
PTYASM: Software Model Checking with

Proof Templates

Thomas E. Hart∗, Kelvin Ku∗, Arie Gurfinkel†, Marsha Chechik∗, David Lie‡

∗Department of Computer Science, University of Toronto, {tomhart,kelvin,chechik}@cs.utoronto.ca
†Software Engineering Institute, Carnegie Mellon University, arie@sei.cmu.edu

‡Department of Electrical and Computer Engineering, University of Toronto, lie@eecg.utoronto.ca

Abstract—We describe PTYASM, an enhanced version of the
YASM software model checker which uses proof templates.
These templates associate correctness arguments with common
programming idioms, thus enabling efficient verification. We have
used PTYASM to verify the safety of array accesses in programs
derived from the Verisec suite. PTYASM is able to verify this
property in the majority of testcases, while existing software
model checkers fail to do so due to loop unrolling.

I. INTRODUCTION

Software model checkers (SMCs) based on predicate ab-

straction and refinement are powerful and commercially suc-

cessful verification tools [1]. SMCs iteratively prune infeasible

paths from a model of a program, in order to find an abstrac-

tion of the program in which the property of interest can be

proven to hold. Unfortunately, due to the undecidability of

software verification in general, SMCs can perform poorly

even when the analyzed program uses common and well-

understood idioms. In our companion paper [2], we advocate

the use of proof templates in these instances. A proof template

associates a correctness argument with a program fragment

which uses a common programming idiom, thus helping an

SMC find an efficient proof.

We have implemented PTYASM, an SMC which uses proof

templates in the domain of array bounds checking. Existing

SMCs often perform poorly in this domain, getting stuck

“unrolling” loops in order to prove safety [3]. Using proof

templates, PTYASM verifies the safety of common loops which

keep an index in-bounds using (1) numerical comparisons,

(2) sentinel null characters, or (3) by correlating updates with

those of a second variable.

II. IMPLEMENTATION

PTYASM associates proof templates with loops in a pro-

gram, and uses these templates to ensure that these loops

keep array indices in-bounds. Our system uses four pre-defined

templates, resulting from the combination of two conditions:

whether an array index is kept in bounds via arithmetic

comparisons or via tests on an array cell, and whether the

test is on the same index which appears in the bounds check,

or on some other variable. Each template is parameterized,

and includes a set of assumptions which must be true before

loop entry, and a method to prove that a bounds check cannot

fail given that these assumptions hold.

1 vo id example1 () {
2 char s r c [1 0 2 4] ;

3 char d e s t [1 0 2 4] ;

4 char ch ; i n t i =0 , j =0 ;

5

6 s r c [1023] = ’\0 ’ ;
7 i f (s r c [i] == ’∗ ’) i ++;

8

9 whi le (1) {
10 ch = s r c [i] ;

11 i f (ch == ’\0 ’
12 | | ch == ’ , ’)

13 break ;

14 a s s e r t (j < 1024) ;

15 d e s t [j] = ch ;

16 j ++;

17 i ++; } }

1 vo id example2 () {
2 char buf [1024] , c ;

3 i n t l e n =1023 , i =0 ;

4 i n t tmp ;

5

6 whi le (1) {
7 c = NONDET;

8 i f (i == l e n) re turn ;

9 i f (c == ’\\ ’) {
10 i ++;

11 i f (i == l e n)

12 re turn ; }
13 e l s e i f (c == ’ . ’)

14 break ;

15 i ++; }
16 tmp = i +1 ;

17 a s s e r t (tmp < 1024) ; }

(a) (b)

Fig. 1. Bounds checking examples based on (a) Sendmail and (b) Apache.

PTYASM has two components: a loop scanner and an

SMC. The loop scanner searches a C file for loops in which

proof templates may apply and derives parameters for these

templates, and also instruments the program. It is implemented

as a CIL [4] extension consisting of 2 KLOC of OCaml code.

The loop scanner’s output is passed to the SMC, which is a

version of YASM [5] that has been enhanced with knowledge

of proof templates. YASM is based on multi-valued model

checking, is written in Java, and uses the CUDD BDD library

and the CVC Lite theorem prover. We changed or added

approximately 2.8 KLOC in YASM in order to support proof

templates. Our implementation is publicly available at http:

//www.cs.toronto.edu/˜tomhart/ptyasm. Imple-

menting PTYASM took approximately six months, including

several rewrites. PTYASM currently supports arrays, but not

pointers or procedures. We illustrate the operation of PTYASM

using the example programs in Figure 1. The concepts are

explored more fully in our companion paper [2].

Loop scanner. The loop scanner suggests proof templates

and their parameters. It uses standard compiler techniques such

as use-def chains and dominators [6] to identify loop iterators

and expressions derived from them. An iterator, roughly, is a

variable whose value in one loop iteration is dependent on its

value in a previous iteration. An expression is derived from an

iterator if it is semantically equivalent to a linear expression

over the iterator and loop constants.

The loop scanner chooses which template(s) to use by

examining exit branches and assertions. The hypothesis is that

exit branches bound loop iterators. Assertions can be within

〈function=’example1’〉〈loop=’VERISEC_example1_line9_0’〉〈var=’i’〉〈numvars=’1’〉〈type=’str’〉〈array=’src’〉

〈function=’example1’〉〈loop=’VERISEC_example1_line9_0’〉〈var=’j’〉〈numvars=’2’〉〈type=’str’〉〈leader=’i’〉〈array=’src’〉

Fig. 2. Output of loop scanner on example program in Figure 1(a).

Program Statement Instrumentation

A[i] = e

i f ((e == 0) && (i >= 0)) {
A nul lpos = NONDET;

assume (A nu l lpos <= i) ;

} e l s e i f (i == A nul lpos) {
A nul lpos = NONDET;

assume (A nu l lpos > i) ;

}

if (A[i] == e)
i f (e == 0) {

assume (A nu l lpos <= i) ;

}

Fig. 3. Program instrumentation for string reads and writes; NONDET
represents non–deterministic assignment.

the body of a loop (as in line 14 of Figure 1(a)), or dominated

by a loop (as in line 17 of Figure 1(b)), in which case derived

expressions can only use those loop constants which are not

defined between the loop and the assertion. In our example

programs, the exit branches are lines 11–12 of Figure 1(a), and

lines 8, 11, and 13 of Figure 1(b). The iterators in Figure 1(a)

are i and j, and, since the exit branch on lines 11–12 contains

a test on ch, which is derived from src[i], the loop scanner

guesses that i is kept in bounds by src’s sentinel null character.

Since no loop exit branch tests j, the loop scanner guesses

that j is kept in bounds by following i. Figure 2 shows the

output of the loop scanner, which records these two guesses.

Similarly, in Figure 1(b), the assertion on line 17 is on tmp,

which is derived from the iterator i, and i is bounded by len

in the exit branches on lines 8 and 11.

The loop scanner adds instrumentation to the analyzed file

to facilitate the templates. We use a length abstraction [7]

to enable the use of strlen in predicates: each array A

has an associated variable A nullpos which represents an

upper approximation of strlen(A), and is updated by the the

instrumentation shown in Figure 3. By the definition of strlen,

SMCs can assume A nullpos ≥ 0 and A[A nullpos] = ‘\0’
as invariants throughout the program. The loop scanner also

adds instrumentation to record the values of iterators at the

start of each loop, in order to facilitate two-variable templates.

SMC. YASM takes both the instrumented C file and the

output of the loop scanner as inputs. YASM does not depend

on the correctness of the loop scanner: if the loop scanner

suggests a template which does not help YASM prove that a

bounds check cannot fail, it will backtrack, trying any other

suggested templates. The loop scanner can thus aggressively

use heuristic analyses without compromising the soundness of

the overall analysis.

When YASM detects that it is unrolling the loop on lines

9–17 of Figure 1(a), it queries the output of the loop scanner

for possible proof templates, finding the template suggested

on line 2 of Figure 2. As directed by the template, YASM

then adds a set of predicates to its abstraction of the program,

and inserts a set of assume statements before the loop. These

predicates and assumptions guide YASM towards the template

proof. YASM then verifies the safety of the bounds checking

assertion, and then discharges each assumption used. YASM

works similarly on the example in Figure 1(b).

III. EVALUATION AND DISCUSSION

We have tested PTYASM on a set of 59 testcases derived

from the Verisec suite [3], and compared its performance

with that of YASM (without proof templates), BLAST, and

SATABS. Within a timeout period of 10 minutes, PTYASM was

able to verify 49 testcases, YASM (without proof templates)

verified 17, BLAST 19, and SATABS 22. Because it uses

proof templates, PTYASM is able to verify many more of our

testcases than the other SMCs. The complete details of our

experiments appear in the companion paper [2].

PTYASM demonstrates a novel way to add programmer

knowledge to SMCs, safely incorporating heuristic analyses

without compromising soundness. Outside the context of

SMCs, Denney and Fischer [8] used a pattern-based approach

to guide Hoare-style certification, but their scope is restricted

to programs automatically generated by AUTOBAYES and

AUTOFILTER. Beyer et al. augment an SMC with template-

based path invariants [9] to better handle loops, but do not

address how to conjecture these templates, consider strings, or

separate the analysis of a loop’s body from the assumptions

about the paths leading to the loop. We suspect that our

techniques and theirs may be usefully combined.

REFERENCES

[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey,
B. Ondrusek, S. K. Rajamani, and A. Ustuner, “Thorough Static Analysis
of Device Drivers,” in Proc. EuroSys’06, 2006, pp. 73–85.

[2] T. E. Hart, K. Ku, M. Chechik, D. Lie, and A. Gurfinkel, “Augmenting
Counterexample-Guided Abstraction Refinement with Proof Templates,”
in Proc. ASE’08, 2008.

[3] K. Ku, T. E. Hart, M. Chechik, and D. Lie, “A Buffer Overflow
Benchmark for Software Model Checkers,” in Proc. ASE’07, 2007, pp.
389–392.

[4] G. Necula, S. McPeak, S. Rahul, and W. Weimer, “CIL: Intermediate
Language and Tools for Analsysis and Transformation of C Programs,”
in Proc. CC’02, ser. LNCS 2304, 2002, pp. 213–228.

[5] A. Gurfinkel, O. Wei, and M. Chechik, “YASM: A Software Model-
Checker for Verification and Refutation,” in Proc. CAV’06, ser.
LNCS 4144, 2006, pp. 170–174.

[6] S. Muchnick, Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[7] N. Dor, M. Rodeh, and S. Sagiv, “CSSV: Towards a Realistic Tool for
Statically Detecting All Buffer Overflows in C,” in Proc. PLDI ’03, 2003,
pp. 155–167.

[8] E. Denney and B. Fischer, “Annotation Inference for Safety Certification
of Automatically Generated Code (Extended Abstract),” in Proc. ASE ’06,
pp. 265–268.

[9] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko, “Path
Invariants,” in Proc. PLDI’07, 2007, pp. 300–309.

