Improved Messy Broadcasting in Hypercubes
and Simple Graphs *

Thomas E. Hart
Department of Mathematics and Computer Science
Brandon University
Brandon, MB, R7A 6A9
Canada

Hovhannes A. Harutyunyan
Department of Computer Science
Concordia University
Montreal, QC, H3G 1MS8
Canada

May 15, 2002

Abstract

In this paper, we present some advances in the study of broadcast-
ing under the messy broadcasting model, under which communication
between vertices in a communication network is completely uncoor-
dinated. We derive the messy broadcast time of complete bipartite
graphs. We also present a proof of the messy broadcast time of hy-
percube with dimension less than 7 under messy broadcast model
M, including a non-trivial argument for an upper bound of the 4-
dimensional hypercube. In addition, we improve the lower bound on
the messy broadcast time of arbitrary-dimensional hypercubes.

1 Introduction and Definitions

Broadcasting is an information dissemination problem in which one node
of a communication network must transmit a message to all other nodes
in the network; the study of the problem is outlined in [8]. Broadcasting

*This work was supported by the Natural Sciences and Engineering Research Council
of Canada



has applications in both computer networks and multiprocessor computer
systems. We model the communication network in question as a graph or
digraph; the vertices of the graph can represent computers, for example,
and the edges can then model communication lines between the machines.
We search for graphs whose topologies yield efficient broadcast algorithms.

Formally, let G = (V, E) (or D = (V, E)), and let u € V(G) (or V(D))
be the originator of the broadcast. When broadcasting begins, the origi-
nator is the only informed vertex. We assume that communication takes
place in discrete time units. During each unit of time, each informed vertex
calls one uninformed adjacent vertex; that vertex is then informed. Vertices
may make only one call per time unit, but may receive from any number
of vertices in the same time unit. Each call takes exactly one unit of time.
Broadcasting is completed when all vertices are informed. The set of all
calls made is called the broadcast protocol or broadcast scheme.

There are various models of broadcasting; each model reflects a different
set of assumptions concerning the abilities of the communication network.
In the classical broadcasting model, every vertex of the graph is assumed
to broadcast using an optimal scheme. Research in classical broadcasting
focuses on the construction of broadcast graphs, in which, for any originator
in the graph, there is a broadcast scheme that will finish in [log, n] time
units, where n is the number of vertices in the broadcast graph. Since the
number of informed vertices can, at most, double during each time unit,
this is the minimum possible time. This model assumes that it is possible to
provide all vertices in a communication network with enough information
to ensure optimal communication.

In this paper, however, we study a model called messy broadcasting,
which assumes that we are unable to provide the vertices with any signif-
icant amount of information. In this type of broadcasting, every vertex
acts independently, without knowing which vertex is the originator of the
message, or the time at which the message was sent; futhermore, besides
knowing which vertices are its neighbours, each vertex has no knowledge of
the network’s topology. All informed vertices thus broadcast to randomly-
chosen neighbours at each time unit. This variant of broadcasting was
introduced by Ahlswede, Haroutunian, and Khatchatrian in [1], in which
they introduced the following three models for messy broadcasting:

Model M;: At each unit of time, every vertex knows the state of each
of its neighbours: informed or uninformed. In this model, each informed
vertex must transmit the broadcast message to one of its uninformed neigh-
bours, if any exist, in each time unit.

Model Mj: Every informed vertex knows from which vertex or vertices
it received the broadcast message, and to which neighbours it has sent the



message. Thus, it knows that this vertex (or these vertices) are informed.
In this model, each informed vertex must transmit the broadcast message
to one of its neighbours other than the ones that it knows are informed, if
any exist, in each time unit.

Model Ms: Every informed vertex knows to which neighbours it has
sent the message. In this model, each informed vertex must transmit the
broadcast message to one of its neighbours to which it has not yet sent the
message, if any exist, in each time unit.

When studying messy broadcasting, we are concerned with the worst-
case performance of a given graph G. The broadcast time of vertexr u in
a graph G under model M;, denoted ¢;, 1 < i < 3, is defined to be the
maximum number of time units required to inform all vertices of G, with
u as the originator. The definition of the broadcast time of a graph G as
t;(G) = maz{t;(u) | v € V'} is then natural.

When studying messy broadcasting, our job becomes the search for
graphs whose topologies prohibit grossly inefficient broadcast schemes. In
addition, we attempt to derive the messy broadcast times of graphs that
are good for classical broadcasting, in order to analyze the effect of the
messy broadcasting model on communication efficiency.

Messy broadcasting seems promising. It is technically easy to build a
cheap and reliable network for messy broadcasting. In addition, it is already
shown [1] that, for some common communication networks, messy broad-
casting is almost as fast as classical broadcasting. When n is large, there
are graphs G and H on n vertices such that ¢;(G) < t2(G) < 1.891og, n,
and t3(H) < 2.5log, n.

2 Messy Broadcasting in Complete Bipartite
Graphs

In [5], Harutyunyan and Liestman proved that ¢;(K,) =n—1,fori = 1,2, 3.
We can apply similar techniques to complete bipartite graphs.

Let K, , denote the complete bipartite graph with V (K, ,) = AU
B, where A = {uj,u2,...,un}, B = {v1,v2,...,00}, AN B =, and
E(Kmn) ={uw; |1<i<m, 1< j<n};asan example, K3 is pictured
in Figure 1. Then,

Lemma 2.1 t(Kp, ) = to(Km,n) = maz{m,n}.

Proof. Without loss of generality, we will assume that the originator is
u1, and that it calls v; at time ¢ = 1; hence, after time 1, u; and v; are
the only informed vertices. Beginning at time ¢t = 2, u; must call its n — 1



Ul U2 us

V1 ()

Figure 1: K32, where A = {u1,us,us} and B = {v1,v2}

uninformed neighbours, and v; must call its m — 1 uninformed neighbours,
ensuring that broadcasting completes no later than at time maz{m,n}.

To show that it is possible to take maxz{m,n} time units to complete
broadcasting, consider the following scheme: at time 4, all informed vertices
in A broadcast to v; if i < n, and all informed vertices in B broadcast to
u; if © < m. This completes our proof. O

Lemma 2.2 t3(K,,,,) = maz{m,n} + 1.
Proof. We must consider two distinct cases:

Case 1: Again without loss of generality, we will assume that the originator
is uy, and that it calls v; at time ¢ = 1; hence, after time 1, u; and v; are
the only informed vertices. Beginning at time ¢ = 2, u; must call its n — 1
uninformed neighbours, and v; must call its m neighbours, ensuring that
broadcasting completes no later than at time maz{m + 1,n}.

To show that it is possible to take maz{m+1,n} time units to complete
broadcasting, consider the following scheme: at time 4, all informed vertices
in A broadcast to v; if ¢ < n, and all informed vertices in B broadcast to
u;_q if i <m + 1.

Case 2: Assume that v; instead of u; is the originator. Then, by a similar
argument, broadcasting completes in maz{m,n + 1} time units.

Since, depending on whether the originator is u; or vy, messy broad-
casting completes in either max{m + 1,n} or maz{m,n + 1} time units,
respectively, t3(Kp,,n) = maz{m,n} + 1, and our proof is complete. O

A simple topology often used in real networks is that of a cycle; it is
used, for example, in some LANs. In [5], it was shown that ¢,(C,) =



t2(Cn) = [%], and that ¢1(C,) = n — 1. By choosing m and n so that
they differ by at most 1, we can construct a bipartite graph K, ,, such that
t1(Kmn) = t2(Kmyn) = [242] and t3(Kpm,n) = [242] 4+ 1. This makes
complete bipartite graphs, in the worst-case, as fast as cycles under two of
our models, and faster than cycles under the third. In addition, the average-
case time of complete bipartite graphs must be lower than that of cycles,
since messy broadcasting in C),, can be completed in no fewer than [%]
time units, while messy broadcasting in K, , can be completed much more
quickly. The cost, of course, is that a complete bipartite graph has more
edges than a cycle with the same number of vertices. This relatively fast
messy broadcast time, along with the simplicity of the complete bipartite
graph, may make it a promising topology for connecting a small number of
machines.

3 Exact Values of #;(Q) for 1 <k <6 Proved

The k-dimensional hypercube Q) is defined as follows: Qg = K1, Q1 = Ko,
and Qr = Qr_1 X @1 for £ > 2. Slightly less formally, we can say that
we construct a k-dimensional hypercube by taking two (k — 1)-dimensional
hypercubes, and connecting each vertex with its counterpart in the other
hypercube. Hypercubes are of interest in the study of broadcasting because
they were the first infinite class of minimum broadcast graphs to be discov-
ered, and because they are often used as the topology of real-life networks.

Vertices in @y are typically labelled with k-bit binary strings. Without
loss of generality, the originator in a messy broadcast scheme is assumed
to be vertex (00...0), and it is usually assumed to call (10...0) at time 1,
(01...0) at time 2, ..., and (00...01) at time k.

Exact values for t5(Qy) and t3(Q) were found by Harutyunyan and
Liestman in [5]. In addition, the exact value of ¢1(Q}) is were found for
1 < k < 6. These values are summarized in the following table:

t1(Qx

~—

1

cam..z;oam»—n‘r

O 0O BN~

For k > 4, however, the proofs of these statements were omitted. The
upper bounds follow from more difficult exhaustive searches, all of which
were omitted in [5]. Here, we present a proof that ¢1(Q4) = 6; the proofs
for @5 and Qg are similar, but more grueling.



Figure 2: Time 4 messy broadcast scheme for @3

Observing the above table, we can see that t1(Qy) = 2k—2for2 < k < 6.
It should be noted that this is not true in general, since we know that
t1(Q10) > 19 > 18 = 2(10) — 2. We know that ¢1(Q10) > 19 because a
computer was able to generate a messy broadcast scheme for Q19 taking 19
time units, using an unsophisticated search algorithm.

Lemma 3.1 t;(Q4) =6.

Proof: The fact that ¢1(Q4) > 6 is proved by the existence of a messy
broadcast scheme for ()4 taking 6 time units, as shown in Figure 3.

Proving that ¢1(Q4) < 6 is more difficult. Assume that vertex (0000)
is the originator of a messy broadcast. We shall show that all vertices in
(4 must be informed by time 6. Recall that the vertices of ()4 are labelled
(0000) through (1111), and that a vertex v is on level ¢ of Q4 iff there are
i 1’s in the label of v; for example, vertex (1001) is on level 2. Without
loss of generality, we shall assume that vertex (0000) broadcasts first to
(1000), then (0100), (0010), and (0001). Then all vertices on level 1 of Q4
are informed at or before time 4.

Since vertex (1000) is informed at time 1 and must call its neighbours
in some order, vertices (1100), (1010), and (1001) must all be informed by
time 4. Similarly, vertex (0100) is informed at time 2, and must call (1100),
(0110), and (0101) in some order, so these vertices must all be informed
by time 5. This leaves vertex (0011). Vertex (0010) is informed at time 3,
and must call its three neighbours on level 2, one of which is (0011), in the
following time units. Hence all vertices on level 2 of ()4 must be informed
by time 6.



me

ure 3: Time 6 messy broadcast sche






As mentioned above, vertex (1000) will inform vertices (1100), (1010),
and (1001) by time 4. Each of the three vertices (1110), (1101), and (1011)
at level 3 is connected to exactly two of these vertices. It follows that all
three of these level 3 vertices must be informed by time 6. This leaves
vertex (0111). Recall that (0110) and (0101) are neighbours of both (0100)
and (0111), and that (0100) is informed at time 2. Thus one of (0110) or
(0101) must be informed by (0100) by time 4; call this vertex u. Since all
vertices at level 1 are informed at time 4, and u has two neighbours at each
of levels 1 and 3, u must broadcast to its neighbours at level 3 at times 5
and 6. This ensures that (0111) is informed by time 6; that is, all vertices
on level 3 of ()4 must be informed by time 6.

It remains to be shown only that vertex (1111) must be informed by
time 6. If any vertex on level 3 of @ is informed at time 3, then (1111)
must be informed by time 6, since any vertex on level 3 is a neighbour of
(1111), and may have up to three uninformed neighbours, which it must
call during times 4, 5, and 6. Similarly, if a vertex on level 3 is informed at
time 4, and at least two of its neighbours on level 2 are also informed by
time 4, then vertex (1111) must be informed by time 6. We shall use these
two facts to prove that (1111) must be informed by time 6. Let us consider
three cases.

If vertex (1000) broadcasts to (1100) at time 2, then (1100) must broad-
cast to a vertex at level 3 at time 3, since its only other neighbour at level
1, vertex (0100), is also informed at time 2. Then (1111) must be informed
by time 6.

Say vertex (1000) broadcasts to (1010) at time 2. Then vertex (1010)
can broadcast to (0010) at time 3, after which it must broadcast to vertices
at level 3. If (1010) broadcasts to (1110) at time 4, then (1111) will be
informed by time 6, since one of (1110)’s neighbours at level 2, (1100), must
be informed by time 4. Similarly, if (1010) broadcasts to (1011) at time 4,
then (1111) will be informed by time 6, since one of (1011)’s neighbours at
level 2, (1001), must be informed by time 4. In either case, (1111) must be
informed by time 6.

Say vertex (1000) broadcasts to (1001) at time 2. If (1001) broadcasts
to a vertex at level 3 at time 3, then (1111) will be informed by time 6. So
let us assume that (1001) broadcasts to (0001) at time 3. Then (1001) must
broadcast to either (1011) or (1101) at time 4. But (1011) is a neighbour of
(1010), which must be informed by time 4 since it is a neighbour of (1000).
Similarly, (1101) has neighbour (1100), which also must be informed by
time 4. In either case, a vertex on level 3 is informed at time 4 and has two
of its neighbours on level 3 informed by time 4, so vertex (1111) must be
informed by time 6.

Hence, all vertices in Q4 must be informed by time 6. This completes
our proof. O



Combined with the trivial proofs that ¢1(Q2) = 2 and ¢;(Q3) = 4, and
the non-trivial arguments for Q5 and Qg which are similar to the argument
for ()4, above, we have:

Theorem 3.1 t1(Qr) =2k —2 for 2 < k <6.

Proof. The lower bounds are arrived at relatively easily by constructing
messy broadcast schemes. A broadcast scheme in @5 taking two time units
is trivially constructed. A messy broadcast scheme for ()3 taking 4 time
units is shown in Figure 2, and a messy broadcast scheme for ()4 is shown
in Figure 3. Figure 4 shows a messy broadcast scheme for Q5 taking 8
time units; since this diagram is complex, we include the binary labels of
the vertices to make the diagram readable. We omit a messy broadcast
scheme for ()¢, since such a diagram would be too large and complex to be
instructive.

As mentioned above, the upper bounds for )2 and Q)3 are trivial, the
upper bound for @), is included above, and the upper bounds for @5 and
(¢ are proved in a similar fashion to the upper bound for ()4. Hence, we
have our result. O

We should re-iterate that it is known that ¢1(Qg) # 2k — 2 in general;
however, the smallest k such that ¢;(Qx) > 2k — 2 is unknown, although
we know that it is less than or equal to 10.

4 An Improved Lower Bound on ¢ (Qx)

As mentioned above, exact values for t2(Q) and t3(Qy) were found in [5].
For model M, however, the best bound found was 3k < 1(Q) < @ +
1. We were able to obtain improved lower bounds for ¢;(Qy) through two
successive generalizations of Harutyunyan and Liestman’s proof from [5].

Theorem 4.1 (-2 < ¢,(Q;) < k(k;I) 1.

Proof. The upper bound is t2(Q%), which was found in [5].

To show that t1(Qx) > %, we describe a messy broadcast scheme
from originator (000...0). We begin by partitioning our hypercube into
eight distinct sub-cubes: Q000, Q100 (010 (001 (110 (101 (011 4p4
Q''!. In general, the leftmost three bits of the binary labels of all vertices
in Q*Y* are zyz. For t = 1,2,...,5, we follow the scheme shown in Figure
5.

Consider the sub-cubes Q' and Q''°. Beginning at time 6, Q''°
broadcasts internally according to the worst-case messy broadcast scheme

10



for Qr_3. All neighbours of (100...00) in Q'°° broadcast to their neigh-
bours in @119, and then proceed to make calls within Q1% according to the
worst-case messy broadcast scheme for Q_3. Calls in Q% to vertices with
a lower level are then made in sync with the corresponding calls in Q''0;
this is illustrated in Figure 6. Analogous situations occur with the pairs of
sub-cubes Q1% and Q'1, Q°1° and Q''°, and Q%' and Q''!; hence, these
six sub-cubes finish broadcasting simultaneously.

A similar situation occurs with the sub-cube pairs Q°°° and Q°°, and
Q! and Q. Neighbours of (000...00) other than (0001 ...00) broad-
cast to their neighbours in Q°'°, and then continue with their internal
broadcast scheme (similarly for the other pair of sub-cubes); hence, these
four sub-cubes complete broadcasting simultaneously. Note that, since in-
ternal broadcasts from (0001 ...00) have already been delayed by its call
to (0011...00), the fact that it does not broadcast to its neighbour in Q°!°
will not cause problems. Furthermore, since two of these four sub-cubes
have been shown to finish broadcasting at the same time as the other four
sub-cubes of @)y, we can see that all eight sub-cubes complete broadcasting
simultaneously.

Since Q% and Q''! complete broadcasting in #;(Qx_3), and the set-
up for this scheme requires 5 time units, we can see that broadcasting
completes at time 5+t1(Qr—3); hence, t1(Qr) > t1(Qr—3)+5, and t1(Q) >
t1(Qk—3i) + 5i, when i < %

Solving the latter recurrence relation for the case where k mod 3 = 1,
we get t1(Qr) > t1(Q4) + 5(55%) = 2k — 2. For kmod 3 = 2, we get

3

t1(Qr) > t1(Qs) + 5(552) = 3k — 1. And for kmod3 = 0, we get
t1(Qr) > t1(Qe) + 5(55%) = 3k. In all three cases, the result is greater

-3
than or equal to our lower bound of %T_Q; hence, our theorem is proved. O

In a similar, but slightly more complex manner, we obtained,
Theorem 4.2 71374 <t (Qr) < k(kz_*l) +1.

Proof. This result is a generalization of Theorem 4.1. From Figure 7, we
can see that t1(Qr) > t1(Qr_4) + 7. When ¢t > 8, broadcasting occurs in
the same fashion as shown in Figure 6, as is true for Theorem 4.1.

Since t1(Qk) > t1(Qr—-1) + 7, t1(Qx) > t1(Qr—ai) + Ti, when i < £. For
the case in which k mod 4 = 0, we get that t,(Qx) > t1(Q4) + 7(52) =
Th=4 When k mod 4 = 1, we get that t,(Qx) > t1(Qs) + T(E2) = TE=2,
When k mod 4 = 2, we get that ¢1(Qx) > t1(Qe) + T(E5%) = =2, When
kmod 4 = 0, we get that t1(Qr) > t1(Q3) + 7(£:2) = =5, In all four
cases, t1(Qg) > 7’“4—_5. This completes our proof. O

11



Figure 5: Setup Scheme for Theorem 4.1

12

.. 00)



100
(100 . .. 00)
2 Q
.040),0 1..
Q
10011 ..

7 for Theorem 4.1;

Figure 6: Broadcasting in ()190 and ()11 after time ¢

note the synchronized calls

/
0
2

NS

..ﬁd\.

Figure 7: Setup scheme for Theorem 4.2

13



5 A Note on Messy Broadcasting in Hyper-
cubes Under Model M;

To better understand messy broadcasting in hypercubes under model My,
we simulated the process using a computer. We first tried broadcasting
completely randomly, then using simple techniques to produce collisions.

The most theoretically-interesting result of these simulations is that our
bounds on t; (Qr) arrived at in Section 4 fall significantly short of the true
value of t1 (Qy). For example, our simulations produced a broadcast scheme
for Q22 taking 53 time units. This makes it extremely unlikely that ¢1(Qx)
is asymptotically linear; however, no method to produce a non-linear lower
bound on #; (@) has been found.

Another result of some interest is that the mean time taken to complete
messy broadcasting in @)y, seems to increase linearly with k. To use the same
example as above, messy broadcasting in ()22 completed, on average, in 31
time units. A similar situation occurs in K, where t;(K,) = t2(K,) =
t3(K,) = n — 1, but we can expect messy broadcasting in K, to complete
much more quickly the vast majority of the time. This suggests that the
worst-case messy broadcast times examined thus far may not be the only
appropriate metric by which to examine and compare the performance of
different graphs under the messy broadcasting model.

6 Conclusions

We continued our study of messy broadcasting, in which all broadcasts in
a given network are made randomly. Our finding of the messy broadcast
times of K, ,, applies the study of messy broadcasting to a simple topology.
This result gives a simple interconnection scheme that is as fast as a cycle
topology under models M; and Ms, and faster than a cycle under model
Ms. This gives us a simple way to connect a small number of machines
relatively efficiently.

Our proof that ¢ (Qr) = 6 illustrates the difficulty of establishing upper
bounds on the messy broadcast times of graphs that are not entirely simple.
Model M; may suffer especially from this problem for graphs whose vertices
have high degrees, such as hypercubes, since the set of vertices to which
a vertex may broadcast is affected by the actions vertices other than itself
and its neighbours. This key difference may make the performance of model
M significantly more difficult to analyze in complicated graphs.

Despite the difficulties in working with model M;, we improved the
lower bound on t;(Q) by generalizing previous results. Our improved
lower bound, however, falls short of the still-unknown value of ¢;(Qf). The
problem of how to arrive at a non-linear lower bound for #;(Q) remains

14



unsolved.

References

[1]

[6]

[7]

8]

R. Ahlswede, H. S. Haroutunian, and L. H. Khachatrian, Messy
Broadcasting in Networks, Communications and Cryptography, eds.
R. E. Blahut, D. J. Costello, Jr., U. Mauter, and T. Mittelholzer
(Kluwer, Boston/Dordrecht/London, 1994) 13-24.

J.-C. Bermond and P. Fraigniaud, Broadcasting and Gossiping in
de Bruijn Networks, SIAM J. Comput., Vol. 23, No. 1, pp. 212-225,
1994.

P. Fraigniaud and E. Lazard, Methods and problems of commu-
nication in usual networks, Discrete Applied Mathematics 53, pp.
79-133, 1994.

L. Gargano, A. Pelc, S. Perennes, and U. Vaccaro, Efficient Com-
munication in Unknown Networks, 26th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2000) Kon-
stanz, Germany, June 15-17, 2000.

H. A. Harutyunyan and A. L. Liestman, Messy Broadcasting, Par-
allel Processing Letters Vol. 8 No. 2, pp. 149-159, 1998.

H. A. Harutyunyan and A. L. Liestman, More Broadcast Graphs,
Discrete Applied Mathematics 98, pp.81-102, 1999.

H. A. Harutyunyan and T. E. Hart, Messy Broadcasting in Common
Interconnection Networks, Concordia University, 2002.

S. T. Hedetniemi, S. M.Hedetniemi, and A. L. Liestman, A survey of
Broadcasting and Gossiping in Communication Networks, Networks
18, pp. 319-349, 1988.

15



