the above-mentioned disadvantages of locks; how-

ever, lock-free data structures typically require expensive atomic operations. Some recent

lock-free algorithms, however, require few such expensive operations, and therefore pro-

vide an attractive alternative to lock-based designs, as they have been shown to have

lower overhead, even when contention for objects and the CPUs is low [47].

1.2 Memory Reclamation

Memory reclamation is required for all dynamic lock-free and concurrently-readable data

structures, such as linked lists and queues. We distinguish logical deletion of a node,

N (removing it from a shared data structure so that no new references to N may be

created) from physical deletion of that node (allowing the memory used for N to be

reclaimed for arbitrary reuse). If a thread T1 logically deletes a node N from a lock-free

data structure, it cannot physically delete N until no other thread T2 holds a reference

to N , since physically deleting N may cause T2 to crash or execute incorrectly. Never

physically deleting logically deleted nodes is also unacceptable, since this will eventually

lead to out-of-memory errors which will stop threads from making progress.

Choosing an inefficient memory reclamation scheme can ruin the performance of a

lock-free or concurrently-readable algorithm. Reference counting [61, 12], for example,

has high overhead in the base case, and scales poorly in structures for which long chains of

nodes must be traversed [47]. Little work has been done on comparing different memory

reclamation strategies; we address this deficiency, showing that the performance of mem-

ory reclamation schemes depends both on their base costs, and on the target workload

and execution environment. We expect our results can provide some guidance to im-

plementers of lock-free and concurrently-readable algorithms in choosing an appropriate

scheme for their specific applications.

Chapter 1. Introduction 4

Current memory reclamation strategies suggested for lock-free data structures [44,

47, 28, 17, 11] have high per-operation runtime overhead. We believe that imposing large

overhead on an algorithm in order to manage memory reclamation is unacceptable. We

therefore propose using quiescent-state-based reclamation (QSBR) [42, 39, 18, 6, 38, 40],

an efficient scheme with negligible overhead pioneered in the domain of operating system

kernels, to manage memory for lock-free data structures whenever CPU contention is

low. QSBR is normally used with concurrently-readable algorithms; however, we have

found that it also works well with lock-free ones. We show by example that QSBR can

be implemented in applications other than operating system kernels, and that using this

memory reclamation scheme can make lock-free algorithms significantly more efficient.

The cost of QSBR’s increased performance is an increased burden on the application

programmer, and the risk of out-of-memory errors. We therefore believe that, despite

the performance advantage of QSBR, these other memory reclamation algorithms have

a place in situations where this trade-off is unacceptable.

The other memory reclamation schemes, safe memory reclamation (SMR) and epoch-

based reclamation (EBR), are intended for use with lock-free algorithms. We demonstrate

that just as QSBR can be used with lock-free schemes, SMR and EBR can be used with

concurrently-readable ones, therefore showing that the choice of memory reclamation

scheme is mostly independent of the target algorithm.

1.3 Contributions

Although lock-free and concurrently-readable algorithms each have their respective ad-

herents, we are not aware of any work which has examined the tradeoffs between compa-

rable lock-free and concurrently-readable algorithms. Were one to make such a compari-

son, one might näıvely use each algorithm with the reclamation scheme suggested by its

creator, and compare, for example, a lock-free algorithm using SMR to a concurrently-

Chapter 1. Introduction 5

readable algorithm using QSBR. One might even be unaware that the algorithm and its

reclamation scheme can be separated. Since the choice of memory reclamation scheme

has a profound impact on performance, any such comparison would be unfair. Our

decoupling of memory reclamation schemes from the algorithms for which they were

originally designed therefore allows us to make the first fair and detailed comparison

between lock-free and concurrently-readable chaining hash tables.

In summary, the contributions of this thesis are as follows:

• We demonstrate that the choice of algorithm and memory reclamation scheme are

mostly independent.

• We analyze the strengths and weaknesses of each of three memory reclamation

strategies — QSBR, SMR, and EBR.

• We make the first comparison of the performance of a lock-free algorithm to a

concurrently-readable alternative.

Our experiments were conducted on commodity dual-processor PowerPC and IA-32 ma-

chines. Our results show that changing the workload or execution environment can change

which memory reclamation scheme is the most efficient; we therefore demonstrate that

there is, to date, no panacea for memory reclamation for lock-free and concurrently-

readable algorithms.

1.4 Organization of Thesis

This thesis is organized as follows. Chapter 2 discusses the terminology we use and our

system model. Chapter 3 provides background on lock-free and concurrently-readable

algorithms, with an emphasis on the algorithms on which we performed our experiments.

Chapter 4 presents the memory reclamation schemes we consider, as well as some which

Chapter 1. Introduction 6

we did not. Chapter 5 presents our experimental results, and Chapter 6 discusses related

work. Chapter 7 concludes the thesis.

Chapter 2

Fundamentals

In this chapter, we define terminology for discussing lock-free and concurrently-readable

algorithms. We then discuss weak memory consistency models, which, we show in chapter

5, have an important effect on the performance of memory reclamation schemes.

2.1 Terminology

This work attempts to use results from the theory of distributed computing, specifically

non-blocking synchronization, in a practical setting. As such, we shall use terminology

which allows us to discuss non-blocking synchronization in a cogent matter. We shall

define our concepts of threads, shared objects and their properties, and the hardware

operations required to implement these shared objects.

The level of formality of this terminology is lower than that used in pure theory

literature, but higher than that of systems literature; we hope that the terminology will

be acceptable to people in both groups.

7

Chapter 2. Fundamentals 8

2.1.1 Threads

The terms process and thread are, for the purposes of our discussion, synonymous. Both

refer to a unit of execution which may access shared objects. Since the additional deno-

tations of process in operating systems literature have no bearing on our analysis of the

algorithms under consideration, we prefer the term “thread.”

Typically, for the purposes of any theoretical analysis, a thread may crash. This

means only that the crashed thread ceases to perform any actions, and does not include

any of the other denotations of the term “crash” in systems literature. A thread that

does not crash is said to be correct. We assume that the actions of any thread occur over

a sequence of discrete time steps.

2.1.2 Shared Objects

A shared object is an entity in memory which can be accessed and modified only through

a pre-defined set of operations. Conceptually, these operations correspond to methods in

object-oriented programming; for example, the operations on a shared queue are enqueue

and dequeue. Multiple threads may access a shared object. A dynamic shared object is a

shared object which is made up of nodes which are dynamically allocated in memory.

In discussing the various forms of non-blocking synchronization, we shall use termi-

nology which is becoming standard in the literature [17]. A shared object is non-blocking

if and only if it is wait-free, lock-free, or obstruction-free. A shared object O is wait-free,

lock-free, or obstruction-free, respectively, if and only if the following properties hold:

• wait-free: if a correct thread is performing an operation on O, this operation must

complete after a finite number of time steps.

• lock-free: if a correct thread is performing an operation on O, some operation

invoked by some thread on O must complete after a finite number of time steps.

Chapter 2. Fundamentals 9

• obstruction-free: if a correct thread is performing an operation on O, some oper-

ation invoked by some thread on O must complete after a finite number of time

steps unless another thread’s operation conflicts with it.

Those who are used to the terminology of operating systems may find the following

summary of the different non-blocking synchronization properties more helpful. A lock-

free shared object guarantees that it will not, under any circumstances, cause any of the

threads accessing it to deadlock, even if some of those threads crash. An obstruction-free

shared object makes almost the same guarantee, except that it can allow livelock. A

wait-free shared object is a lock-free shared object that also guarantees that it will not

starve any thread accessing it.

We note that designating wait-freedom, lock-freedom, and obstruction-freedom as the

only non-blocking properties is only a matter of convention. Originally, lock-free was a

synonym for non-blocking. The intuition behind the latter term is that threads may block

while waiting to access a lock-protected object if another thread holds the object’s lock,

but threads will never block on accessing a non-blocking object. Obstruction-freedom

was later introduced as a non-blocking property, and the literature continues to refer to

it as such.

Shared objects may also be almost non-blocking or concurrently-readable. These prop-

erties are similar to the three non-blocking properties, but are not defined as being non-

blocking. Roughly, a concurrently-readable shared object allows concurrent reads, but

may use locks for updates, and an almost non-blocking shared object allows concurrent

reads, but only a bounded number of threads may simultaneously attempt to update the

object. In both cases, writers could block on attempting to update the shared object, so

it intuitively makes sense not to consider these properties non-blocking.

We owe the term concurrently-readable to Lea [34], whose definition we attempt to

formalize. A shared object O is concurrently-readable if multiple threads may read O

concurrently, and any read operation on O begun by a correct thread must complete

Chapter 2. Fundamentals 10

after a finite number of time steps. The definition of concurrently-readable does not rule

out the use of locks for updates; however, a conventional design based on reader-writer

locks is not concurrently-readable, since a thread that crashes after write-acquiring the

lock will stop other threads from reading the shared object.

By our definition, any wait-free object is concurrently-readable, but a lock-free or

obstruction-free object is not necessarily concurrently-readable. These non-blocking

properties both allow readers to be starved, which violates the definition of concurrently-

readable. Furthermore, technically, the definition of obstruction-freedom allows livelock

between concurrent reads (although we would consider a design which allows this to be

strange), while our definition of concurrently-readable does not.

We note that the literature on concurrently-readable algorithms often refers to the

algorithms’ read operations as lock-free. This use of the term is different than the defini-

tion of lock-free concurrent objects. Therefore, we instead refer to operations which do

not use locks as lockless.

The idea of almost non-blocking objects is due to Boehm [8]. An almost non-blocking

shared object is one that is N-non-blocking for some N > 0. The definition of N-non-

blocking requires the concept of inactive threads. We say that a thread is inactive if it

fails to execute instructions at some pre-determined minimum rate while trying to update

a data structure; this is an attempt to model threads which are descheduled, blocked, or

crashed altogether. Then, a shared object O is N-non-blocking if and only if:

• any number of processes may concurrently access O, and,

• if at most N inactive threads are trying to update O, and at least one active

thread is trying to access or update O, then some thread will succeed in accessing

or updating O in a bounded amount of time.

The relationship between these five properties may be confusing. We show the hier-

archy of these properties in Figure 2.1, along with their relation to conventional reader-

Chapter 2. Fundamentals 11

Figure 2.1: Hierarchy of properties of concurrent objects, represented as a partial order.
Any property in the hierarchy is strictly stronger than all properties below it; for example,
obstruction-free and almost non-blocking are weaker than lock-free, but in different ways.

Chapter 2. Fundamentals 12

BOOL CAS (void *A, long B, long C)
{

atomically do {
if (*A == B) {

*A = C;
return TRUE;

} else {
return FALSE;

}
}

}

Figure 2.2: Pseudocode definition of CAS.

writer locking and spinlocking, both of which may be more familiar to the reader.1 We

are primarily interested in lock-free and concurrently-readable shared objects; the other

properties are noted only for completeness.

2.1.3 Hardware Operations

Non-blocking shared object implementations typically use either the compare-and-swap

(CAS) operation or the load-linked and store-conditional (LL/SC) pair of instructions

to update shared pointers. Both of these instructions are conditional synchronization

primitives which atomically both check if a certain condition has been met, and update a

word in memory if the check succeeds. CAS and LL/SC are defined as shown in Figures

2.2 and 2.3, respectively.

Typically, processors built according to the complex instruction set (CISC) paradigm

will provide a CAS operation, while those built according to the reduced instruction set

(RISC) paradigm will provide (restricted) LL/SC. Each of CAS and LL/SC can be used to

implement the other, and both may be desirable. LL/SC is often used to implement CAS,

1This is a minor abuse of terminology, since reader-writer locks and spinlocks are mechanisms, not
properties.

Chapter 2. Fundamentals 13

WORD LL (void *A)
{

return *A;
}

BOOL SC (void *A, WORD w)
{

atomically do {
if (A has not been written to since this thread last called LL(A)) {

*A = w;
}

}
}

Figure 2.3: Pseudocode definitions of LL and SC.

BOOL CAS (void *A, long B, long C)
{

do {
if (LL(A) 6= B) {

return FALSE;
}

} while (SC(A,C) == FALSE);
return TRUE;

}

Figure 2.4: Pseudocode for implementing CAS using LL/SC.

Chapter 2. Fundamentals 14

Figure 2.5: Illustration of the ABA problem.

Chapter 2. Fundamentals 15

since CAS is intuitive, and convenient for implementing many non-blocking algorithms.

Implementing CAS using LL/SC is quite trivial, as shown in Figure 2.4.

Implementations of LL/SC using CAS are more involved [14, 48], but may be desirable

in order to avoid the ABA problem. This problem occurs when CAS is used to implement

a lock-free algorithm, and is illustrated in Figure 2.5. The effect of two CAS operations

can make two states of a data structure indistinguishable to a third CAS operation, which

could then succeed and take the data structure into an illegal state.

2.2 Memory Consistency Models

Current literature on lock-free algorithms generally assumes a sequentially-consistent [33]

memory model. However, for performance reasons, modern architectures provide a

weakly-consistent memory model; sequential consistency can be enforced when needed by

using special fence instructions. We formalize the key properties of the weakly-consistent

memory models used by the processor architectures in this study, using the terminology

given in [17].

Let A and B be instructions, let M be a word in memory, and let <p and <m represent

partial orders. We say that A <p B if and only if A and B are executed on the same

processor, and A precedes B in the program order, and that A <m B if and only if A

is executed before B in all valid program execution orders. The processors in this study

provide guarantees of coherency, self-consistency, and dependency consistency, defined as

follows2:

• Coherency: At any given point in execution time, M has only one value, and this

value is eventually visible to all processors.

• Self-consistency: If A and B both access M , and A <p B, then A <m B.

2Most current processors provide these guarantees; we do not consider processors such as the DEC
Alpha 21264 that do not provide dependency consistency.

Chapter 2. Fundamentals 16

• Dependency consistency: If A and B are executed on the same processor and B

depends on a control decision by A or a state written by A, then A <m B.

Fence instructions can enforce particular orderings when necessary as follows. If

A and B are instructions executed on processor P , X is a fence executed on P , and

A <p X <p B, then A <m B. Distinct write fences and read fences, which impose

orderings on writes and reads, respectively, may also be provided.

Our work involves performance measurement on current commodity machines; specif-

ically, IA-32 and PowerPC processors. Since fence instructions are expensive operations,

we cannot ignore them in our analysis. Indeed, we will show that the base costs of the

reclamation strategies considered depend almost entirely on the number of fences they re-

quire. In addition, they are an often-hidden factor in the performance of several lock-free

algorithm implementations.

Chapter 3

Lock-free and Concurrently-readable

Algorithms

In this chapter, we present an overview of the literature on lock-free and concurrently-

readable algorithms. We present in more depth the algorithms used in our analysis.

3.1 Theory of Non-blocking Synchronization

Lamport [32] introduced the idea of concurrent computing without mutual exclusion.

Herlihy deepened the theory of non-blocking synchronization by showing that the power

of concurrent objects and operations can be characterized by their ability to solve the

consensus problem [25]. There exists a consensus hierarchy, partially shown in Figure

3.1, such that any object or operation on level n of the hierarchy can, in combination with

atomic read/write registers, be used to solve the consensus problem for n processes, but

not n+1 processes. This result established that strong synchronization primitives such as

CAS and LL/SC are required for implementing practical non-blocking synchronization,

while weaker primitives such as Test&Set are insufficient.

Herlihy presented a universal method to transform any sequential object into an

n-process wait-free concurrent one [25] using n-process consensus objects. He later pre-

17

Chapter 3. Lock-free and Concurrently-readable Algorithms 18

Figure 3.1: The consensus hierarchy.

sented a more efficient transformation based on LL/SC; however, even this more efficient

transformation yields implementations which usually have higher overhead than their

lock-based counterparts [26]. This poor performance of universal transformations pro-

vided a motivation for less general, but more high-performance, non-blocking object

implementations.

3.2 Practical Non-blocking Algorithms

Herlihy’s universal transformations are too inefficient to be practical. Alemany and Fel-

ten [2] identified useless parallelism and unnecessary copying as partial causes of this

inefficiency. Several others have attempted to design more efficient universal transfor-

mations [4, 3, 7, 52]. However, no universal transformation yet devised can match the

performance of custom non-blocking algorithms [19].

Chapter 3. Lock-free and Concurrently-readable Algorithms 19

BOOL DCAS (void *A1, void *A2, long B1, long B2, long C1, long C2)
{

atomically do {
if (*A1 == B1 && *A2 == B2) {

*A1 = C1;
*A2 = C2;
return TRUE;

} else {
return FALSE;

}
}

}

Figure 3.2: Pseudocode definition of DCAS.

3.2.1 Higher-level primitives

Many early attempts to build lock-free data structures using techniques more efficient

than expensive universal constructions used the double compare-and-swap (DCAS) op-

eration shown in Figure 3.2. This operation was useful, for example, to update both

a pointer and a version number simultaneously (see example given in [20]). The only

two lock-free operating system kernels yet developed, Synthesis and Cache Kernel, both

used DCAS [37, 20]. Unfortunately, DCAS was not supported by any processor other

than the Motorola 680x0 series, and hardware implementations of DCAS are considered

impractical with current processor technology.

DCAS is not a convenient enough primitive to make the design of lock-free algo-

rithms easy [13]. Although it is easier to design a lock-free algorithm using DCAS than

it is with CAS or LL/SC, constructing DCAS-based lock-free algorithms is still difficult.

Many researchers believe that multi-word compare-and-swap (MCAS), which operates on

an arbitrary number of words independently, is the correct primitive for easy construc-

tion of arbitrary non-blocking shared objects [17, 19, 23]. Fraser showed that MCAS is

substantially easier to use than CAS, but has moderate overhead and performs poorly

Chapter 3. Lock-free and Concurrently-readable Algorithms 20

when contention for a data structure is high [17].

Another approach to easy non-blocking synchronization is transactional memory, im-

plemented either in software [30, 17], or hardware [55, 21]. Transactional memory allows

operations to be grouped into transactions which atomically succeed or fail. Fraser [17]

and Herlihy et. al. [30] showed that transactional memory makes lock-free algorithm

design relatively simple. However, software transactional memory has very high over-

head [17], and whether or not hardware transactional memory will be practical in future

processors in still unknown.

The data structures we consider can be implemented efficiently using CAS, so MCAS

and transactional memory are unnecessary. Nevertheless, we believe that our results

would also be applicable to more complex data structures which currently require these

mechanisms.

3.2.2 Algorithms using CAS or LL/SC

Lock-free algorithms using CAS or LL/SC out-perform versions using MCAS or software

transactional memory, but are more difficult to construct. Only a handful of data struc-

tures have known lock-free implementations that do not require higher-level abstractions

or universal transformations. Among them are linked lists [22, 43], chaining hash tables

[43], skip lists [15, 17], doubly-linked lists [58], queues [51, 47], priority queues [57], stacks

[60, 47, 24], and deques [45, 58]. More complex data structures, such as binary search

trees and red-black trees, currently require higher-level primitives [17, 30].

We note that, despite the relatively-small number of lock-free algorithms based on

CAS or LL/SC, many of them appeared after DCAS-based versions (compare [22] to

[20], and [45] to [10], for example). In the future, we may see lock-free implementations

of other data structures requiring only CAS or LL/SC.

In our experiments, we focus on the lock-free queue and chaining hash table imple-

mentations presented in [47]; the latter is simply an array of lock-free linked lists. We

Chapter 3. Lock-free and Concurrently-readable Algorithms 21

Figure 3.3: Example operation of search function for lock-free linked list.

therefore present outlines of the algorithms for lock-free linked lists and queues.

Lock-free Linked Lists

We use the lock-free linked list presented in [47], which is an improvement by Michael on

an original design by Harris [22]. The list stores its keys in sorted order, and does not

allow duplicate keys. It is singly-linked, NULL-terminated, and has a head node. The

supported operations are searching the list for a node with a given key, deleting a node

with a given key, and inserting a new node with a given key.

Figure 3.3 shows an example of a search for the key 2 in such a list, and Figure 3.4

Chapter 3. Lock-free and Concurrently-readable Algorithms 22

node **prev;
node *next;
node *cur;

int search (node **head, long key) 5

{
try again:

prev = head;
cur = *prev;
while (cur != NULL) { 10

if (*prev != cur) goto try again;
next = cur−>next;
/* If the low-order bit is a 1, the node is marked to be logically deleted. */
if (next & 1) {

/* Update the link and logically delete the node. */ 15

if (!CAS(prev, cur, next−1)) goto try again;
schedule for deletion(cur);
cur = next−1;

} else {
if (*prev != cur) goto try again; 20

if (cur−>key >= key) {
return (cur−>key == key);

}
prev = &cur−>next;

} 25

}
return (0);

}

Figure 3.4: Pseudocode for search function for lock-free list, stripped of memory recla-
mation code.

Chapter 3. Lock-free and Concurrently-readable Algorithms 23

shows the associated pseudocode. The searching thread walks the list, and as it does so, it

keeps track of the current node, the next pointer of the current node’s predecessor (or the

head pointer if the current node is the first in the list), and the current node’s successor.

These three references are used by CAS operations in the insertion and deletion routines.

The thread stops once it encounters the first key greater than or equal to the key for

which it is searching (see lines 21-23 of Figure 3.4).

If a searching thread encounters a partially-deleted node, it must attempt to help

complete this deletion, and then restart its traversal (lines 13-18; see the explanation of

the deletion function, below). The thread also restarts its traversal if it detects that a

node has been inserted between the current node and its predecessor (line 20). If such

an insertion takes place after the check in line 20, and the caller of the search function is

an inserting or deleting thread, the calling thread will have to invoke the search function

again; the check serves to decrease the chances of this occurring.

More formally, the search function finds a pointer to a pointer to a node, prev, and

pointers to nodes cur and next such that:

• If list is empty, prev = head, cur = NULL, and the search returns false.

• If the key is not in the list, then prev points to the next pointer of the last node in

the list, cur = NULL, next = NULL, and the search function returns false.

• If there exists some node q in the list such that:

– q has not been marked for deletion (see the explanation of the delete function,

below), and

– q → key >= key and either q is the first node in the list or q → prev → key <

key,

then ∗prev = cur, cur = q, next = q → next, and the search returns true if and

only if q → key = key.

Chapter 3. Lock-free and Concurrently-readable Algorithms 24

Figure 3.5: Example operation of insert function for lock-free linked list.

Chapter 3. Lock-free and Concurrently-readable Algorithms 25

An insertion of a node with key 2 is shown in Figure 3.5. The insertion begins by

searching for a node with key 2, as shown in Figure 3.3. This search ensures that we do

not insert a duplicate key; furthermore, if no node with key 2 is found, it gives us the

position in which to insert the new node with key 2 in order to keep the list sorted. We

then initialize the new node’s next pointer to point to the node with key 3 in Figure 3.3,

and update the next pointer of the node with key 1 using CAS, thereby linking the new

node into the list. If the CAS operation fails, then we must restart the insertion from the

beginning. Note that the steps of the insert operation must be performed in this order,

or else readers may follow the next pointer of the node with key 2 before it has been

initialized, leading to indeterminate behavior.

Figure 3.7 shows a deletion of the node with key 3 from the linked list. Deletion is

slightly more complex than insertion, since we must prevent the possibility of concurrent

insertions and deletions corrupting the list, as shown in Figure 3.6. To do so, we first

search for the node with the key we wish to delete, and mark the low-order bit of this

node’s next pointer using CAS. This is possible on current architectures because words

lie on 4-byte boundaries; hence, the low-order two bits of any pointer are always zero.

Marking the low-order bit using CAS will either fail or cause concurrent insertions which

would otherwise corrupt the list, such as that shown in Figure 3.6, to fail. After marking

the low-order bit, we then use CAS again to unlink the node from the list, thus completing

the logical deletion.

Full details on the algorithm, including proofs of correctness, are available in [22],

[43], and [47].

Lock-free Queues

Our lock-free queue is that presented in [50] and [47]; our code is structured according

to the pseudocode given in the latter. A queue is represented by a singly-linked list with

head and tail pointers. The implementation of the queue uses a dummy node which is

Chapter 3. Lock-free and Concurrently-readable Algorithms 26

Figure 3.6: Error which can occur in a näıve lock-free linked list implementation when
insertions and deletions are interleaved. To prevent such errors, the lock-free linked list
must mark a node’s next pointer before deleting the node (Figure 3.7).

Chapter 3. Lock-free and Concurrently-readable Algorithms 27

Figure 3.7: Example operation of delete function for lock-free linked list.

Chapter 3. Lock-free and Concurrently-readable Algorithms 28

Figure 3.8: Dequeue from non-empty lock-free queue.

not logically part of the queue; hence, the head and tail pointers always have something

to which to point. The dummy node is always either a node created for this purpose

when the queue is initialized, or the most recently dequeued node. The head pointer

must always point to the dummy node, and the tail pointer must always point to either

the last or second-last node in the queue. Enqueue operations append nodes to the tail

of the list, and dequeue operations remove nodes from the head of the list.

Figure 3.8 illustrates a dequeue operation, and Figure 3.9 shows the associated pseu-

docode. The dequeue operation begins by taking a consistent snapshot of pointers to the

head (dummy) node and its successor, and to the tail node (lines 7-15 of Figure 3.9). If

the only node in the queue is the dummy node, then the queue is empty; otherwise, if

the tail pointer points to the dummy node, the dequeuing thread must attempt to ad-

vance the tail pointer using CAS, and then retry (lines 17-25). The thread then advances

the head pointer to point to the dummy node’s successor (lines 30-33); this node then

becomes the new dummy node, and the old dummy node can be logically deleted. The

new dummy node’s key is then returned to the calling function.

An enqueue operation is shown in Figure 3.10, with the associated pseudocode shown

Chapter 3. Lock-free and Concurrently-readable Algorithms 29

long dequeue(struct queue *Q)
{

node *h, *t, *next;
long data;

5

while (1) {
/* Get the old head and tail nodes. */
h = HEAD(Q);
t = TAIL(Q);

10

/* Get the head node’s successor. */
next = h−>next;
memory barrier();
if (HEAD(Q) != h)

continue; 15

/* If the head (dummy) node is the only one, return EMPTY. */
if (next == NULL)

return EMPTY SENTINEL;
20

/* There are multiple nodes. Help update tail if needed. */
if (h == t) {

CAS(&TAIL(Q), t, next);
continue;

} 25

/* Save the data of the head’s successor. It will become the new dummy node. */
data = next−>key;

/* Attempt to update the head pointer so that it points to the new dummy node. */ 30

if (CAS(&HEAD(Q), h, next))
break;

}

/* The old dummy node has been unlinked, so reclaim it. */ 35

schedule for deletion(h);

return data;
}

Figure 3.9: Pseudocode for dequeue function for lock-free queue, stripped of memory
reclamation code.

Chapter 3. Lock-free and Concurrently-readable Algorithms 30

Figure 3.10: Enqueue to non-empty lock-free queue.

Chapter 3. Lock-free and Concurrently-readable Algorithms 31

void enqueue(long data, struct queue *Q)
{

node *newnode = allocate new node();
node *t, *next;

5

/* Initialize the new node. */
newnode−>key = data;
newnode−>next = NULL;

/* Ensure that newnode->next = NULL before inserting it. */ 10

write barrier();

while(1) {
/* Snapshot the old tail pointer and its successor. */
t = TAIL(Q); 15

next = t−>next;
if (TAIL(Q) != t)

continue;

/* Help update the tail pointer if needed. */ 20

if (next != NULL) {
CAS(&TAIL(Q), t, next);
continue;

}
25

/* Attempt to link in the new node. */
if (CAS(&t−>next, NULL, &newnode))

break;
}

30

/* Swing the tail to the new node. */
CAS(&TAIL(Q), t, &newnode);

}

Figure 3.11: Pseudocode for enqueue function for lock-free queue, stripped of memory
reclamation code.

Chapter 3. Lock-free and Concurrently-readable Algorithms 32

in Figure 3.9. First, the enqueuing thread allocates a new node, stores the key to be

enqueued in it, initializes its next pointer to NULL, and executes a write fence (lines

3-11 of Figure 3.9). The thread then takes a snapshot of pointers to the tail node and its

successor (lines 14-18). If the tail node’s successor is not NULL, then the tail pointer

must be pointing to the second-last node in the queue, so the thread attempts to advance

the tail pointer, and then retries (lines 20-24). Next, the thread uses CAS to insert the

new node at the end of the list; if this CAS fails, the thread must retry (lines 26-28).

Once the CAS succeeds, a second CAS operation attempts to advance the queue’s tail

pointer to point to the new node (line 32); no failure condition is needed on this latter

CAS, since it fails only if another thread has already succeeded in updating the tail

pointer.

As with the lock-free list, full details, including a proof of correctness, are available

in [51] and [47].

We note that both of these lock-free algorithms are quite complex implementations of

relatively simple data structures. Much of this complexity is due to the fact that lock-free

algorithms must coordinate multiple concurrent updates. Algorithms accommodating

multiple readers, but only a single writer, can be significantly simpler.

3.3 Concurrently-Readable Algorithms

The most well-known use of concurrently-readable algorithms is in implementing read-

copy update [38, 42, 39, 40, 41, 6]. These algorithms focus on concurrently-readable

linked lists and chaining hash tables, although other applications of read-copy update

exist [38]. We note that we examine concurrently-readable chaining hash tables in our

experiments, and that these hash tables are simply arrays of concurrently-readable linked

lists; therefore, we present an outline of these lists.

Figure 3.12 shows an example from [42] of an update to a node of a linked list which

Chapter 3. Lock-free and Concurrently-readable Algorithms 33

Figure 3.12: Concurrently-readable node modification example from which read-copy
update derives its name.

Figure 3.13: Concurrently-readable insertion.

Chapter 3. Lock-free and Concurrently-readable Algorithms 34

Figure 3.14: Concurrently-readable deletion.

can run concurrently with lockless reads; insertions and deletions are slightly simpler,

and are shown in Figures 3.13 and 3.14. We focus on the example of the update shown

in Figure 3.12. Readers merely traverse the list as they would if the program were single-

threaded. A writer acquires a per-list spinlock, so writers need not deal with concurrent

writes. Writes then proceed in two phases. First, the updating thread makes a copy of

the node to be updated, and performs all needed modifications to the copy. The copy’s

next pointer is then made to point to the original node’s successor, then, the next pointer

of the original’s predecessor must be updated to point to the modified node. As with

the lock-free linked list algorithm, the updates must be performed in this order, or else

lockless reads may follow the updated node’s next pointer before it has been initialized.

In the second phase of the update, the writer physically deletes the original node once it

is safe to do so.

In a theoretical model with infinite memory, the second phase would be unnecessary

and the algorithm would be trivial. The algorithm becomes more interesting when exam-

ined in a practical setting and combined with a high-performance memory reclamation

scheme [42].

Chapter 4

Memory Reclamation Schemes

In this chapter, we present our three memory reclamation schemes — EBR, QSBR, and

SMR, along with other schemes which we did not consider. For the schemes which we do

consider, we show how they can be applied, and compare them analytically. The next

chapter provides experimental validation of this analysis.

4.1 Descriptions of Schemes

This section details the three memory reclamation schemes under consideration: quiescent-

state-based reclamation (QSBR), safe memory reclamation (SMR), and epoch-based

reclamation (EBR). We also discuss reference counting, Greenwald’s type-stable mem-

ory, and Pass the Buck, and explain why we did not consider these schemes. Since all

these methods have been published elsewhere [42, 6, 44, 47, 17], we discuss them in only

enough detail for the reader to understand our work.

4.1.1 Blocking Methods

We describe three blocking memory reclamation schemes: epoch-based reclamation,

quiescent-state based reclamation, and Greenwald’s type-stable memory. These methods

35

Chapter 4. Memory Reclamation Schemes 36

Figure 4.1: Illustration of EBR. Threads follow the global epoch. If a thread observes
that all other threads have seen the current epoch, then it may update the global epoch.
Hence, if the global epoch is e, threads in critical sections can be in either epoch e + 1
or e, but not e − 1 (all mod 3). The time period [t1, t2] is thus a grace period for thread
T1.

are all blocking, because they force threads to wait for some condition, which could be

delayed arbitrarily, to become true, and therefore place no upper bound on the amount of

unfreed memory at any given time. Since the amount of unfreed memory is unbounded,

the system may run out of memory, thus causing threads to block on memory allocation

and therefore fail to make progress. Figure 4.7 of section 4.3, below, shows how blocked

threads can obstruct memory reclamation.

Epoch-Based Reclamation

Epoch-based reclamation (EBR) was introduced by Fraser [17], but builds on earlier

ideas [31, 36, 53]. At any point in time, each thread is executing in one of three logical

epochs. For each of the three epochs, the thread has an associated limbo list which holds

logically deleted nodes awaiting physical deletion. When a thread T is in epoch e, it

places all nodes that it logically deletes in limbo list e. T may physically delete these

Chapter 4. Memory Reclamation Schemes 37

nodes once a grace period has passed. A grace period [a, b] is an interval of program

execution time such that, after point b, all nodes logically deleted before point a can be

physically deleted safely. EBR uses epochs to detect grace periods, as explained below.

EBR is illustrated in Figure 4.1. At the start of any lock-free operation, a thread

enters a critical section with respect to memory reclamation (note that this use of the

term critical section has nothing to do with mutual exclusion). Upon entering a critical

section, the thread updates its local epoch to match the global epoch if the two epochs

differ, as indicated by the thinner lines in Figure 4.1. It also sets a per-thread flag

indicating to other threads that it is in a critical section. Upon exit of a critical section,

a thread clears its flag. No thread is allowed to access an EBR-protected object outside

of a critical section.

Upon entering a programmer-determined number of critical sections since seeing the

global epoch change, a thread may attempt to update the global epoch. If any thread

which is in a critical section has not updated its local epoch to match the global epoch,

then this attempt to update the global epoch must fail. EBR therefore guarantees that

at any time t, if the global epoch is e, the local epoch of each thread in a critical section

is either e or e+1, but not e−1 (all mod 3). As a result, whenever a thread sets its local

epoch to e, it can physically delete all nodes logically deleted the last time that it was

in epoch e, since all operations which could have held a reference to the logically deleted

node have completed.

EBR is completely encapsulated within a library, and is invisible to the application

programmer. Further, threads that are not in critical sections can not obstruct the

progress of EBR. These factors make EBR very generally applicable, and easy for a

programmer to use.

Chapter 4. Memory Reclamation Schemes 38

Figure 4.2: Illustration of QSBR. Thick lines represent quiescent states. The time interval
[t1, t2] is a grace period: at time t2, each thread has passed through a quiescent state
since t1, so all nodes logically removed before time t1 can be physically deleted.

Quiescent-State-Based Reclamation

Instead of dividing time into epochs, QSBR has the programmer identify quiescent states

in the application code. A quiescent state for thread T is a point in T ’s program code

at which T can hold no reference to any shared node; hence, from T ’s point-of-view, all

nodes logically deleted by other threads can safely be physically deleted. A grace period

for QSBR is an interval of execution time during which each thread passes through at

least one quiescent state. QSBR is illustrated in Figure 4.2.

QSBR must enable threads to detect grace periods so that they can physically delete

logically deleted nodes. However, no QSBR implementation is required to detect the

smallest grace periods possible. Furthermore, unlike with EBR, the definition of a qui-

escent state is application-dependent. Natural and convenient quiescent states exist for

many operating system kernels — the domain in which quiescent-state-based reclamation

is used to implement read-copy update [42, 40, 18].

The fact that QSBR is application-dependent is the fundamental difference between

QSBR and EBR. EBR, by definition, detects grace periods at the library level. QSBR,

Chapter 4. Memory Reclamation Schemes 39

by contrast, requires that the application report quiescent states to the QSBR library.

As we show in Section 5.2, this gives QSBR a significant performance advantage over

EBR.

Type-Stable Memory Management

EBR and QSBR both guarantee that a node is never physically deleted unless no thread

can hold a reference to it. Type-stable memory (TSM) [20, 19] makes a weaker guarantee:

a node’s memory cannot be re-used for an object of another type until no thread can hold

a reference to it.

Greenwald [19] outlines both kernel-level and user-level implementations of TSM.

The kernel-level implementation relies on “safe points” which are equivalent to quiescent

states. The user-level version uses per-type reference counters.

Like EBR and QSBR, Greenwald’s TSM implementations are blocking, and hence

suffer from the same drawbacks. Furthermore, TSM places additional burdens on the

programmer, such as having to check after finding a node that the node has not been

reallocated and inserted into another data structure. Such checks would add program-

ming complexity and performance overhead to lockless linked list searches. Due to this

disadvantage, and Greenwald’s TSM’s lack of any apparent advantages relative to EBR

and QSBR, we do not consider it in our experiments.

4.1.2 Lock-free Methods

Here, we present the three lock-free memory reclamation schemes of which we are aware:

reference counting, safe memory reclamation, and Pass the Buck.

Reference Counting

Implementations of lock-free reference counting have been proposed by Valois [61] (cor-

rected by Michael and Scott [50]), Sundell [59], and Detlefs et al. [11, 12]. Valois’

Chapter 4. Memory Reclamation Schemes 40

scheme uses compare-and-swap (CAS) and fetch-and-add instructions to manage refer-

ence counts, and requires that nodes retain their type after deletion. Sundell’s scheme is

based on Valois’, but is wait-free. The method of Detlefs et al. allows the memory used

by nodes to be re-used for structures of other types, but requires the double-compare-

and-swap operation, which no current architecture supports in hardware.

Reference counting has been shown by Michael [47] to introduce performance overhead

which makes lock-free algorithms perform worse than their lock-based counterparts in

most situations. We thus omit reference counting from our experiments.

Safe Memory Reclamation

Safe memory reclamation was introduced by Michael [44]. It provides a simple and

intuitive existence locking mechanism for dynamic nodes. Each thread which accesses a

lock-free or concurrently-readable data structure has K hazard pointers which it uses to

protect nodes from deletion by other threads. The required number of hazard pointers,

K, is algorithm-dependent, and is typically very small: queues and linked lists need

K = 2 hazard pointers, while stacks require only K = 1. If the total number of threads

in the system that may access an SMR-protected data structure is N , then we need

H = NK hazard pointers in total.

When a thread T removes a node from a dynamic data structure, it places a reference

to that node in a private list. When the list grows to size R, the thread attempts to

physically delete all nodes in the list. R is a constant chosen by the programmer; a

higher value of R will mean that memory remains unfreed for a longer period of time,

but memory reclamation overhead will be amortized over a larger number of operations.

However, to ensure that the expected amortized processing time per reclaimed node is

kept constant, R must be chosen such that R = H + Ω(H). 1

1The terminology R = H + Ω(H) is confusing to some. Roughly, this means that R should be
parameterized by H , the total number of hazard pointers, and that R must always be greater than H

by an amount which is at least linear in H . Hence choosing R = aH + b where a > 1 and b is a constant

Chapter 4. Memory Reclamation Schemes 41

Figure 4.3: Illustration of SMR. q is logically removed from the linked list on the right
of the diagram, but cannot be physically deleted while T3’s hazard pointer HP [4] is still
pointing to it.

Chapter 4. Memory Reclamation Schemes 42

To physically free nodes, T copies all non-NULL hazard pointers of all threads into

a private array, which it then sorts. For each node n in T ’s private list of nodes to be

reclaimed, T does a binary search for a pointer to n, and physically deletes n if no such

pointer is found.

To use hazard pointers, an algorithm must identify all hazardous references — refer-

ences to shared objects that may have been deleted by other threads (or are vulnerable

to the ABA problem if hazard pointers are being used for ABA-protection) [47] — in all

lockless operations. Before using any such reference, a hazard pointer must be made to

point to the target object. After setting the hazard pointer, an algorithm-specific check

must be made in order to ensure that the protected object has not been deleted; the

rules of the SMR deletion routine outlined above guarantee that the object will never be

deleted so long as the hazard pointer continues to point to it. Figure 4.3 illustrates the

use of SMR.

One cited advantage of SMR is that it requires only atomic reads and writes, and is

therefore usable on hardware platforms which do not support CAS or LL/SC [47]. Since

most current hardware platforms support one of these strong synchronization primitives,

the advantage of not requiring these operations lies mostly in avoiding their significant

performance cost.

Pass the Buck

Herlihy et. al. [28, 27] present Pass the Buck, a solution to the Repeat Offender Problem,

which is an attempt to formalize the problem of lock-free memory reclamation. Pass

the Buck is similar to SMR, but uses expensive CAS operations while physically deleting

nodes, and lacks SMR’s amortized bound on the memory reclamation overhead per phys-

ically deleted node. On the upside, Pass the Buck has a property called value progress,

which guarantees that logically deleted nodes will eventually be freed, even if there are

suffices.

Chapter 4. Memory Reclamation Schemes 43

thread failures.

We do not consider value progress attractive enough to justify Pass the Buck’s higher

overhead relative to SMR, so we do not include Pass the Buck in our experiments;

however, due to Pass the Buck’s similarity to SMR, we believe that our experimental

analysis of SMR relative to QSBR and EBR would be applicable to Pass the Buck as

well.

4.2 Applying the Schemes

As explained in Chapter 3, we examined three algorithms requiring deferred memory

reclamation: a concurrently-readable chaining hash table, a lock-free chaining hash table,

and a lock-free queue. We found that all three of these algorithms were compatible with

each of our three memory reclamation schemes.

We illustrate this compatibility by way of the lock-free queue’s dequeue() method.

We chose this method because it is the simplest method which demonstrates the use

of these schemes. Figures 4.4, 4.5, and 4.6 demonstrate the use of SMR, QSBR, and

EBR, respectively. Since this is actual code and not pseudocode, some conventions

must be explained. Our nodes are of type struct el. Lists are implemented using the

doubly-linked list interface of the Linux kernel [35]: each node contains an instance of

struct list head, which contains two pointers: struct list head *prev and struct

list head *next. The function list entry() maps an instance of struct list head*

to a pointer to the struct el which contains it. Hazard pointers are implemented using

a cacheline-aligned structure, struct hazard pointer, which has one member: struct

el *p.

SMR, QSBR, and EBR all register callbacks for logically deleted nodes. A callback is

simply a record of the logically deleted node, and the function to be used to physically

delete it once it is safe to do so; in our experiments, this function is always kfree(). Our

Chapter 4. Memory Reclamation Schemes 44

SMR implementation hides our callback interface within the body of the retire node()

function; however, the interface is exposed in our QSBR and EBR implementations, as

shown in line 39 of Figure 4.5 and line 40 of Figure 4.6, respectively. We ask the reader

to forgive this minor inconsistency in our interfaces.

The code in Figure 4.4, which illustrates the use of SMR, is the most complex of

the three versions of the dequeue() function. For convenience, it uses two pointers to

hazard pointers, hp0 and hp1, which are first set to point to the two hazard pointers

owned by the calling thread (lines 7-9 of Figure 4.4). After making a copy of the value

of the queue’s head pointer, we protect the head from deletion using a hazard pointer

(lines 12-14). We then execute a fence instruction, after which we ensure that the head

has not changed - and hence possibly been deleted (lines 15-17). Once we are sure that

this has not happened, we know that the head will not be physically deleted until our

hazard pointer is unset. A similar step must be taken after acquiring a pointer to the

head node’s successor (lines 22-27). If, after setting either of these hazard pointers, we

find that the head of the queue has changed, we must retry our dequeuing attempt (lines

17 and 27).

Once we have successfully logically deleted the dequeued node, we can retire it using

the retire node() function (line 50), and unset our hazard pointers so that the nodes

they pointed to can be reclaimed if necessary (line 51).

The code illustrating QSBR in Figure 4.5 is much simpler. Since reclamation works

by keeping track of quiescent states at the application level, the code for the dequeue()

method is not burdened by any memory reclamation code. The code in Figure 4.6,

which illustrates the use of EBR, is almost identical. The only differences are that the

code for EBR places calls to critical enter() and critical exit() at the beginning

and end of the method, respectively (lines 7 and 41 of Figure 4.6), and that it sched-

ules logically deleted nodes for physical deletion using call epoch kfree() instead of

call rcu kfree() (line 40 of Figure 4.6 and line 39 of Figure 4.5).

Chapter 4. Memory Reclamation Schemes 45

long dequeue(struct queue *Q)
{

struct list head *h, *t, *next;
struct el *node;
long data; 5

/* Initialize our hazard pointer pointers. */
hp0 = &(HP[smp processor id()*K]).p;
hp1 = &(HP[smp processor id()*K+1]).p;

10

while (1) {
/* Protect the old head node. */
h = HEAD(Q);
*hp0 = list entry(h, struct el, list);
memory barrier(); 15

if (HEAD(Q) != h)
continue;

/* Get a pointer to the old tail node. */
t = TAIL(Q); 20

/* Get and protect the head node’s successor. */
next = h−>next;
*hp1 = list entry(next, struct el, list);
memory barrier(); 25

if (HEAD(Q) != h)
continue;

/* If the head (dummy) node is the only one, return EMPTY. */
if (next == NULL) 30

return −1; /* Empty. */

/* There are multiple nodes. Help update tail if needed. */
if (h == t) {

CAS(&TAIL(Q), t, next); 35

continue;
}

/* Save the data of the head’s successor. It will become the
* new dummy node. */ 40

data = list entry(next, struct el, list)−>key;

/* Attempt to update the head pointer so that it points to the
* new dummy node. */

if (CAS(&HEAD(Q), h, next)) 45

break;
}

/* The old dummy node has been unlinked, so reclaim it. */
retire node(list entry(h, struct el, list)); 50

*hp0 = *hp1 = NULL;
return data;

}

Figure 4.4: Lock-free queue’s dequeue() function, using SMR.

Chapter 4. Memory Reclamation Schemes 46

long dequeue(struct queue *Q)
{

struct list head *h, *t, *next;
struct el *node;
long data; 5

while (1) {
/* Get the old head and tail nodes. */
h = HEAD(Q);
t = TAIL(Q); 10

/* Get the head node’s successor. */
next = h−>next;
memory barrier();
if (HEAD(Q) != h) 15

continue;

/* If the head (dummy) node is the only one, return EMPTY. */
if (next == NULL)

return −1; /* Empty. */ 20

/* There are multiple nodes. Help update tail if needed. */
if (h == t) {

CAS(&TAIL(Q), t, next);
continue; 25

}

/* Save the data of the head’s successor. It will become the
* new dummy node. */

data = list entry(next, struct el, list)−>key; 30

/* Attempt to update the head pointer so that it points to the
* new dummy node. */

if (CAS(&HEAD(Q), h, next))
break; 35

}

/* The old dummy node has been unlinked, so reclaim it. */
call rcu kfree(new callback(), list entry(h, struct el, list));
return data; 40

}

Figure 4.5: Lock-free queue’s dequeue() function, using QSBR.

Chapter 4. Memory Reclamation Schemes 47

long dequeue(struct queue *Q)
{

struct list head *h, *t, *next;
struct el *node;
long data; 5

critical enter();

while (1) {
/* Get the old head and tail nodes. */ 10

h = HEAD(Q);
t = TAIL(Q);

/* Get the head node’s successor. */
next = h−>next; 15

memory barrier();
if (HEAD(Q) != h)

continue;

/* If the head (dummy) node is the only one, return EMPTY. */ 20

if (next == NULL)
return −1; /* Empty. */

/* There are multiple nodes. Help update tail if needed. */
if (h == t) { 25

CAS(&TAIL(Q), t, next);
continue;

}

/* Save the data of the head’s successor. It will become the 30

* new dummy node. */
data = list entry(next, struct el, list)−>key;

/* Attempt to update the head pointer so that it points to the
* new dummy node. */ 35

if (CAS(&HEAD(Q), h, next)) break;
}

/* The old dummy node has been unlinked, so reclaim it. */
call epoch kfree(new callback(), list entry(h, struct el, list)); 40

critical exit();
return data;

}

Figure 4.6: Lock-free queue’s dequeue() function, using EBR.

Chapter 4. Memory Reclamation Schemes 48

The fact that each of the three memory reclamation methods is compatible with

each of the the three algorithms we considered is important. To date, the literature

on QSBR has concentrated on using QSBR with locking methods, usually a variant of

the concurrently-readable linked list described in section 3.3; furthermore, the literature

concentrates on using QSBR to support lockless reads. We show, by using QSBR with

lock-free queues, that it makes sense to use QSBR even with data structures which do

not have read-only operations.

One caveat about using QSBR or EBR for memory reclamation concerns the ABA

problem, which was explained in section 2.1.3. SMR can be used to make an algorithm

ABA-safe [46]. To make an algorithm ABA-safe using QSBR or EBR, we must ensure

that we do not re-insert a node which has been removed from a data structure until

the node has been physically deleted and reallocated. Since most node implementations

consist of only a pointer to the next node and a pointer to the node’s data, allocating new

nodes to hold data which must be re-inserted into a data structure should be relatively-

inexpensive; hence, this constraint should not cause programmers undue difficulties.

We note that not all algorithms are compatible with all memory management tech-

niques. Some, such as the deques of [58] and Harris’ original version of our lock-free linked

list [22], must reference logically-deleted nodes. For such algorithms, neither SMR, EBR,

nor QSBR is usable; these algorithms typically use reference counting. Other algorithms,

such as the deques of [10], are also SMR-incompatible and assume automatic garbage

collection. These incompatibilities are detailed in [44]. The existence of such incom-

patibilities prevents us from claiming that the choice of memory reclamation scheme is

completely independent of the target algorithm; instead, based on our successful imple-

mentations, we claim only that the two are mostly independent.

Chapter 4. Memory Reclamation Schemes 49

4.3 Analytic Comparison of Methods

Here we lay out an analytic comparison of the memory reclamation strategies under

consideration, which we validate with performance data from our experiments in Section

5.2. We identify the following factors which could affect the performance of our memory

reclamation schemes:

• Object contention: Many threads may attempt to access or modify the same

object concurrently; in the case of updates, these operations may conflict with one

another, thus forcing one or more threads to retry. Having more threads performing

operations on the same number of objects will increase object contention.

• CPU contention: If there are more threads than there are physical CPUs, some

threads will be descheduled for periods during which other threads may perform

large numbers of operations. A descheduled thread may delay the progress of other

threads under blocking memory reclamation schemes.

• Workload: Objects typically support several operations such as search, insert,

delete, enqueue, and dequeue. The workload, in this paper, is the proportion of each

type of operation in a given experiment. If an object has read-only operations, we

use the term update fraction to refer to the proportion of the operations invoked

on the object which are not read-only.

• Traversal length: In the case of structures such as linked lists and trees, a

process performing a search operation will have to traverse several nodes; we refer

to the number of nodes accessed as the traversal length.

• Execution environment: External factors such as the memory allocator and

OS scheduler.

When object contention, CPU contention, and traversal length are low, and the work-

load is read-mostly, QSBR should have considerably less per-operation runtime overhead

Chapter 4. Memory Reclamation Schemes 50

than either SMR or EBR. This is not obvious until we recall that we are working in a

weakly-consistent memory model in which fences are necessary. As we show in Section

5.2, these fence instructions make SMR and EBR more expensive than QSBR in most

situations. In the case of SMR, a fence is necessary between the setting and the validation

of any hazard pointer, since no hazard pointer can be validated until it has been set and

is visible to all threads. EBR requires a flag to be set upon entry into any critical section,

and cleared upon exit of the critical section. A fence is necessary after setting and before

clearing the flag. QSBR has no per-operation code to manage quiescent states, and hence

no fences are required. As a result, the per-operation overhead of using QSBR, in the

best case, is very low.

We note that we could modify EBR so that critical sections are entered and exited at

the application level instead of the library level, thus amortizing the overhead of the fence

instructions across more operations. Doing so, however, would make EBR application-

dependent. The point of comparing the performance of EBR to that of QSBR is to

evaluate the performance benefits of using an application-dependent method to detect

grace periods.

Traversal length will be the primary factor influencing the performance of SMR. While

traversing a linked list, a thread must, for each node, set a hazard pointer, execute a fence

instruction, and validate the hazard pointer. In a contention-free case in which the thread

never has to restart its traversal, the number of fences needed will be O(n), where n is

the traversal length. If there is object contention on the linked list so that the thread

may have to restart its traversal, the maximum number of fences required is unbounded.

In contrast, EBR needs exactly two fences per operation, no matter how many times a

thread may have to restart its traversal.

We can expect CPU contention to adversely affect QSBR and EBR. Descheduled

threads can delay other threads’ memory reclamation, as shown in Figure 4.7. In extreme

cases, this could lead to out-of-memory errors, which could cause threads to block on

Chapter 4. Memory Reclamation Schemes 51

Figure 4.7: Illustration of why QSBR is inherently blocking. Here, thread T2 does not
go through a quiescent state for a long period of execution time; hence, threads T1 and
T3 must wait to reclaim memory. A similar argument holds for EBR.

memory allocation, severely degrading performance. Furthermore, if there are locks in

the memory allocator, these more memory-hungry methods may increase the contention

on these locks. If a thread is descheduled while holding a lock on a global freelist, other

threads will block on memory allocation. These effects will be most noticeable when the

workload has a high percentage of operations which must allocate memory.

The choice of memory allocator and OS scheduler could also significantly impact

QSBR and EBR. Although lock-free memory allocation is possible [49], most memory

allocators use locking. The unbounded memory use of QSBR and EBR could cause an

algorithm using these methods to need to allocate memory from a lock-protected global

pool much more frequently than the same algorithm using SMR, therefore increasing

the contention on the pool’s lock. Furthermore, since thread delays can delay memory

reclamation, the policy of the OS scheduler could play a huge part in how long memory

is left unreclaimed. The only strategy that provides a provable bound on the amount

of unfreed memory at any point in time is SMR [44]; we thus expect it should be less

sensitive to the memory allocator and other factors in the external environment than

QSBR and EBR.

Chapter 4. Memory Reclamation Schemes 52

Our analysis allows us to gain some intuition into the workings of these three memory

reclamation schemes; however, we cannot analytically quantify the extent to which the

factors outlined above impact each method. We must therefore evaluate these schemes

experimentally.

Chapter 5

Experimental Evaluation

In this chapter, we describe our experiments. We first describe the setup we used, and

then detail our results.

5.1 Experimental Setup

We evaluated our memory reclamation strategies on two data structures — a queue and a

hash table — using systems based on PowerPC and IA-32 processors, while independently

varying each of the factors outlined in Section 4.3. This section provides details on these

aspects of our experiments.

5.1.1 Algorithms Compared

The hash table used in our experiments is an array of buckets, where each bucket has

a linked list of keys. Duplicate keys are not allowed. The lock-free hash table imple-

mentation is that given in [47] and described in section 3.2.2, which, we reiterate, stores

the keys in each hash chain in sorted order. We therefore stored the keys in the lists

for the lock-based algorithms in sorted order as well, so that we could fairly compare

the performance of these alternatives as we increased the load factor of the hash table.

53

Chapter 5. Experimental Evaluation 54

We compared the lock-free hash tables to a version using per-bucket spinlocks, and the

concurrently-readable version described in section 3.3. The lock-free queue is the version

of Michael and Scott’s implementation given in [47] and described in section 3.2.2. We

compare it to a simple spinlock-based queue.

The algorithms for lock-free queues, lock-free hash tables, and concurrently-readable

hash tables were paired with each of the three memory reclamation schemes, for a to-

tal of nine combinations. We concentrate on the six combinations involving lock-free

algorithms.

Spinlocks were implemented using the CAS operation and fence instructions. CAS is

provided in hardware on IA-32, and implemented using LL/SC on PowerPC. No expo-

nential back-off was used, since our primary interest is in cases of low CPU contention

— that is, when the number of threads does not exceed the number of processors — in

which back-off is unlikely to be useful.

5.1.2 Test Program

In our experiment, a parent thread creates n child threads, starts a timer, and stops the

threads once that timer expires. Child threads keep track of the number of operations

they perform, and report this value to the parent. The parent then calculates the average

execution time per operation by dividing the total number of operations performed by

all children by the duration of the test. Our tests performed seven trials, and reported

the average of the median five.

Each thread runs repeatedly through a test loop. Once the loop completes, a quiescent

state is identified if we are using QSBR, and the loop is begun again if the parent thread’s

timer has not yet expired, as shown in Figure 5.1. For hash tables, on each iteration of

the loop, the thread does either a search, an insertion, or a deletion. The probabilities

of performing an insertion or a deletion are always equal, to keep the average load factor

constant throughout the trial. For queues, the thread does either an enqueue or a dequeue

Chapter 5. Experimental Evaluation 55

while (parent’s timer has not expired) {
for i from 1 to 100 do {

key = random key;
op = random operation;
if (testing queues) {

q = random queue;
op(q,key);

} else { /* Testing a hash table */
op(key);

}
}
QUIESCENT STATE();

}

Figure 5.1: High-level pseudocode for the test loop of our program. Each thread executes
this loop. The call to QUIESCENT STATE() is ignored unless we are using QSBR.

on each operation, again with equal probability.

The tests allow us to vary the number of queues or hash buckets, the number of

threads, and the total number of nodes we begin with. In the case of hash tables, we are

also able to vary the load factor and the update fraction.

As shown in Figure 5.1, each thread performs 100 operations per quiescent state;

hence, the overhead of announcing a quiescent state is amortized over 100 operations.

For EBR, each op in Figure 5.1 is a critical section; a thread attempts to update the

global epoch whenever it has entered a critical section 100 times without seeing the global

epoch updated. For SMR, we chose R = 2H + 100.

5.1.3 Operating Environment

We performed our experiments on two machines: one with two 2.0 GHz PowerPC G5

processors, and another with two 2.8 GHz Intel Xeon processors with no hyperthreading.

The PowerPC machine ran Mac OS X Server version 10.3.3 with Darwin kernel version

7.4.0, while the Xeon machine ran Red Hat Enterprise Linux version 3 with Linux kernel

Chapter 5. Experimental Evaluation 56

Table 5.1: Characteristics of Machines

Machine 1 Machine 2

Processor PowerPC IA-32

CPUs 2 2

GHz 2.0 2.8

Kernel Darwin Linux

Memory Model weakly-consistent
weakly-consistent,

writes ordered

Full Fence 86 ns 73.4 ns

Write Fence 13 ns 0 ns

CAS 33.9 ns 78.6 ns

Lock + Unlock 166 ns 141 ns

version 2.4.21-20.ELsmp. The Xeon machine has a slightly stronger memory model in

which writes are always performed in program order; write fences therefore do not add

to the costs of algorithms on this machine. Table 5.1 summarizes the properties of these

machines; the last line refers to the combined cost of locking and unlocking a spinlock.

The difference in CAS costs on the two architectures is partially due to the fact that on

IA-32, a CAS implies a full fence, while on PowerPC it does not. For consistency, we

report the results from experiments performed on the PowerPC machine unless otherwise

noted — in almost all cases, the choice of architecture made no significant performance

difference.

Threads in our experiment are Unix processes. Our memory allocator provides per-

thread freelists. Each thread can have two freelists of 100 nodes each at any given time.

Threads which exhaust their freelists can acquire more memory from a spinlock-protected

global pool. This design is similar to that of the slab allocator with magazines [9]. All

nodes are pre-allocated by the parent before the test begins.

Chapter 5. Experimental Evaluation 57

5.1.4 Limitations of Experiment

Although we believe that these experiments provide significant insight into the behavior of

different memory reclamation schemes, we do not know how accurately our microbench-

mark reflects real applications. Some applications may not have natural quiescent states.

Furthermore, detecting quiescent states in other applications may be more expensive

than it is in our program. Our QSBR implementation, for example, has less overhead

than that used in the Linux kernel, which must deal with issues such as CPU hotplugging

and the need to support interrupt handlers and real-time workloads.

Our experiment is also limited by the fact that the threads do nothing but invoke

operations on a small number of objects repeatedly, and that our memory allocator

uses locking. Performing a macrobenchmark on an existing application and testing the

performance of these schemes under a lock-free memory allocator are two avenues for

future work.

Each iteration of our test loop calls the random() function at least once. This adds

a constant amount of overhead to our measurements. Since we are primarily interested

in overall trends, this overhead is not a major concern in our analysis.

Finally, we were limited by the hardware we had available. Although testing on

commodity dual-CPU hardware evaluates these memory reclamation strategies under

realistic conditions, we were unable to evaluate how these schemes scale to large numbers

of CPUs or on other platforms such as NUMA machines or clusters.

Despite these limitations, we feel that our analysis highlights trends that show when

each memory reclamation scheme is and is not efficient.

5.2 Performance Analysis

Our experiments show how varying object contention, CPU contention, workload, and

traversal length significantly affect the performance of each memory reclamation scheme.

Chapter 5. Experimental Evaluation 58

Q
S

B
R

S
M

R

E
B

R

LF Hash Reads

Q
S

B
R

S
M

R

E
B

R

LF Hash Writes

Q
S

B
R

S
M

R

E
B

R

CR Hash Reads

Q
S

B
R

S
M

R

E
B

R

CR Hash Writes

Q
S

B
R

S
M

R

E
B

R

Queue

0

100

200

300

400

500

600

700

800

900

A
vg

 E
xe

cu
ti

o
n

 T
im

e
(n

s)

Figure 5.2: Single-threaded memory reclamation costs on PowerPC. Hash table statistics
are for a 32-bucket hash table with a load factor of 1. Queue statistics are for a single
non-empty queue.

Chapter 5. Experimental Evaluation 59

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Number of Threads

Lock-free - SMR
Lock-free - QSBR

Lock-free - EBR
Per-bucket Spinlock

Figure 5.3: Hash table, 32 buckets, load factor 1, read-only workload. Spinlocks scale
poorly as the number of threads increases.

Figure 5.2 shows the base costs of the concurrently-readable and lock-free algorithms

under consideration when all these costs are low. The results are those for one thread,

so that there is no contention of either type. The load factor of the hash tables is one.

As predicted in Section 4.3, the fence instructions required make SMR and EBR more

expensive than QSBR. The one exception is the write-only workload for the concurrently-

readable hash table with SMR; this is because, in the write-only case, no hazard pointers

need be used, so the overhead of using SMR is negligible.

We note that, in the base case, which memory reclamation scheme is most efficient

seems to be determined solely by the per-operation fence instructions required.

We next show what is already well-established: contention for locks and the CPU

seriously degrades the performance of lock-based algorithms. Figure 5.3 shows the per-

Chapter 5. Experimental Evaluation 60

 0

 2000

 4000

 6000

 8000

 10000

 0 10 20 30 40 50 60 70 80 90 100

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Load Factor

Lock-free - SMR
Lock-free - QSBR

Lock-free - EBR
Per-bucket Spinlock

Figure 5.4: Hash table, 32 buckets, one thread, read-only workload, varying load factor.

formance degradation of spinlocks on the hash table as the number of concurrent threads

increases, using a read-only workload and a load factor of 1. Since our tests were per-

formed on a two-CPU machine, using more than two threads cannot increase our ag-

gregate throughput; hence, horizontal lines on the graph indicate perfect scalability. In-

creasing the number of threads increases both the object contention, which makes threads

more likely to spin while attempting to acquire a lock, and the CPU contention, which

increases lock holder times. All memory reclamation schemes for the lock-free hash table

scale equally well with these settings.

5.2.1 Effects of Traversal Length

In Figures 5.4 and 5.5, we show the effect of increasing the load factor of the hash table,

when a single thread executes either a read-only or write-only workload, respectively.

Chapter 5. Experimental Evaluation 61

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60 70 80 90 100

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Load Factor

Lock-free - SMR
Lock-free - QSBR

Lock-free - EBR
Per-bucket Spinlock

Figure 5.5: Hash table, 32 buckets, one thread, write-only workload, varying load factor.

Chapter 5. Experimental Evaluation 62

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80 90 100

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Load Factor

Concurrently-readable - SMR
Concurrently-readable - QSBR

Concurrently-readable - EBR
Per-bucket Spinlock

Figure 5.6: Hash table, 32 buckets, one thread, write-only workload, varying load factor.

Increasing the load factor effectively increases the traversal length for all operations, as

even insertions first search for the key to be inserted in order to prevent duplicate entries.

As predicted in Section 4.3, the per-node fence instructions ruin the performance of the

lock-free hash table when using SMR: both the lock-based hash table and the lock-

free hash table using QSBR or EBR severely out-perform it. Using SMR for memory

reclamation for any structure requiring traversals of long chains of nodes, such as dynamic

trees, is thus likely to be extremely expensive.

In read-mostly situations, the effect of increasing the load factor on the performance

of the concurrently-readable algorithm using SMR is similar to its effect in the lock-free

case. There is a difference, however, in write-mostly situations, as shown in Figure 5.6.

The cause is the same as that of the anomaly in Figure 5.2: the concurrently-readable

algorithm holds a lock for updates; hence, traversals done by updates do not suffer the

Chapter 5. Experimental Evaluation 63

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Number of Threads

Lock-free - SMR Lock-free - QSBR Lock-free - EBR

Figure 5.7: 100 queues, variable number of threads, Darwin/PPC.

per-node overhead of fence instructions, so the concurrently-readable algorithm’s updates

perform similarly regardless of reclamation method. This case is somewhat degenerate,

however, since with a write-only workload, the concurrently-readable algorithm is equiv-

alent to a naive per-bucket spinlock approach.

5.2.2 Effects of CPU Contention

QSBR and EBR scale well with load factor, and, as shown in Figure 5.3, they scale well

with CPU contention under read-only workloads. However, Figure 5.7 demonstrates that

they scale poorly with CPU contention when the workload involves a significant number

of operations that must allocate memory. For this experiment, we focus on queues where

every operation either allocates or deallocates memory. Although QSBR and EBR are

hurt by CPU contention and allocation-heavy workloads on both systems, the magnitude

of the effect depends on the execution environment. A similar, though less pronounced,

Chapter 5. Experimental Evaluation 64

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Number of Threads

Lock-free - SMR Lock-free - QSBR Lock-free - EBR

Figure 5.8: Hash table, 32 buckets, load factor 1, write-only workload, variable number
of threads, Darwin/PPC.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Number of Threads

Lock-free - SMR Lock-free - QSBR Lock-free - EBR

Figure 5.9: 100 queues, variable number of threads, Linux/IA-32.

Chapter 5. Experimental Evaluation 65

effect can be observed for hash tables, as illustrated in Figure 5.8.

We predicted this scalability problem in Section 4.3. The extent to which this over-

head seems to be scheduler-dependent and unpredictable is surprising, however. Figure

5.9 shows data from the same experiment as shown in Figure 5.7, but running on our

Linux/IA-32 machine. Here, the shapes of the curves are quite different. Since this ex-

periment involves significant multithreading, we believe that the differences are due to

the different schedulers in the two kernels.

Although the increased contention for locks in our memory allocator and exhaustion

of the memory pool play a part in QSBR and EBR’s poor performance, we found while

trying to mitigate these factors that we could not make these methods perform well when

both CPU contention and memory allocation rates are high. Among other factors, we

have found evidence that QSBR and EBR’s inefficient use of memory interacts poorly

with the OS’s memory management strategies on the Darwin/PowerPC system. We are

presently unable to analyze completely all the ways that QSBR and EBR interact with

the external execution environment; however, it is clear from our results that delaying

threads can have an profound impact on the performance of these two schemes since

threads are prevented from physically deleting nodes. Further, as external factors come

into play, it is extremely difficult for an application programmer to defend against these

costs. SMR, in contrast, is largely immune to contention and bounds the memory usage,

shielding the programmer from external concerns.

We note that, in our experiments, QSBR scales better than EBR with increasing

numbers of threads. We view this as an artifact of our implementations. Our QSBR

mechanism was designed specifically to minimize the per-grace period overhead of each

thread, while Fraser’s EBR scheme, which we adopted, was not.

Chapter 5. Experimental Evaluation 66

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50 60 70 80 90 100

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Load Factor

Lock-free - SMR Lock-free - QSBR Lock-free - EBR

Figure 5.10: Hash table, 32 buckets, 16 threads, write-only workload, varying load factor.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Number of Threads

Lock-free - SMR Lock-free - QSBR Lock-free - EBR

Figure 5.11: Hash table, 32 buckets, load factor 10, write-only workload, varying number
of threads.

Chapter 5. Experimental Evaluation 67

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Number of Threads

Lock-free - SMR Lock-free - QSBR Lock-free - EBR

Figure 5.12: Hash table, 32 buckets, load factor 20, write-only workload, varying number
of threads.

Chapter 5. Experimental Evaluation 68

5.2.3 Relative Severity

We have seen that SMR’s performance scales poorly with traversal length, while EBR and

QSBR scale poorly for update-intensive workloads in the presence of CPU contention. In

cases in which traversal length is high, the workload is update-heavy, and there is CPU

contention, a programmer may wish to know which factor will influence the performance

of memory reclamation schemes most severely.

Figures 5.10, 5.11, and 5.12 address this question. All three graphs show runs with a

high load factor, CPU contention, and a write-only workload.

Figure 5.10 shows the effect of increasing load factor when we have 16 threads — eight

threads per CPU. Even at this high level of CPU contention, QSBR begins to outperform

SMR when the load factor exceeds 10, and EBR starts to beat SMR when the load factor

exceeds 50.

Figure 5.11 shows the effect of increasing the number of threads when the load factor

is 10. SMR begins to outperform EBR when there are more than four threads. SMR and

QSBR are competitive when there are between 10 and 20 threads, and SMR begins to

become superior when there are more than 20 threads. Figure 5.12 shows a similar plot,

but with a load factor of 20. Here, SMR only begins to outperform EBR when we have

more than 10 threads, and it does not outperform QSBR for any number of threads we

tested.

Judging from Figures 5.10, 5.11, and 5.12, it appears that we need only a moderate

load factor in order to make SMR perform poorly, but a very large amount of CPU

contention with an update-intensive workload in order to make QSBR and EBR perform

poorly. However, we urge caution in interpreting these results. First, the performance

difference between our EBR implementation and our QSBR implementation show that

the relative performance of memory reclamation schemes is very application-dependent.

Second, in the case of QSBR, our experiments all had 100 operations per quiescent state;

in real code, there may be many more operations per quiescent state, and therefore more

Chapter 5. Experimental Evaluation 69

 400

 450

 500

 550

 600

 650

 700

 750

 0 5 10 15 20 25 30

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Number of Queues

Lock-free - SMR
Lock-free - QSBR

Lock-free - EBR
Spinlock-based

Figure 5.13: Queues, two threads, varying number of queues.

callbacks per grace period. Nevertheless, we hope that these results can give programmers

some intuition as to the relative severity of factors affecting the performance of memory

reclamation.

5.2.4 Low Overhead of QSBR

Based on our results so far, we find that QSBR is consistently the best-performing mem-

ory reclamation scheme, except when CPU contention combines with allocation-heavy

workloads. This is further demonstrated in Figures 5.13 and 5.14, in which QSBR out-

performs the other two memory reclamation strategies in all cases, often by a considerable

margin. The left graph shows the effect of varying the number of queues, while the right

graph shows the effect of varying the update fraction on the hash table.

The difference in performance is most pronounced when we consider hash tables.

With two CPUs, one thread per CPU, and a load factor of five, the combination of the

Chapter 5. Experimental Evaluation 70

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Update Fraction

Lock-free - SMR
Lock-free - QSBR

Lock-free - EBR
Spinlock-based

Figure 5.14: Hash table, 32 buckets, two threads, load factor 5, varying update fraction.

Chapter 5. Experimental Evaluation 71

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Update Fraction

Lock-free - SMR
Lock-free - QSBR
Lock-free - EBR

Per-bucket Spinlock
Concurrently-readable - QSBR

Figure 5.15: Hash table, 32 buckets, two threads, load factor 5, varying update frac-
tion. QSBR allows the lock-free algorithm to out-perform RCU for almost any workload;
neither SMR nor EBR achieve this.

lock-free algorithm with QSBR out-performs the lock-based alternative for any update

fraction, while the lock-free algorithm with SMR or EBR fails to out-perform the lock-

based version for almost all update fractions. Here, the choice of memory reclamation

scheme clearly determines whether or not a lock-free algorithm can out-perform a lock-

based one.

5.2.5 Lock-free Versus Concurrently-readable Linked List Al-

gorithms

Using QSBR for both the concurrently-readable and lock-free linked list algorithms allows

us to fairly compare their performance, and to see where each may be appropriate.

Chapter 5. Experimental Evaluation 72

struct list head *cur;

#define clean pointer(p) ((unsigned long)((p)) & (−2))

int search (struct list head **head, long key) 5

{
cur = *head;
while (cur != NULL) {

long ckey = (list entry(cur, struct el, list))−>key;
if (ckey >= key) { 10

return (ckey == key);
}
cur = clean pointer(cur−>next);

}
return (0); 15

}

Figure 5.16: Code for fast searches of lock-free list; compare to pseudocode of Figure 3.4.

 110

 120

 130

 140

 150

 160

 170

 0 0.02 0.04 0.06 0.08 0.1

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Update Fraction

Concurrently-readable
Lock-free - Original

Lock-free - Fast Reads

Figure 5.17: Hash table, 32 buckets, two threads, load factor 5, varying update fraction
between 0 and 0.1.

Chapter 5. Experimental Evaluation 73

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90 100

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Load Factor

Concurrently-readable
Lock-free - Original

Lock-free - Fast Reads

Figure 5.18: Hash table, 32 buckets, two threads, read-only workload, varying load factor.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90 100

A
vg

 E
xe

cu
tio

n
T

im
e

(n
s)

Load Factor

Concurrently-readable
Lock-free - Original

Lock-free - Fast Reads

Figure 5.19: Hash table, 32 buckets, two threads, write-only workload, varying load
factor.

Chapter 5. Experimental Evaluation 74

The combination of the concurrently-readable linked list algorithm with QSBR is called

read-copy update (RCU), which was mentioned in section 3.3 and is currently used in

several OS kernels including Linux. RCU has extremely high performance for read-mostly

workloads. We wanted to determine if, given efficient memory reclamation, our lock-free

hash table could be suitable for use in OS kernels.

Figure 5.15 shows that the combination of the lock-free hash table with QSBR out-

performs the concurrently-readable version for almost all update fractions. When the

workload is nearly read-only, the concurrently-readable version performs slightly bet-

ter than the lock-free one, since its concurrently-readable searches do not have the

extra checks required of the lock-free searches. The lock-free algorithm has consider-

ably cheaper updates, however, which allow it to scale much better as the update frac-

tion increases. The lock-free algorithm’s ability to perform competitively against the

concurrently-readable one depends on our use of QSBR. If we use either SMR or EBR,

the per-operation overhead of memory reclamation makes the lock-free algorithm ineffi-

cient.

Figure 5.17 zooms in on the range of update fractions between 0 and 0.1 of Figure

5.17. Here, we consider only the algorithms using QSBR; however, we add a new version

of the lock-free algorithm which weakens the semantics of its reads (see Figure 5.16) to

make it more competitive with the concurrently-readable algorithm. The design of these

reads takes to heart the tenet of the RCU paradigm which seeks to minimize read-side

synchronization [38]. These fast reads simply ignore nodes marked for deletion instead

of helping to unlink them; hence, these reads may return nodes which have already been

marked for deletion. These semantics are only slightly weaker than the original one,

since in a concurrent programming environment, a read could find an undeleted node,

and another thread could mark that node for deletion as it is returned to the application

program.

These reads are used when the application program searches the hash table. The

Chapter 5. Experimental Evaluation 75

deletion method uses this fast search on the first attempt to find the node to delete; if

the deletion method must retry, it uses the original search code in order to ensure forward

progress.

These faster reads have little impact on overall performance in Figure 5.17 — the

performance of all three algorithms is very similar at low update fractions. This is

because the load factor is low, so the per-node overhead of lock-free searches is very

small, and is in the noise for the experiment.

The fast reads are more important at higher load factors. Figures 5.18 and 5.19

show the performance of these three algorithms on a read-only and write-only workload,

respectively, as the load factor increases. The per-node overhead of the extra checks

becomes significant for the original version of the lock-free algorithm. The modified

version, however, remains competitive with the concurrently-readable version, even at

very high load factors.

The result that, when using QSBR, the lock-free algorithm can outperform thee

concurrently-readable one when the load factor is low and the update fraction is above

0.1 may have practical implications. The lock-free algorithm also outperforms per-bucket

spinlocking for any update fraction, while the concurrently-readable algorithm does not.

This lock-free algorithm may find a niche in kernels which use RCU, for use with update-

heavy structures. Investigating this further is a topic for future work.

5.2.6 Summary of Recommendations

Given the results examined in the previous sections, we are able to provide some rules of

thumb for choosing between competing algorithms and memory reclamation strategies.

We have seen that SMR performs poorly when long chains of nodes must be tra-

versed, and that EBR and QSBR perform poorly when there is CPU contention and an

allocation-heavy workload. Of the two factors, traversal length seems to have the greater

effect. QSBR has the lowest base overhead, while EBR has the most. EBR’s only advan-

Chapter 5. Experimental Evaluation 76

Figure 5.20: Decision tree for choosing a memory reclamation scheme.

Chapter 5. Experimental Evaluation 77

tage over QSBR is that it is application-independent; in some cases, this advantage may

make EBR preferable. Figure 5.20 presents a decision tree to help programmers choose

a memory reclamation scheme.

Choosing between the lock-free and concurrently-readable algorithms is simpler. If

there is CPU contention, we can expect the lock-free algorithm to perform much better.

Otherwise, the lock-free algorithm will perform better if the update fraction is significant,

and the traversal length is not so long that the per-node traversal overhead becomes

significant. However, if operations other than insertions, deletions, and searches are

required, it is likely to be easier to add them to the concurrently-readable list than the

lock-free one. Figure 5.21 shows a decision tree for choosing between the two algorithms.

Chapter 5. Experimental Evaluation 78

Figure 5.21: Decision tree for choosing whether to use the lock-free or concurrently-
readable linked list algorithm.

Chapter 6

Related Work

Our contribution lies not in introducing new memory reclamation strategies, but in pro-

viding a comprehensive analysis of their relationship and their relative merits, and in

using QSBR with lock-free queues. This work is, to our knowledge, the first to pair

QSBR with an object that does not have read-only operations.

6.1 Blocking Memory Reclamation for Non-blocking

Algorithms

Others have proposed that memory reclamation strategies that are not lock-free should

sometimes be used in combination with lock-free algorithms. Fraser [17] noted, but did

not thoroughly evaluate, the performance overhead of SMR due to the fence instructions

it requires, and used EBR instead. Our work continues Fraser’s in showing that EBR

itself has high overhead — often higher than that of SMR — and that more efficient

memory reclamation is often possible. We view our work and Fraser’s as being part of a

trend towards weakenings of lock-freedom, such as obstruction-freedom [29] and almost

non-blocking data structures [8], designed to preserve the advantageous properties of

lock-freedom while improving performance.

79

Chapter 6. Related Work 80

We are not the first to use QSBR with lock-free algorithms — Auslander implemented

a lock-free hash table with QSBR [38] in the K42 operating system [5, 18]. However,

pairing QSBR with hash tables does not fully separate it from the RCU paradigm, since

hash tables have read-only operations. Thus, it does not evaluate QSBR for use with

more general lock-free objects as we have done by pairing it with a lock-free queue.

Furthermore, no performance evaluation, either between different memory reclamation

methods or between concurrently-readable and lock-free hash tables, was provided in

[38].

In response to Auslander’s work, McKenney [38] posed several questions concerning

the use of RCU with lock-free synchronization; among them were:

• Whether using QSBR will make non-blocking synchronization more broadly appli-

cable.

• With which non-blocking algorithms it makes sense to use QSBR.

• What merits using QSBR with non-blocking synchronization has, relative to other

techniques.

• How various combinations of QSBR and non-blocking synchronization compare to

one another, both empirically and analytically.

Although it is difficult for experimental research to answer all aspects of McKenney’s

questions, our work addresses them significantly. First, our results show that while in

many situations using QSBR can improve the performance of a lock-free algorithm, it is

not a silver bullet. QSBR therefore makes non-blocking synchronization more feasible in

many environments, but locking may still be preferable in many situations (see Figure

5.13).

Second, our good performance results from pairing QSBR with queues indicate that

it makes sense to use QSBR with many lock-free algorithms. In particular, pairing QSBR

Chapter 6. Related Work 81

with queues shows that using QSBR makes sense even when the target data structure

has no read-only operations.

Third, the results of our performance analysis show quite clearly the advantages and

disadvantages of using QSBR relative to other memory reclamation schemes. QSBR has

the lowest base time overhead of any memory reclamation scheme we are aware of, and

its overhead does not grow when the traversal length increases. SMR, by contrast, has

significant per-node overhead, so its cost grows linearly as the traversal length increases.

The only disadvantage of QSBR with regard to performance is that it performs poorly

for update-intensive workloads when CPU contention is high. In all other situations,

QSBR is the clear winner in terms of performance.

Last, our results also provide a comprehensive comparison of two combinations of

QSBR and non-blocking synchronization. Our analysis and experiments both show that,

in the base case, the performance differences between different reclamation schemes come

from the per-operation overhead due to expensive operations such as fences, and not due

to the complexity of periodic reclamation routines. Also, as noted above, Auslander’s

implementation of a lock-free hash table using QSBR [38] left a need for an analysis of

such combinations, which our work has addressed.

6.2 Vulnerabilities of Blocking Memory Reclamation

Schemes

Michael [47] criticized QSBR for its unbounded memory use. No evaluation was given

of the impact of this limitation on the performance of lock-free algorithms using QSBR.

Sarma and McKenney [56], however, have shown that this leads to the possibility of

denial-of-service attacks, and that preventing these attacks becomes an engineering prob-

lem.

The denial-of-service attacks noted by Sarma and McKenney occur in the IPV4 route

Chapter 6. Related Work 82

cache of the Linux 2.5.53 kernel when a large number of softirqs create a correspondingly

large number of pending deletion callbacks, which cause the route cache to overflow. This

vulnerability and the poor results we saw for QSBR when we combined an update-heavy

workload with high CPU contention are instances of a more general problem: when we

get too many callbacks, they then stress parts of the systems beyond the limits for which

they were designed. Our results show that EBR is similarly vulnerable.

6.3 Performance Comparisons

Several comparisons of different QSBR implementations have been made [40, 41]. These

comparisons, however, have not compared QSBR to other memory reclamation schemes.

In addition, these implementations have all been made in the context of operating system

kernels, and have not tested QSBR under conditions of CPU contention.

Michael [47] compared the performance of SMR to that of reference counting, and

found that SMR’s performance is much better; however, he did not compare SMR to

any other memory reclamation schemes. Furthermore, Michael’s experiments did not

show the effect of increasing traversal length, which we show is an important weakness of

SMR. Finally, Michael neither discussed nor evaluated the performance tradeoffs involved

between blocking and lock-free memory reclamation schemes.

Fraser [17] criticized SMR for its overhead due to fence instructions, and cited this

overhead as a reason for using his EBR scheme instead. We have shown that EBR itself

has high overhead due to fences (Figure 5.2); in fact, in the base case for all algorithms,

EBR has more overhead than SMR. Further, all Fraser’s experiments were run with fewer

threads than CPUs. This setup does not evaluate EBR’s performance in the presence of

CPU contention and an allocation-heavy workload, which we have shown is one of EBR’s

major weaknesses.

Although each of these three memory reclamation schemes has been evaluated by its

Chapter 6. Related Work 83

respective creator, in all cases, these evaluations either ignore these competing methods

or criticize them with little or no experimental evaluation. Furthermore, these evalu-

ations have been set up in such a way that they do not expose the weaknesses of the

schemes. Our contribution lies not in introducing new memory reclamation schemes, but

in providing, to our knowledge, the first fair comparison of these proposals.

Similarly, many publications in the area of lock-free algorithms compare the per-

formance of these algorithms to lock-based alternatives [23, 47, 50, 17, 43]. Similarly,

comparisons have been made between concurrently-readable algorithms and more tra-

ditional locking approaches [39, 42, 38]. Ours, however is, to our knowledge, the first

attempt to compare the performance of a lock-free algorithm to a concurrently-readable

alternative.

Chapter 7

Conclusions and Future Work

This thesis has made three main contributions:

• We have shown that memory reclamation schemes can be chosen mostly indepen-

dently of the target algorithms.

• We have analyzed the strengths and weaknesses of three memory reclamation

schemes.

• Using a common memory reclamation scheme, we have made a fair comparison of

lock-free and concurrently-readable chaining hash tables.

Establishing that memory reclamation schemes are mostly independent of the algo-

rithms which use them helps to clarify much of the current literature. In particular, much

of the RCU literature presents QSBR and the concurrently-readable algorithms which

use it in a tightly-coupled manner. Furthermore, QSBR is typically explained in terms of

its implementation in operating system kernels. Our work establishes the independence

of the QSBR from the algorithms it services and its kernel-level implementations, and

shows that it is useful for a wider variety of algorithms than those presented in the RCU

literature. Hopefully, this realization will help others to find new uses for QSBR.

84

Chapter 7. Conclusions and Future Work 85

Table 7.1: Properties of Memory Reclamation Schemes

QSBR SMR EBR

Base Time Overhead Negligible Unbounded Constant

Memory Use Unbounded Bounded Unbounded

CPU Contention Poor When

Update-Heavy
Good

Poor When

Update-HeavyScalability

Traversal Length Scalability Good Poor Good

Application-dependent? Yes No No

We have demonstrated, by comparing the performance of EBR, SMR, and QSBR,

that the choice of memory reclamation scheme has a huge effect on the performance

of lock-free and concurrently-readable algorithms. Choosing the right scheme for the

environment in which an implementation is expected to run is essential. No memory

reclamation scheme provides a silver bullet — the trade-offs between the schemes are

shown in Table 7.1.

SMR and EBR have a higher base cost than QSBR because of the fence instructions

they require. For EBR, the overhead due to fences is constant, while for SMR it is

unbounded.

Our results show that when there is no CPU contention, or the workload involves few

updates, QSBR is the best-performing memory reclamation scheme available. QSBR and

EBR scale poorly when there is CPU contention and many updates, since they wait for

other threads to complete their operations, thus allowing descheduled threads to delay

memory reclamation.

Our comparison of the lock-free and concurrently-readable linked lists shows that the

lock-free list has substantially cheaper updates, but pays a small amount of per-node

overhead. This per-node overhead becomes significant at high load factors. A modified

version of the lock-free list reduces this overhead considerably. When the load factor is

suitably low, the lock-free hash table seems to be the best performer for most update

Chapter 7. Conclusions and Future Work 86

fractions.

Given the extremely low overhead of QSBR, experimenting with user-level QSBR

implementations in a realistic application would be an interesting topic for future work.

In particular, it would be interesting to build a QSBR implementation and interface

which works with Pthreads or a lock-free library such as NOBLE [1]. Another topic

would be to experiment with applying QSBR to a wider range of data structures and

with transactional-memory-based implementations such as those of Fraser [17], whose

experimental setup is available under the GPL [16].

The good performance of the lock-free hash table with QSBR is encouraging. Presently,

the Linux kernel provides kernel programmers with a concurrently-readable hash table

with QSBR. Given that hash tables typically have very low load factors, the per-node

overhead of the lock-free hash table is unlikely to be problematic. Furthermore, a sim-

ilar lock-free hash table is already part of K42 [38]. Building a lock-free hash table in

Linux, and, more importantly, determining which parts of the kernel would benefit from

its cheaper writes or the advantages of lock-freedom, would be another avenue for future

work.

Finally, we note that SMR, Pass the Buck, and reference counting — the three lock-

free memory reclamation methods — all have overhead that grows with traversal length.

In the case of SMR and Pass the Buck, this overhead comes from fence instructions,

while reference counting’s overhead also comes from expensive operations such as CAS.

This opens the question of whether high per-node overhead is an inherent downside of

lock-free memory reclamation in weakly consistent memory models; this question could

be answered by designing a general-purpose lock-free memory reclamation scheme with

significantly less per-node overhead which scales nicely with traversal length, or proving

that no such method can exist.

Bibliography

[1] Noble - a library of non-blocking synchronization protocols.

http://www.noble-library.org.

[2] Juan Alemany and Edward W. Felten. Performance issues in non-blocking syn-

chronization on shared-memory multiprocessors. In Proceedings of the 11th Annual

ACM Symposium on Principles of Distributed Computing, pages 125–134. ACM

Press, 1992.

[3] James H. Anderson and Mark Moir. Universal constructions for large objects. In

Proceedings of the 9th International Workshop on Distributed Algorithms, pages 168–

182. Springer-Verlag, 1995.

[4] James H. Anderson and Mark Moir. Universal constructions for multi-object oper-

ations. In Proceedings of the 14th Annual ACM Symposium on Principles of Dis-

tributed Computing, pages 184–193. ACM Press, 1995.

[5] Jonathan Appavoo, Marc Auslander, Maria Burtico, Dilma Da Silva, Orran Krieger,

Mark Mergen, Michal Ostrowski, Bryan Rosenburg, Robert W. Wisniewski, and Jimi

Xenidis. Experience with K42, an open-source, linux-compatible, scalable operating-

system kernel. IBM Systems Journal, 44(2):427–440, 2005.

[6] Andrea Arcangeli, Mingming Cao, Paul E. McKenney, and Dipankar Sarma. Us-

ing read-copy update techniques for System V IPC in the Linux 2.5 kernel. In

87

Bibliography 88

Proceedings of the USENIX Annual Technical Conference (FREENIX Track), pages

297–310. USENIX Association, June 2003.

[7] Greg Barnes. A method for implementing lock-free shared-data structures. In Pro-

ceedings of the 5th Annual ACM symposium on Parallel Algorithms and Architec-

tures, pages 261–270. ACM Press, 1993.

[8] Hans-J. Boehm. An almost non-blocking stack. In Proceedings of the 23rd Annual

ACM Symposium on Principles of Distributed Computing, pages 40–49, 2004.

[9] Jeff Bonwick and Jonathan Adams. Magazines and vmem: Extending the slab

allocator to many CPUs and arbitrary resources. In USENIX Annual Technical

Conference, General Track 2001, pages 15–33, 2001.

[10] David L. Detlefs, Christine H. Flood, Alex Garthwaite, Paul Martin, Nir Shavit, and

Guy L. Steele Jr. Even better DCAS-based concurrent deques. In Proceedings of

the 14th International Conference on Distributed Computing, pages 59–73. Springer-

Verlag, 2000.

[11] David L. Detlefs, Paul A. Martin, Mark Moir, and Guy L. Steele Jr. Lock-free

reference counting. In Proceedings of the 20th Annual ACM Symposium on Principles

of Distributed Computing, 2001.

[12] David L. Detlefs, Paul A. Martin, Mark Moir, and Guy L. Steele Jr. Lock-free

reference counting. Distributed Computing, 15(4):255–271, 2002.

[13] Simon Doherty, David L. Detlefs, Lindsay Grove, Christine H. Flood, Victor

Luchangco, Paul A. Martin, Mark Moir, Nir Shavit, and Guy L. Steele Jr. DCAS

is not a silver bullet for nonblocking algorithm design. In Proceedings of the 16th

Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages

216–224. ACM Press, 2004.

Bibliography 89

[14] Simon Doherty, Maurice Herlihy, Victor Luchangco, and Mark Moir. Bringing prac-

tical lock-free synchronization to 64-bit applications. In Proceedings of the 23rd An-

nual ACM Symposium on Principles of Distributed Computing, pages 31–39. ACM

Press, 2004.

[15] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In Proceed-

ings of the 23rd Annual ACM Symposium on Principles of Distributed Computing,

pages 50–59. ACM Press, 2004.

[16] Keir Fraser. Lock-free library. Source code release. Avail-

able: http://www.cl.cam.ac.uk/Research/SRG/netos/lock-free/src/

lockfree-lib.tar.gz.

[17] Keir Fraser. Practical Lock-Freedom. PhD thesis, University of Cambridge Computer

Laboratory, 2004.

[18] Benjamin Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. Tornado:

Maximizing locality and concurrency in a shared memory multiprocessor operating

system. In Proceedings of the 3rd Symposium on Operating Systems Design and

Implementation, pages 87–100, 1999.

[19] Michael Greenwald. Non-blocking Synchronization and System Design. PhD thesis,

Stanford University, 1999.

[20] Michael Greenwald and David Cheriton. The synergy between non-blocking syn-

chronization and operating system structure. In Proceedings of the 2nd USENIX

Symposium on Operating Systems Design and Implementation, pages 123–136. ACM

Press, 1996.

[21] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben

Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle

Bibliography 90

Olukotun. Transactional memory coherence and consistency. In Proceedings of the

31st Annual International Symposium on Computer Architecture, Washington, DC,

USA, 2004. IEEE Computer Society.

[22] Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In

Proceedings of the 15th International Conference on Distributed Computing, pages

300–314. Springer-Verlag, 2001.

[23] Timothy L. Harris, Keir Fraser, and Ian Pratt. A practical multi-word compare-and-

swap operation. In Proceedings of the IEEE Symposium on Distributed Computing,

October 2002.

[24] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack al-

gorithm. In Proceedings of the 16th Annual ACM Symposium on Parallelism in

Algorithms and Architectures, pages 206–215. ACM Press, 2004.

[25] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming

Languages and Systems, 13(1):124–149, 1991.

[26] Maurice Herlihy. A methodology for implementing highly concurrent data objects.

ACM Transactions on Programming Languages and Systems, 15(5):745–770, Novem-

ber 1993.

[27] Maurice Herlihy, Victor Luchangco, and Mark Moir. Brief announcement: Dynamic-

sized lock-free data structures. In Proceedings of the 21st Annual ACM Symposium

on Principles of Distributed Computing, 2002.

[28] Maurice Herlihy, Victor Luchangco, and Mark Moir. The repeat offender problem:

A mechanism for supporting dynamic-sized, lock-free data structures. In Proceedings

of the 16th International Symposium on Distributed Computing, October 2002.

Bibliography 91

[29] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchroniza-

tion: Double-ended queues as an example. In Proceedings of the 23rd International

Conference on Distributed Computing Systems, page 522. IEEE Computer Society,

2003.

[30] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Software

transactional memory for dynamic-sized data structures. In Proceedings of the 22nd

Annual ACM Symposium on Principles of Distributed Computing, July 2003.

[31] H. T. Kung and Philip L. Lehman. Concurrent manipulation of binary search trees.

ACM Transactions on Database Systems, 5(3):354–382, 1980.

[32] Leslie Lamport. Concurrent reading and writing. Communications of the ACM,

20(11):806–811, 1977.

[33] Leslie Lamport. How to make a multiprocessor computer that correctly executes

multiprocess programs. IEEE Transactions on Computers, 28(9):690–691, Septem-

ber 1979.

[34] Doug Lea. Concurrency: where to draw the lines. Invitational Workshop

on the Future of Virtual Execution Environments, September 2004. Available:

http://www.research.ibm.com/vee04/Lea.pdf.

[35] Robert Love. Linux Kernel Development. Sam’s Publishing, 2004.

[36] Udi Manber and Richard E. Ladner. Concurrency control in a dynamic search struc-

ture. In Proceedings of the 1st ACM SIGACT-SIGMOD Symposium on Principles

of Database Systems, pages 268–282. ACM Press, 1982.

[37] Henry Massalin and Calton Pu. A lock-free multiprocessor OS kernel. Technical

Report CUCS-005-91, Computer Science Department, Columbia University, June

1991.

Bibliography 92

[38] Paul E. McKenney. Exploiting Deferred Destruction: An Analysis of Read-Copy-

Update Techniques in Operating System Kernels. PhD thesis, OGI School of Science

and Engineering at Oregon Health and Sciences University, 2004.

[39] Paul E. McKenney. RCU vs. locking performance on different CPUs. In

linux.conf.au, Adelaide, Australia, January 2004.

[40] Paul E. McKenney, Jonathan Appavoo, Andi Kleen, Orran Krieger, Rusty Russell,

Dipankar Sarma, and Maneesh Soni. Read-copy update. In Ottawa Linux Sympo-

sium, July 2001.

[41] Paul E. McKenney, Dipankar Sarma, Andrea Arcangeli, Andi Kleen, Orran Krieger,

and Rusty Russell. Read-copy update. In Ottawa Linux Symposium, pages 338–367,

June 2002.

[42] Paul E. McKenney and John D. Slingwine. Read-copy update: Using execution

history to solve concurrency problems. In Parallel and Distributed Computing and

Systems, pages 509–518, Las Vegas, NV, October 1998.

[43] Maged M. Michael. High performance dynamic lock-free hash tables and list-based

sets. In Proceedings of the 14th Annual ACM Symposium Parallel Algorithms and

Architectures, pages 73–82, August 2002.

[44] Maged M. Michael. Safe memory reclamation for dynamic lock-free objects using

atomic reads and writes. In Proceedings of the 21st Annual ACM Symposium on

Principles of Distributed Computing, pages 21–30, July 2002.

[45] Maged M. Michael. CAS-based lock-free algorithm for shared deques. In The 9th

Euro-Par Conference on Parallel Processing, volume 2790, pages 651–660, August

2003.

Bibliography 93

[46] Maged M. Michael. ABA prevention using single-word instructions. Technical Re-

port RC 23089, IBM T. J. Watson Research Center, January 2004.

[47] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects.

IEEE Transactions on Parallel and Distributed Systems, 15(6):491–504, June 2004.

[48] Maged M. Michael. Practical lock-free and wait-free ll/sc/vl implementations using

64-bit cas. In The 18th International Conference on Distributed Computing, October

2004.

[49] Maged M. Michael. Scalable lock-free dynamic memory allocation. In Proceedings of

the ACM Conference on Programming Language Design and Implementation, pages

35–46, June 2004.

[50] Maged M. Michael and Michael L. Scott. Correction of a memory management

method for lock-free data structures. Technical Report TR599, Computer Science

Department, University of Rochester, December 1995.

[51] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking

and blocking concurrent queue algorithms. In Proceedings of the 15th annual ACM

Symposium on Principles of Distributed Computing, pages 267–275. ACM Press,

1996.

[52] Mark Moir. Transparent support for wait-free transactions. In Proceedings of the

11th International Workshop on Distributed Algorithms, pages 305–319. Springer-

Verlag, 1997.

[53] William Pugh. Concurrent maintenance of skip lists. Technical Report CS-TR-2222,

Department of Computer Science, University of Maryland, June 1990.

Bibliography 94

[54] Ravi Rajwar and James R. Goodman. Speculative lock elision: Enabling highly

concurrent multithreaded execution. In Proceedings of the 34th International Sym-

posium on Microarchitecture, December 2001.

[55] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of lock-

based programs. In Proceedings of the 10th International Conference on Architectural

Support for Programming Languages and Operating Systems, October 2002.

[56] Dipankar Sarma and Paul E. McKenney. Issues with selected scalability features of

the 2.6 kernel. In Ottawa Linux Symposium, July 2004.

[57] Hȧkan Sundell. Fast and lock-free concurrent priority queues for multi-thread sys-

tems. In Proceedings of the 17th International Parallel and Distributed Processing

Symposium, April 2003.

[58] Hȧkan Sundell. Efficient and Practical Non-Blocking Data Structures. PhD thesis,

Chalmers University of Technology, 2004.

[59] Hȧkan Sundell. Wait-free reference counting and memory management. In Proceed-

ings of the 19th International Parallel and Distributed Processing Symposium, April

2005.

[60] R. Kent Treiber. Systems programming: Coping with parallelism. Research Report

RJ 5118, IBM Almaden Research Center, April 1986.

[61] John D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings of

the 14th Annual ACM Symposium on Principles of Distributed Computing, pages

214–222, August 1995.

