
Augmenting Counterexample-Guided Abstraction

Refinement with Proof Templates

Thomas E. Hart∗, Kelvin Ku∗, Arie Gurfinkel†, Marsha Chechik∗, David Lie‡

∗Department of Computer Science, University of Toronto, {tomhart,kelvin,chechik}@cs.utoronto.ca
†Software Engineering Institute, Carnegie Mellon University, arie@sei.cmu.edu

‡Department of Electrical and Computer Engineering, University of Toronto, lie@eecg.utoronto.ca

Abstract—Existing software model checkers based on predicate
abstraction and refinement typically perform poorly at verifying
the absence of buffer overflows, with analyses depending on the
sizes of the arrays checked. We observe that many of these
analyses can be made efficient by providing proof templates for
common array traversal idioms idioms, which guide the model
checker towards proofs that are independent of array size.

We have integrated this technique into our software model
checker, PTYASM, and have evaluated our approach on a set
of testcases derived from the Verisec suite, demonstrating that
our technique enables verification of the safety of array accesses
independently of array size.

I. INTRODUCTION

Software model checking based on predicate abstraction

and counterexample-guided abstraction refinement (CEGAR)

has been shown to be effective for checking correctness of

highly non-trivial programs and is now part of commercial

tools such as SDV [1]. The abstraction, a set of predicates,

is improved dynamically, based on identification of infeasible

counterexamples, until it is sufficiently precise to prove the

property of interest. In practice, the power of CEGAR software

model checkers (henceforth referred to as SMCs) is limited

by their ability to choose predicates well. Perfectly selecting

predicates is impossible due to the undecidability of software

verification, so this process always relies on heuristics.

We want to use SMCs to verify the absence of buffer over-

flows, which are a major threat to the security of C programs.

Current SMCs typically perform poorly at this task due to loop

unrolling [2]. Our goal is to improve this common-case per-

formance, so that analyses are independent of the sizes of the

arrays being checked. Our solution is to define proof templates

designed to work when a program uses common idioms to tra-

verse an array, and to attempt to guide an SMC towards these

proofs automatically. The templates are modular, separating

the analysis of the loop’s body from the analysis’ preconditions

on loop entry. We have implemented an algorithm to heuris-

tically map 〈loop, variable〉 pairs in a program to proof tem-

plates. When the algorithm detects that a template may apply,

it guides our SMC towards the template proof by supplying it

with a set of predicates and assumptions. If the SMC is able to

prove the original property using these predicates and assump-

tions, it then proceeds to discharge the assumptions (prove they

hold). If any stage of the analysis fails, the SMC backtracks to

an earlier stage, making the overall process sound, despite the

unsoundness of our algorithm for suggesting proof templates.

vo id example () {
1 : i n t i =0 , s z =1024;

i n t M = sz−1;

2 : whi le (i != M) {
3 : i f (! (i <1024))

4 : ERROR: ;

5 : i ++; } }

vo id example () {
1 : i n t i =0 , s z =1024;

i n t M = sz−1;

assume (i <= M) ;

assume (M <= 1024) ;

2 : whi le (i != M) {
3 : i f (! (i <1024))

4 : ERROR: ;

5 : i ++; } }

(a) (b)

Fig. 1. (a) Example program, (b) Application of proof template.

In the remainder of this paper, we give an algorithm for

using proof templates within an SMC (§ II-B), and describe

proof templates corresponding to common array traversal

idioms and a method for heuristically identifying when they

may apply (§ II-C). We compare our implementation of this

framework, called PTYASM, with other state-of-the-art SMCs,

using testcases derived from the Verisec suite [2] (§ III).

II. TECHNIQUE

We present our technique for using proof templates in

SMCs; a technical report [3] gives a more thorough treatment.

A. CEGAR Software Model Checking

SMCs check a property ψ on a program P , where ψ is the

reachability of a given line of P , labelled “ERROR”. SMCs

can be used to check assertions by transforming a statement

assert(p) into a conditional, such as the one on lines 3–4 of

Fig. 1(a), and checking whether the assertion’s failure branch

is unreachable, in which case the assertion is considered to be

safe. We assume that the program is annotated with bounds

checking assertions on each array access. See [1], [2], [4] for

more details on CEGAR.

SMCs often perform poorly when verifying array bounds

checks in loops, such as the one in Fig. 1(a) (for succinctness,

the array is not shown). A typical SMC first finds the spurious

error trace τ1 = 〈1, 2, 3, 4〉, which it can eliminate by adding

the predicates i < 1024 and i = M to its model of the

program. In the new model, the values of these predicates

will be unknown after line 5; hence, the SMC finds the path

τ2 = 〈1, 2, 3, 5, 2, 3, 4〉, in which ERROR is reachable in two

iterations of the loop on lines 2–5. This new trace can be

eliminated by adding predicates i+1 < 1024 and i+1 = M ,

resulting in a model in which ERROR is reachable in three

iterations. The SMC continues eliminating paths containing

increasing numbers of loop iterations, finally proving ERROR

unreachable after 1024 iterations of the abstract-check-refine

loop. Such loop unrolling makes the analysis impractical.

Algorithm 1 CEGAR+PT — CEGAR with proof templates.

1: procedure CEGAR+PT(P , ψ) ⊲ Program, Property

2: DB ← BUILDDB (P) ⊲ Template occurrences

3: (E,ψ0, S)← (∅, ψ, empty stack) ⊲ (Preds, Init. prop., Backtracking stack)

4: loop

5: M← ABSTRACT (P , ψ, E) ⊲ M = model

6: τ ← MODELCHECK (M, ψ)
7: if τ = ǫ then ⊲ No path to ERROR

8: if NOASSUMPTIONSLEFT(S) then return SAFE
9: else (P,E,ψ)← DISCHARGENEXT(S) ⊲ Discharge assumptions

10: else
11: if SPURIOUS(τ,P) then ⊲ Refine abstraction

12: if TIMEOUT (S) then (P,E,ψ)←BACKTRACK (S)
13: else
14: if ∃ℓ · UNROLLING(ℓ) ∧ HAVETEMPLATE(ℓ, DB,ψ, S) then

15: (P,E, S)←USETEMPLATE(ℓ,DB,ψ, S)

16: else E ← E ∪ REFINE (τ)
17: else

18: if ψ = ψ0 then return UNSAFE
19: else (P,E,ψ)←BACKTRACK (S) ⊲ Assumption did not hold

B. CEGAR with Proof Templates

Iteratively removing paths of increasing length from loops

like the one in Fig. 1(a) is an inefficient and unnatural way

to prove safety. A more natural proof shows inductively that

i ≤M ≤ 1024 is an invariant at line 2:

1) Initially, i ≤M ≤ 1024 holds trivially at line 2.

2) If i ≤M ≤ 1024 at line 2 and the loop is entered, then

i ≤ M ≤ 1024 ∧ i 6= M , so i < M ≤ 1024 at line 3,

and i ≤M ≤ 1024 after the i++ on line 5.

Since i ≤ M ≤ 1024 is an invariant at line 2, if the loop is

entered, i < M ≤ 1024 at line 3, so the assertion is safe.

We present CEGAR+PT (Alg. 1), a variation on the classical

CEGAR algorithm used by SMCs that attempts to guide an

SMC towards proofs like the one above by introducing proof

templates, which provide outlines of correctness proofs. The

call to BUILDDB on line 2 builds a database which maps

〈loop, variable〉 pairs in the program to proof templates, by

examining the structure of the loop. When a loop is being

unrolled, USETEMPLATE (line 15) queries this database to see

if a template may be useful. BUILDDB may suggest templates

which do not help, so the calls to BACKTRACK on lines 12 and

19 ensure that unhelpful templates are eventually abandoned.

We illustrate CEGAR+PT on the example program in

Fig. 1(a), but stress that it works on more complex programs,

such as those shown in [5]. BUILDDB records that i appears

to be bounded by M in the loop on lines 2–5 of the program

in Fig. 1(a), and guesses that this bound can be used to prove

the safety of the assertion. When CEGAR+PT realizes that the

loop on lines 2–5 is being unrolled, it invokes USETEMPLATE,

which applies a corresponding proof template. USETEMPLATE

adds predicates to E based on the structure of the loop. This

alone is insufficient, as some of these predicates must be true

before the loop is entered — for example, in Fig. 1(a), the loop

invariant i ≤ M ≤ 1024 only leads to a proof of correctness

if it holds initially. Often proving that these predicates are in

fact true on loop entry requires the discovery of additional

“support” predicates. To ensure that these support predicates

are discovered, USETEMPLATE also adds explicit assumptions

to P (see Fig. 1(b)).

Since BUILDDB may suggest proof templates whose as-

sumptions do not hold, CEGAR+PT must discharge all as-

sumptions used (line 9), and backtrack if any do not hold (line

19). This is facilitated by a backtracking stack S. Whenever

USETEMPLATE supplies a template on line 15, it adds a stack

frame to S, containing (a) the current iteration of the loop

beginning on line 6 of CEGAR+PT (to enable the TIMEOUT

check on line 12), (b) the current values of P , E, and ψ

(so that the calls to BACKTRACK on lines 12 and 19 can

restore the state before the template was applied), and (c)

the assumptions associated with the template (to enable the

call to DISCHARGENEXT on line 9). S also keeps track of

the number of times a template has been applied to 〈ℓ, i〉, to
ensure that each candidate template can be applied in turn.

In the example program in Fig. 1(a), USETEMPLATE adds

to E the predicates i ≤ M , M ≤ i, and M ≤ 1024 and the

assumptions shown in Fig. 1(b). These are part of the definition

of the template, and are instantiated using the parameters i,M ,

and 1024, which come from the program. With these, the SMC

can prove ERROR unreachable using the inductive argument

described at the beginning of this section.

HAVETEMPLATE checks whether a template can be used

for the pair 〈ℓ, i〉; our implementation checks that (a) there is

a proof template for 〈ℓ, i〉, (b) no template for 〈ℓ, i〉 is already
in use, and (c) ψ = ψ0, the last being because we do not yet

support the use of proof templates for multiple loops.

C. Proof Templates for Array Traversals

We have defined four parameterized proof templates corre-

sponding to common array traversals in which array indices

are kept in-bounds via (a) explicit numerical comparisons, (b)

sentinel null characters (as in string traversals), or (c) updates

correlated with a second variable kept in bounds by one of

the above two methods. We choose among these templates

based on combinations of two conditions: whether the iterator

(defined below) in the loop condition is the same as the iterator

in the assertion being checked, and whether the loop condition

is an arithmetic comparison on an iterator or a test on an array

cell. We have found that this information is often sufficient to

choose the correct template. Our template descriptions assume

structured loops with loop conditions at their heads; however,

our templates work equally well for common less structured

loops with exit branches at their heads or within their bodies.

We outline PTYASM’s handling of such loops, and how we

derive template parameters for them, in [5].

Preliminaries. We use standard compiler concepts [6] to

describe our proof templates. A statement s is a definition of

a variable v (or s defines v) if s contains an assignment to v.

If s reads the value of v, we say that s uses v. For any loop

ℓ, constants and variables which are used but not defined in ℓ

are called loop constants. If s1 and s2 are statements, we say

that s1 is dependent on s2, written s1 δ s2, if there exists a

variable v such that s1 uses v, s2 defines it, and the definition

reaches s1. We write s1 δ
⋆ s2 if there exists a set of statements

s′
1
, . . . s′

n
, such that s1 δ s

′
1
δ · · · δs′

n
δ s2.

P : { . . .}

whi l e (i <= M) {
Q: { . . .}
a s s e r t (i <= N) ;

R : { . . .} }

P : { . . .}
assume (M+c <= N) ;

whi l e (i <= M) {
Q: { . . .}
a s s e r t ((i <= M+c) && (M+c <= N)) ;

R : { . . .} }

P : { . . .}
a s s e r t (M+c <= N) ;

whi l e (i <= M) {
Q: { . . .}

R: { . . .} }

(a) Original (b) Assume (c) Discharge

Predicates: i ≤M,M ≤ i, i ≤M + c,M + c ≤ N .

Fig. 2. Structure of single-variable explicit template.

We introduce the concept of loop iterators to define our

templates. Given a loop ℓ, a variable i is an iterator of ℓ iff

there exists a statement s such that (1) s is a definition of i

within ℓ; (2) s δ⋆ s; and (3) s is not dominated by any other

definition s′ in ℓ such that s′ assigns a loop constant to i.

Unlike induction variables [6], iterators need not change by a

fixed amount on every loop iteration.

Single-Variable Explicit Template. We use the single-

variable explicit template when a loop iterator i appears in

a bounds check within a loop, and the loop condition is a

comparison between i and some loop constant M , e.g., as in

Fig. 1(a). Fig. 2 shows how the template is communicated to

an SMC. Our description assumes that the loop condition is

i ≤ M , but the details are similar if the loop condition is

i < M or i 6= M . The symbols P , Q, and R in Fig. 2 denote

regions of the program. The template’s parameters are i,M,N ,

and c; roughly, c represents (a guess at) the maximum amount

by which i can be increased in Q. The template breaks the

proof of safety down as follows:

1) {true} P {M + c ≤ N},
2) {M + c ≤ N} Q;R {M + c ≤ N}, and
3) {i ≤M ∧M + c ≤ N} Q {i ≤M + c∧M + c ≤ N}.

Fig. 2(b) shows the effect of the changes that USETEM-

PLATE makes to the program’s internal representation in order

to guide the SMC towards this proof. The template supplies

the predicates i ≤M , M + c ≤ N , and i ≤M + c, since they

appear in the proof outline, and the predicate M ≤ i, which

we have often found to be useful: together with i ≤ M , it

allows us to describe any comparison (<, 6=, . . .) between i

and M . In cases where the loop condition is i 6= M , such

as in our example in Fig. 1(a), USETEMPLATE also inserts

an assume(i ≤ M) statement before the loop, and the SMC

must additionally prove that {i < M} Q;R {i ≤ M} holds,

so that i is bounded on each iteration. As shown in Fig. 2(c),

the SMC must discharge all assumptions used.

Extending to Strings and Two-Variable Traversals.

Loops over arrays often involve two iterators — for example,

when copying data using pointers. We use the two-variable

explicit template when the loop condition is a test on one

iterator (the leader), but the bounds check is on another. The

main idea is to try to prove that the change in the second

iterator on any iteration of the loop is bounded by the change

in the leader. The parameters are i, j,M,N , and c. Assume

that the loop condition is i ≤ M , and that the bounds check

is assert(j ≤ N); the details are similar if the loop condition

is i 6= M or i < M . We introduce the variables is and js to

denote the values of i and j before the loop is entered; these

variables allow us to represent the notion of change in i and j.

All Testcases (59) String (14) Two-variable (10)

PTYASM 49 11 7
YASM 17 0 0
BLAST 19 0 0
SATABS 22 0 0

TABLE I
NUMBER OF TESTCASES SOLVED AT BUFFER SIZE 1024, 600S TIMEOUT.

Let P ′ be the composition of statements (P ; is = i; js = j),
and let Φ = (M+c− is ≤ N− js) and Ψ = (j− js ≤ i− is).
Then, the template breaks the proof of safety down as follows:

1) {true} P ′ {Φ},
2) {Φ ∧ Ψ} Q;R {Φ ∧ Ψ}, and
3) {i ≤M ∧ Φ ∧ Ψ} Q {i ≤M + c ∧ Φ ∧ Ψ}.

The template thus supplies the SMC with the predicates i ≤
M ,M ≤ i, i ≤M+c, j−js ≤ i−is, andM+c−is+js ≤ N ,

and with an assume(M + c− is + js <= N) before the loop.

The template works similarly if the leader decreases on each

loop iteration; for example, if the leader is a count of the

amount of space remaining in a buffer.

For loops over strings, we use a length abstraction [7],

implemented using program instrumentation, to conservatively

approximate the semantics of strlen; for details, see [5].

String templates are similar to explicit templates; for example,

the single-variable string template uses the predicates i ≤
strlen(A), strlen(A) ≤ i, strlen(A) ≤ N , and A[i] = ‘\0’, and
adds assume (i <= strlen(A)) and assume(i <= strlen(A))
statements before the loop. The two-variable explicit template

generalizes to string traversals similarly.

III. EVALUATION

We have compared our SMC augmented with proof tem-

plates, PTYASM, against three other SMCs: YASM [8] (without

proof templates), BLAST [4], [9], and SATABS [10]. We

derived 59 testcases from the Verisec suite [2], selecting

26 patched testcases from 18 suite entries, excluding entries

which either did not contain buffer-dependent loops or which

contained loop structures already represented in the set. Since

our methodology is currently limited to analyzing loops in iso-

lation, we constructed, by hand, single-loop testcases isolating

each bounds checking assertion in each selected program. We

limited our evaluation to safe testcases since proof templates

are not designed to aid falsification. To pass a testcase, a

tool had to verify the assertion within a 600s timeout period;

crashes, timeouts, and incorrect results were counted as fail-

ures. We set the buffer sizes to 1024 so that the tools could not

feasibly solve testcases by loop unrolling. All tests were run

on a quad-core Intel 2.66GHz machine with 16GB of RAM.

Table I summarizes our results. Overall, PTYASM is able to

verify 49 of our 59 testcases — more than twice as many as

the next best tool, SATABS. Of our 59 testcases, 14 involved

traversing strings. Of these 14 testcases, PTYASM was able to

verify 11, whereas the other tools were able to identify none.

Out of the ten of our 59 testcases which involved two-variable

traversals, PTYASM was able to verify 7, whereas the other

tools were able to verify none. More details are available in

our technical report [3], and the complete experimental data

and test materials are available online at http://www.cs.

toronto.edu/˜kelvin/ase08.

1 whi le (A [i] != ’\0 ’) {
2 i f (! (j >= M)) {
3 a s s e r t (j < N) ;

4 j ++; }
5 i ++; }

1 whi le (A[i] != ’\0 ’) {
2 i f (A[i] == ’ ? ’) {
3 a s s e r t (i < N) ;

4 A[i] = ’\0 ’ ; }
5 i ++; }

(a) (b)

Fig. 3. Programs where (a) exit branches do not yield the correct template
and (b) the current template is insufficiently general.

PTYASM failed to check ten testcases within the timeout

period. In one of these testcases, the correct template was

supplied to PTYASM, but it was unable to converge within

the timeout period. The remaining nine failures fall into two

groups: (1) four testcases in which BUILDDB did not suggest

the correct template, either because no template exists, or

because the correct template cannot be inferred from loop exit

branches, and (2) five testcases in which our current templates

are insufficiently general. In both groups, PTYASM back-

tracked to the standard refinement strategy (loop unrolling)

and eventually timed out. Fig. 3(a) and (b) show simplified

representatives of these two groups. In Fig. 3(a), the single-

variable explicit template can be used to prove safety; however,

since the bound on the iterator j is established on line 2, which

is not a loop exit branch, BUILDDB does not suggest this

template. We plan to enhance BUILDDB to suggest templates

based on checks which dominate assertions. Fig. 3(b) requires

a generalization of our string template, since strlen(A) can

change within the loop body. We plan to extend our system

to keep track of the value of strlen(A) on loop entry in such

cases; doing so would enable PTYASM to verify this testcase.

IV. RELATED WORK

Proof templates enable efficient modular safety proofs for

array traversals in the context of an SMC. Other projects have

made various tradeoffs to analyze loops, with array bounds

checking being a common motivation.

Using stubs for string functions makes verification efficient

when programs only traverse arrays using these functions, but

does not address custom array traversals [11]. Augmenting

SMCs with looping counterexamples [12], [13], or concrete

execution [14] enables efficient falsification rather than ver-

ification. Replacing boolean programs with linear programs

enables some problems involving array traversal to be solved

efficiently, but sacrifices completeness of the SMC’s model-

checking phase [15]. Using a split prover [16] for refinement

ensures eventual convergence if a proof of safety exists within

difference logic, but does not guarantee that the proof is

efficient, and can drastically increase the number of predicates

used if a predicate with a large difference bound is needed.

ACSAR [17] uses transfinite refinement to abstract the effects

of loops, and has been used to verify small loops.

Beyer et al. use invariant templates within an SMC to avoid

loop unrolling [18], but do not address strings or modularize

proofs. The user must specify the invariant template, which

requires intuition about the structure of the loop and the

property being checked. It may be possible to combine our

approach with theirs, by using our algorithm to suggest proof

templates, casting them as invariant templates, and using their

invariant synthesis to customize them.

Outside the domain of SMCs, several tools check the

safety of array accesses using abstract interpretation or Hoare-

style deductive verification. Bounds-checking tools based on

abstract interpretation [7], [19] rely on fixed abstractions which

cannot be refined at analysis time, thus leading to false alarms.

Tools based on deductive verification typically require an

inference procedure to provide loop invariants [20]. Denney

and Fischer [21] have applied a pattern-based approach which

is similar in spirit to ours to deductive verification, but not

for the problem of array bounds checking, and their scope is

restricted to automatically-generated programs.

V. CONCLUSIONS AND FUTURE WORK

Proof templates supply SMCs with the predicates and

assumptions needed to prove the safety of array bounds checks

in common loops. We plan to extend our framework to handle

multiples loops, and to explore proof templates for other

problem domains.
ACKNOWLEDGMENT

Thomas E. Hart and Kelvin Ku were funded by MITACS;

Thomas E. Hart was also funded by an NSERC CGS.

REFERENCES

[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey,
B. Ondrusek, S. K. Rajamani, and A. Ustuner, “Thorough Static Analysis
of Device Drivers,” in Proc. EuroSys’06.

[2] K. Ku, T. E. Hart, M. Chechik, and D. Lie, “A Buffer Overflow
Benchmark for Software Model Checkers,” in Proc. ASE’07.

[3] T. E. Hart, K. Ku, M. Chechik, A. Gurfinkel, and D. Lie, “Augmenting
Counterexample-Guided Abstraction Refinement with Proof Templates,”
Dept. Computer Science, Univ. Toronto, Tech. Rep. CSRG-581, 2008.

[4] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy Abstraction,”
in Proc. POPL’02.

[5] T. E. Hart, K. Ku, M. Chechik, A. Gurfinkel, and D. Lie, “PTYASM:
Software Model Checking with Proof Templates,” in Proc. ASE’08 —

Tool Demonstrations Track.
[6] S. Muchnick, Advanced Compiler Design and Implementation. Morgan

Kaufmann, 1997.
[7] N. Dor, M. Rodeh, and S. Sagiv, “CSSV: Towards a Realistic Tool for

Statically Detecting All Buffer Overflows in C,” in Proc. PLDI ’03.
[8] A. Gurfinkel, O. Wei, and M. Chechik, “YASM: A Software Model-

Checker for Verification and Refutation,” in Proc. CAV’06.
[9] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan, “Abstrac-

tions from Proofs,” in Proc. POPL’04.
[10] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “SATABS: SAT-

based Predicate Abstraction for ANSI-C,” in Proc. TACAS’05.
[11] S. Chaki and S. Hissam, “Certifying the Absence of Buffer Overflows,”

SEI, CMU, Tech. Rep. CMU/SEI-2006-TN-030, 2006.
[12] D. Kroening and G. Weissenbacher, “Counterexamples with Loops for

Predicate Abstraction,” in Proc. CAV’06.
[13] C. Wang, A. Gupta, and F. Ivancic, “Induction in CEGAR for Detecting

Counterexamples,” Proc. FMCAD’07.
[14] D. Kroening, A. Groce, and E. Clarke, “Counterexample Guided Ab-

straction Refinement via Program Execution,” in Proc. ICFEM’04.
[15] A. Armando, M. Benerecetti, and J. Mantovani, “Abstraction Refinement

of Linear Programs with Arrays,” in Proc. TACAS’07.
[16] R. Jhala and K. L. McMillan, “A Practical and Complete Approach to

Predicate Refinement,” in Proc. TACAS’06.
[17] M. N. Seghir and A. Podelski, “ACSAR: Software Model Checking with

Transfinite Refinement,” in Proc. SPIN’07.
[18] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko, “Path

Invariants,” in Proc. PLDI’07.
[19] A. Venet and G. Brat, “Precise and Efficient Static Array Bound

Checking for Large Embedded C Programs,” in Proc. PLDI’04.
[20] Y. Moy, “Sufficient Preconditions for Modular Assertion Checking,” in

Proc. VMCAI’08.
[21] E. Denney and B. Fischer, “Annotation Inference for Safety Certification

of Automatically Generated Code (Extended Abstract),” in Proc.ASE’06.

