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Abstract

The emergence of a new paradigm in machine learning known as semi-supervised
learning (SSL) has seen benefits to many applications where labeled data is ex-
pensive to obtain. However, unlike supervised learning (SL), which enjoys a rich
and deep theoretical foundation, semi-supervised learning, which uses additional
unlabeled data for training, still remains a theoretical mystery lacking a sound fun-
damental understanding. The purpose of this research thesis is to take a first step
towards bridging this theory-practice gap.

We focus on investigating the inherent limitations of the benefits semi-supervised
learning can provide over supervised learning. We develop a framework under
which one can analyze the potential benefits, as measured by the sample com-
plexity of semi-supervised learning. Our framework is utopian in the sense that a
semi-supervised algorithm trains on a labeled sample and an unlabeled distribution,
as opposed to an unlabeled sample in the usual semi-supervised model. Thus, any
lower bound on the sample complexity of semi-supervised learning in this model
implies lower bounds in the usual model.

Roughly, our conclusion is that unless the learner is absolutely certain there is
some non-trivial relationship between labels and the unlabeled distribution (“SSL
type assumption”), semi-supervised learning cannot provide significant advantages
over supervised learning. Technically speaking, we show that the sample complexity
of SSL is no more than a constant factor better than SL for any unlabeled distri-
bution, under a no-prior-knowledge setting (i.e. without SSL type assumptions).

We prove that for the class of thresholds in the realizable setting the sample
complexity of SL is at most twice that of SSL. Also, we prove that in the agnostic
setting for the classes of thresholds and union of intervals the sample complexity
of SL is at most a constant factor larger than that of SSL. We conjecture this to
be a general phenomenon applying to any hypothesis class.

We also discuss issues regarding SSL type assumptions, and in particular the
popular cluster assumption. We give examples that show even in the most accom-
modating circumstances, learning under the cluster assumption can be hazardous
and lead to prediction performance much worse than simply ignoring unlabeled
data and doing supervised learning.

This thesis concludes with a look into future research directions that builds on
our investigation.
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Chapter 1

Introduction

Machine learning is a field that is broadly concerned with designing computer al-
gorithms that learn from experience or automatically discover useful patterns from
datasets. Much theory and applied work have been focused in the area of super-
vised learning, where the goal is to approximate a ground truth function f : X → Y
where X is some domain, and Y is some label class. For example, X can be the
set of all digital pictures, Y a set of some persons, and f tells us who appears
in the photograph. Of course, our purpose is for the machine to automatically
“learn” f , that is, output a function approximating f , based on an input collection
of examples, of say, pictures and their correct labels, known as the training data,

{(x1, y1), (x2, y2), . . . , (xm, ym)}, each xi ∈ X , yi ∈ Y .

In supervised learning, the theoretical frameworks defining learnability, the cor-
responding mathematical results of what can be learned, and the tradeoffs between
learning an accurate predictor and the available training data are reasonably well
understood. This has been a major success in the theoretical analysis of machine
learning—a field known as computational learning theory, and statistical learning
theory when computational complexity issues are ignored. Many practically im-
portant learning tasks can be cast in a supervised learning framework. Examples
include predicting a patient’s risk of heart disease given her medical records, mak-
ing decisions about giving loans, face recognition in photographs, and many other
important applications. See Figure 1.1 for an example of a theoretically sound
supervised learning paradigm.

Outside of supervised learning, however, our current theoretical understanding
of two important areas known as unsupervised learning and semi-supervised learning
(SSL) leaves a lot to be desired. Unsupervised learning is concerned with discovering
meaningful structure in a raw dataset. This may include grouping similar data
points together, known as clustering, or finding a low dimensional embedding of
high dimensional input data that can help in future data prediction problems,
known as dimensionality reduction.
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Figure 1.1: Supervised learning: a maximum margin linear classifier separating
circles and crosses. Guarantees on future predictions can be given.

Semi-supervised learning, as the name suggests, is the task of producing a pre-
diction rule given example data predictions (labeled data) and extra data without
any prediction labels (unlabeled data). See Figure 1.2 for an illustration. In many
practical scenarios, labeled data is expensive and hard to obtain as it usually re-
quires human annotators to label the data, but unlabeled data are abundant and
easily obtainable. Consequently, researchers are interested in using unlabeled data
to help learn a better classifier. Due to numerous applications in areas such as nat-
ural language processing, bioinformatics, or computer vision, this use of auxiliary
unlabeled data has been gaining attention in both the applied and theoretical ma-
chine learning communities. While semi-supervised learning heuristics abound (see
for example, Zhu, 2008), the theoretical analysis of semi-supervised learning is dis-
tressingly scarce and does not provide a reasonable explanation of the advantages
of unlabeled data.

While it may appear that learning with the addition of unlabeled data is
magical—after all, what can one learn from data that does not provide any clue
on a function that is to be approximated?—In fact most practitioners performing
SSL make some type of assumptions on how the labels behave with respect to the
structure of the unlabeled data. In practice, this may provide great advantage. For
example, a popular assumption asserts that a good predictor should go through
a low density region of the data domain. However, the focus of this thesis is on
a more fundamental question: what can be gained when no assumptions of above
type are made? While this question may seem far from practical interest, it is a
first step towards the theoretical modelling of practical SSL and understanding its
limitations.

In this thesis, we focus on formalizing a mathematical model of semi-supervised
learning and analyze its potential benefits and inherent limitations when compared

2



?

Figure 1.2: Semi-supervised learning: the extra boxes represent unlabeled data, but
where to place the separator? What can be proved about the future performance?

with supervised learning. Our model is based on the Probably Approximately
Correct (or PAC) learning framework proposed by Valiant (1984). The main con-
clusion of our thesis is:

Unless the learner is absolutely sure of an assumption that holds on
the relationship between labels and the unlabeled data structure (if no
assumptions are made then we refer to it as the no-prior-knowledge
setting) then one cannot hope to obtain a significant advantage in the
sample complexity1 of semi-supervised learning over that of supervised
learning.

See Chapter 4 for a precise statement. When SSL assumptions are made but do not
hold, it can degrade the performance and can be worse than supervised learning (see
Section 3.3. The semi-supervised learning model used in our analysis is one in which
the learner is provided with a labeled training sample and complete knowledge of
the distribution generating unlabeled data. Of course, this differs from the real-
world model where a sample of unlabeled data is given. However, our analysis shows
that even in such an optimistic scenario that we assume, one still cannot obtain
better than constant factor improvement in the labeled sample complexity. This
is done by proving lower bounds on the labeled sample complexity of SSL, which
also applies to supervised learning, and comparing that with the upper bounds on
the labeled sample complexity of supervised learning, which also applies to SSL. In
this thesis we are mainly concerned with lower bounds in our SSL model. At the

1Sample complexity refers to the amount of labeled training data needed to learn an accurate
classifier. An alternate measure is the error rate of the learned classifier, which happens to depend
on the sample complexity.
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same time, upper bounds in our SSL model apply to the real-world SSL model as
the unlabeled sample size grows.

We also show that common applications of SSL that assume some relationship
between labels and the unlabeled data distribution (such as the widely held cluster
assumption that prefers decision boundaries through low density region) may lead
to poor prediction accuracy, even when the labeled data distribution does satisfy the
assumption to a large degree (e.g. the data comes from a mixture of two Gaussian
distributions, one for each class label).

Our thesis is not the first work on the merits of using unlabeled data without
making assumptions regarding the relationship between labels and the unlabeled
data distribution. The transductive learning model of Vapnik (2006) and its per-
formance bounds do not make SSL type assumptions. However, the transductive
model is concerned with prediction of a fixed, unlabeled test data set rather than
generalizing a predictor for all points in a domain. As well, Kääriäinen (2005) pro-
poses some SSL algorithms that do not depend on SSL type assumptions. Mean-
while, the work of Balcan and Blum (2005, 2006) offers a PAC style framework
for formalizing SSL type assumptions. We discuss more about how our work com-
pares with respect to these approaches and other related works in Section 3.2. The
fundamental difference with our work is that we are interested in understanding
the inherent limitations of the benefits that semi-supervised learning provides over
supervised learning, whereas some of the related work is on providing “luckiness”
conditions under which SSL can be successful.

This thesis does not completely provide answers to the question of the merits of
semi-supervised learning. But it does show that for some relatively natural classes
of prediction functions over the real line, semi-supervised learning does not help
significantly unless additional assumptions are made. We also believe the results
generalize to other classes of functions, as asserted in our conjectures in Section 4.1.
Much of the results contained in this thesis has already appeared in preliminary
form Ben-David et al. (2008).

1.1 Outline of Thesis

Chapter 2. We first present some background material on the statistical learning
theory of supervised learning that will be essential to understanding our proposed
formulation of semi-supervised learning in the later chapters. This chapter will
start off with a brief expository tour of the main motivations and issues that must
be addressed by a formal framework of learning, while presenting definitions along
the way that will ultimately lead to constructing a formal framework of learning
known as the Probably Approximately Correct (PAC) learning framework (Valiant,
1984). We also discuss the subtleties of PAC learning.

In the last part of the chapter, we review a seminal result of Vapnik and Chervo-
nenkis (1971) on empirical process theory and its relationship in fully characterizing
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the informational requirements of PAC learning. Important theorems will be stated
that provide upper and lower bounds on the sample complexity, in other words, how
much training data is needed to learn well.

Chapter 3. In this chapter we will motivate and present a utopian model of semi-
supervised learning as well as definitions corresponding to measuring its sample
complexity. We will then briefly describe related work on SSL from the perspec-
tive of our work. We will also discuss in detail and critique previous theoretical
paradigms for SSL including the shortcomings of these approaches. Then we turn
our attention to an important issue for practitioners performing SSL, that of the po-
tential hazards of learning under the popular cluster assumption. We give examples
of scenarios that appear to be amenable for learning with the cluster assumption,
but in actuality damages learning.

Chapter 4. We propose a fundamental conjecture under the no-prior-knowledge
setting2 that roughly asserts SSL cannot provide significant advantages over super-
vised learning. Then, for the remaining part of the chapter we turn our attention
to proving the conjecture for some basic hypothesis classes over the real line.

For “natural” hypothesis classes over the real line, we present a reduction lemma
that reduces semi-supervised learning under “smooth” distributions to supervised
learning under the fixed uniform distribution on the unit interval, while preserving
its sample complexity. Using this lemma, we are able to prove the conjecture for the
class of thresholds in the realizable setting, and thresholds and union of intervals
the agnostic setting. We also examine a different formulation of comparing SSL
with supervised learning with negative conclusions for SSL.

Chapter 5. We finally conclude by taking a step back and providing general
commentary on the big picture of semi-supervised learning and what insights our
results give. We describe three open questions for future research into the theory of
semi-supervised learning, and offer some general directions researchers can take.

2when no assumptions are made on the relationship between labels and the unlabeled data
structure.
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Chapter 2

Background in Statistical
Learning Theory

Before presenting a new framework for the theoretical analysis of semi-supervised
learning, we will first review some background material on supervised learning the-
ory, also known as statistical learning theory. Our framework will be an extension
of the usual Probably Approximately Correct (PAC) model of Valiant (1984) for su-
pervised learning. We will also cover its “agnostic” version (Haussler, 1992; Kearns
et al., 1992, 1994). Since this thesis is mostly concerned with the informational
or statistical aspects of learning—either supervised or semi-supervised—we avoid
issues of computational complexity of learning, the study of such issues along with
statistical aspects is sometimes known as computational learning theory.

For a more comprehensive and pedagogical treatment of the material in this
chapter, we refer the reader to the following expository works: Anthony and Bartlett
(1999); Kearns and Vazirani (1994); Devroye et al. (1997); Vapnik (1998).

In the rest of this chapter, we will first lay down the notation in Section 2.1
to be used throughout the thesis. Then in Section 2.2 we give an expository tour
of the motivation behind the various aspects and definitions of the PAC model.
In Section 2.3 and 2.4 we formally define notions of a learning algorithm and the
sample size requirements of learning algorithms. Finally, in Section 2.5 we describe
the incredible connection between characterizing learning and the seminal work
of Vapnik and Chervonenkis (1971) on the foundations of statistics.

2.1 Some Notation

While we will also develop notation for new definitions found throughout the re-
mainder of this thesis, we will now present some notation that can be digested for
the reader without a background in statistical learning theory. For background
in probability theory at the measure theoretic level, see for example (Billingsley,
1995).
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• Let X denote the input domain of a classification problem, Y = {0, 1}, and
S0 a σ-algebra over X . We define a measure space (X × Y ,S) where the
σ-algebra S consists of sets of the form A × B where A ∈ S and B ⊆ Y .
Typically, we will assume the input data to a learning algorithm are drawn
independently from some probability measure over this space (see Section 2.2
for more details).

• For a probability distribution P , we denote by Pm the product distribution
P × · · · × P︸ ︷︷ ︸

m times

.

• For a random variable X,

– we denote X ∼ P if X is distributed according to a probability distri-
bution P ,

– we denote PrX∼P (A) the probability that X ∈ A of a measurable set A,

– and we denote the expectation of X with respect to P by EX∼P (X).

• For a probability distribution P over X×Y we denote P (Y |X) the conditional
distribution of Y given X.

• For a positive integer n, denote [n] = {1, 2, . . . , n}.
• We use := to indicate a definition of an equality.

• For a subset T of a domain set, we use 1T to denote its characteristic function
(i.e. equals to 1 if x ∈ T and 0 otherwise).

• We use R and N to denote the real numbers and non-negative integers, re-
spectively.

• We use O(·) for the big-O notation, Ω(·) for big-omega notation and Θ(·) for
big-theta notation.

• We use ◦ for function composition.

• For an indicator function I over some domain X , we define set(I) := {x ∈
X : I(x) = 1}.
• For two sets A and B we denote their symmetric difference by A∆B =

(A\B) ∪ (B\A).

The next section we will discuss some issues in formalizing a model of compu-
tational learning, and hence motivate the concepts of the Probably Approximately
Correct model.
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2.2 Motivating the Probably Approximately Cor-

rect Model

Let us begin with some basic definitions.

Definition 2.1. The labeled training data is a collection

{(x1, y1), (x2, y2), . . . , (xm, ym)}

where for each i ∈ [n], (xi, yi) ∈ X ×Y . Each element of the collection is known as
an example.

In this thesis, we will let Y = {0, 1}, which is known as the classification setting.
When Y is a continuous set, then it is known as the regression setting.

For convenience we will sometimes refer to labeled training data as labeled data,
labeled sample or simply training data. As an example of the above definitions, if
we are interested in automatically classifying email as spam or not spam, we can
model this by letting X be the set of all possible emails (e.g. represent it as a bag of
words vector), 0 as not spam and 1 as spam. We want to design a spam detecting
algorithm that takes as input labeled training data and outputs a predictor for
future emails.

Definition 2.2. A hypothesis (or predictor, or classifier) is a function h : X → Y
such that h−1(1) ∈ S0, for a σ-algebra S0 over X . That is, the set representation
of h, denoted by set(h) = h−1(1), is measurable. A hypothesis class (or space) 1 H

is a set of hypotheses.

Intuitively the input training data must be “representative” of future emails
otherwise you cannot learn useful rule for future prediction. For example, one
cannot expect a student to do well in an exam on linear algebra if a classroom
teacher always gives homework questions on calculus. The PAC model overcomes
this issue by assuming that the training data and future test data are sampled i.i.d.
(independently, identically distributed) according to some fixed, but unknown (to
the learning algorithm) distribution P .

Definition 2.3. A data generating probability distribution, or a labeled distribution,
P is a probability measure defined over (X × Y ,S).

Thus, the input training data is a random variable distributed according to Pm

where m is the training data size. Our aim is to design a learning algorithm that
given the training data, outputs a hypothesis h with low future error on examples
from P .

1Technically we should require that H be permissible, a notion introduced by Shai Ben-David
in (Blumer et al., 1989) which is a “weak measure-theoretic condition satisfied by almost all
real-world hypothesis classes” that is required for learning.
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Definition 2.4. Let P be a distribution over X × Y , and S be a labeled training
sample. The true error of a hypothesis h with respect to P is

ErP (h) := E
(x,y)∼P

(h(x) 6= y) = P{(x, y) : h(x) 6= y}.

The empirical error of a hypothesis h with respect to S is the fraction of misclassified
examples,

ErS(h) :=
|{(x, y) ∈ S : h(x) 6= y}|

|S| .

Note that the curly braces above represent a collection rather than a set. The
Bayesian optimal hypothesis with respect to P is

OPTP (x) =

{
0 if P (y = 0|x) ≥ 1/2,

1 otherwise
.

It is easy to see that the Bayesian optimal classifier is the function with the
smallest possible error. Of course, we usually do not have access to P otherwise
the learning problem simply becomes outputting the Bayesian optimal.

Now we are almost ready to define what it is for an algorithm to learn. One
attempt is to say that an algorithm learns if when we are given more and more
labeled data, we can output hypotheses that get closer and closer in true error to
the Bayesian optimal. However, there is one huge problem: a phenomenon known
as overfitting.

Figure 2.1: Which predictor is better—the “complicated” shape which makes no
mistakes on separating the training data or the simple linear separator that makes
small mistakes? Occam’s razor: “one should not increase, beyond what is necessary,
the number of entities required to explain anything.”

Here is an informal example that captures the essence of overfitting: a class-
room teacher gives some questions and answers, there is a student who learns by
memorizing all the question and answers, should the student expect to do well on

9



an exam? If the exam questions are the same as those given earlier, then the stu-
dent will do perfectly, but if the exam has entirely different questions then quite
possibly not. The major issue here is that it is difficult for the student to assess
her own exam performance if she has not seen the exam, even though she can do
perfectly given previously seen questions. In our setting, the exam plays the role
of future data to classify while questions and answers are training data. See 2.1 for
a pictorial example. Below is a more formal example.

Example 2.1 (Overfitting). Let X = [0, 1] and P be such that its marginal over X
is the uniform distribution and for all x ∈ [0, 1], P (y = 1|x) = 1. For any m > 0,
suppose a training sample is drawn S = {(x1, y1), . . . , (xm, ym)} ∼ Pm. Consider
the hypotheses

1{x1, . . . , xm} =

{
1 if ∃i ∈ [m], x = xi

0 otherwise
, h(x) = 1.

Clearly ErP (h) = ErS(h) = 0. On the other hand ErS(χS) = 0, but ErP (χS) =
P{(x, y) /∈ S} = 1. However, since the input to any algorithm is only S, it cannot
decide how to label the remaining points outside of S because the sample error may
be far from the P -error. How does the PAC model fix this?

2.3 The Agnostic PAC Model

The solution to overfitting in the PAC framework is to restrict oneself to a hypoth-
esis class H that is in some way not “complex” (i.e. cannot be too rich a class that
can overfit), and require that a learning algorithm be one in which the larger the
input training data, the closer the error of the algorithm’s output hypothesis to the
best hypothesis in H.

Definition 2.5. Let X be a domain, Y = {0, 1}, and H a hypothesis class. A
supervised learning algorithm with respect to H is an algorithm

A :
∞⋃
i=0

(X × Y)i → YX ,

(YX is the set of all possible functions from X → Y) such that for every (ε, δ) ∈
(0, 1]2, there exists a non-negative integer m such that for all probability distribu-
tions P over X ×Y , with probability at least 1− δ over a random sample S ∼ Pm,

ErP (A(S))− inf
h∈H

ErP (h) ≤ ε .

The parameters ε and δ are referred to as the accuracy and confidence parameters,
respectively. The above probability and condition can be succinctly written as

Pr
S∼Pm

(
ErP (A(S))− inf

h∈H
ErP (h) ≤ ε

)
≥ 1− δ . (2.1)

10



Occasionally we will be using the term supervised algorithm to refer to any algorithm
that takes training data and outputs a hypothesis (i.e. it does not need to “learn”).

Several things to note in the definition. First, the learning requirement is
distribution-free : there is a sample size for A that only depends on ε, δ,H such
that for any data generating distribution P drawing a sample of size m(A, ε, δ,H)
from P suffices to learn within ε accuracy and δ confidence. This may seem like a
very strong condition, but one of the crowning achievements of learning theory is
that this condition can be satisfied given H is a “nice” class (see Section 2.5).

Second, the ε accuracy condition is relative to the “best” predictor in H (the
best may not exist, but for any ξ > 0 there exist predictors with true errors that
are ξ-close). We only require the learner do well with respect to the best in H and
not necessarily the Bayesian optimal. Of course, learning would not be interesting
if one does not fix a H whose best hypothesis has small error. In the extreme case,
if no hypothesis in H has less than 50% error, then learning is trivially achieved by
outputting a classifier that flips a fair coin to guess a label. Thus,

the learner must use her prior knowledge to choose an appropriate H

that contains a hypothesis with small error.

However, there’s another issue, as we have seen in Example 2.1 and as we will see
in Section 2.5, if a H is chosen with “too many” functions in the hopes that it will
include a hypothesis with low error, one runs into problems with overfitting. Thus,
the learner faces a tradeoff in specifying a H that contains a hypothesis with low
error and not having a class of “rich” functions.

Third, the algorithm can output any hypothesis, not just ones inside H. The
only requirement is that the true error of the output hypothesis is close to the true
error of the “best” hypothesis in H. For example, the algorithm may even restrict
its output predictors to lie inside another hypothesis class H′ that does not overlap
with H.

While in the original PAC formulation the learning algorithm must run in poly-
nomial time with respect to the training sample size, in this thesis we will ignore any
computational complexity issues. Instead we focus on informational complexity.

Definition 2.6. We define the supervised learning (SL) sample complexity with
respect to supervised algorithm A, ε, δ > 0, hypothesis class H, and distribution P
over X × Y as

mSL(A, ε, δ,H, P ) := min

{
m

∣∣∣∣ Pr
S∼Pm

(
ErP (A(S))− inf

h∈H
ErP (h) ≤ ε

)
≥ 1− δ

}
and we define the supervised learning sample complexity as

mSL(ε, δ,H) := min
A

sup
P
mSL(A, ε, δ,H, P ).
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That is, the sample complexity tells us that there exists a learning algorithm
such that if the training data is of size at least mSL(ε, δ,H) then we can obtain
accuracy ε and confidence δ. If the input data size is any less than mSL(ε, δ,H)
then there is no algorithm that can obtain the desired accuracy and confidence.
The sample complexity for supervised learning and semi-supervised learning (to be
defined later) is the main focus of this thesis. In essence, we are interested in seeing
if it is smaller for SSL compared with SL.

2.4 The Realizable PAC Model

What we have described in the previous section is the known as the agnostic ex-
tension of the original PAC model. It is so-called because one does not assume
anything about the Bayesian optimal classifier—it can have positive error or it can
have zero error and may not lie inside H. In this section we describe the original
PAC model, one that assumes the labels of data generating distribution come from
some hypothesis in H.

Definition 2.7. Fix H over X ,Y . A hypothesis h is a target hypothesis if the
underlying data generating distribution P over X ×Y has the property that P (y =
h(x)|x) = 1. More succinctly, ErP (h) = 0. For such a P , we rewrite it as Ph. The
realizable setting occurs if a target hypothesis exists in H.

Indeed, the realizable assumption is quite strong: the learner must know in
advance that the Bayesian optimal has zero error and must lie in the chosen hy-
pothesis class. On the other hand, one can obtain better bounds on the sample
complexity (see Section 2.5). The modified definition of a learning algorithm is the
same as in Definition 2.5 except the set of distributions is restricted to those that
respect the realizable property.

Definition 2.8. A supervised learning algorithm for realizable setting with respect
to H is an algorithm

A :
∞⋃
i=0

(X × Y)i → YX ,

such that for every (ε, δ) ∈ (0, 1]2, there exists a non-negative integer m such that
for all probability distributions Pg over X × Y , where g ∈ H,

Pr
S∼Pm

g

(
ErPg(A(S))− inf

h∈H
ErPg(h) ≤ ε

)
≥ 1− δ .

We will often use the term supervised learning algorithm to refer to both the
realizable and agnostic settings, and it will be clear which definition is being used
by the context. The sample complexity can be defined analogously to Definition 2.6
(again, we will use the term SL sample complexity to refer to both agnostic and
realizable settings).

12



Definition 2.9. We define the supervised learning (SL) sample complexity for re-
alizable setting with respect to supervised algorithm A, ε, δ > 0, hypothesis class
H, and distribution Pg over X × Y where g ∈ H as

mSL(A, ε, δ,H, Pg) := min

{
m

∣∣∣∣ Pr
S∼Pm

g

(
ErPg(A(S))− inf

h∈H
ErPg(h) ≤ ε

)
≥ 1− δ

}
and we define the supervised learning sample complexity for realizable setting as

mSL(ε, δ,H) := min
A

sup
Pg :g∈H

mSL(A, ε, δ,H, Pg).

Going back to address the issue in Example 2.1 on overfitting, we will now turn
our attention to “complexity” or “richness” property of H that will affect both the
issue of whether a learning algorithm exists at all and how the sample complexity
depends on it.

2.5 Learnability and Distribution-Free Uniform

Convergence

It turns out that there is a beautiful connection between PAC learning and the sem-
inal work of Vapnik and Chervonenkis (1971) on empirical process theory. Roughly,
their result says that given H is not too complex (to be defined shortly) then it is
possible to estimate the true error of all hypotheses via the sample error given a
sufficiently large sample that does not depend on the data generating distribution.
Before we formally state this main theorem, we need to develop the notion of the
complexity of H that will characterize PAC learning.

Definition 2.10. Let X be a domain, Y = {0, 1}, and H a hypothesis class over
X ,Y . For h ∈ H and a set A = {a1, . . . , am} ⊆ X let h(A) := (h(a1), . . . , h(am)) ∈
Ym. Define the growth function as follows,

Π(m,H) := max
A⊆X :|A|=m

|{h(A) : h ∈ H}|.

For a set A such that |{h(A) : h ∈ H}| = 2|A| we say that H shatters A. The
Vapnik-Chervonenkis dimension of H is the size of the largest shatterable set,

VC(H) := sup {m : Π(m,H) = 2m}

To see some examples of the VC dimension of some basic classes such as union
of intervals and linear halfspaces, refer to Appendix A.

The VC(H) fully characterizes uniform convergence of estimates of sample error
to the true error, with explicit upper and lower bounds on the convergence rate
that match to within a constant factor. The supremum in the definition of the
VC-dimension covers the case when VC(H) = ∞, in which case, as we will see,
imply no learning algorithm exists that can compete with the best hypothesis in
H.
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2.5.1 Agnostic Setting

Let us first state an upper bound on the uniform convergence. This result was first
proved by Vapnik and Chervonenkis (1971) and subsequently improved on with
results from Talagrand (1994) and Haussler (1995).

Theorem 2.1 (Distribution-Free Uniform Convergence). Fix a hypothesis class
H over X ,Y = {0, 1}. There exists a positive constant C, such that for every
ε, δ ∈ (0, 1]2, if

m ≥ C

ε2

(
VC(H) + ln

(
1

δ

))
then for every probability distribution P over X × Y,

Pr
S∼Pm

(∀h ∈ H,
∣∣ErS(h)− ErP (h)

∣∣ ≤ ε
) ≥ 1− δ . (2.2)

One may also express ε in terms of given values of m and δ or express δ as
a function of ε and m. The crucial features of uniform convergence is that it is
distribution-free as discussed earlier, and the condition inside (2.2) holds for all
hypotheses in H.

This uniform convergence result leads to a very natural, intuitive, and naive
algorithm: given a training sample S, pick any hypothesis h that has the smallest
empirical error in H.

Definition 2.11 (ERM Paradigm). Given a training sample S, the empirical risk
minimization paradigm is any algorithm that outputs a hypothesis with minimum
sample error,

ErS(ERM(S)) = min
h∈H

ErS(h) .

This is only a statistical principle and does not consider the computational
complexity of finding the empirical minimizer. We note that ERM actually refers
to a class of possible algorithms that outputs the empirical error minimizer as our
next example shows.

Example 2.2 (Different ERM Algorithms). Suppose we are learning initial seg-
ments (or thresholds) over X = R, that is, hypotheses

H = {1(∞, a] : a ∈ R}
and our data generating distribution P is such that the marginal P over R is the
uniform distribution over the unit interval, and the conditional

P (y = 1|x) =

{
1 if x < 1/2

0 otherwise
,

so that 1(−∞, 1/2] has zero error. Now when a training sample

S = {(x1, y1), . . . , (xm, ym)}
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is drawn i.i.d. from P , we can have several different ERM approaches. For simplicity
reorder the indices of the sample so that x1 ≤ x2 ≤ · · · ≤ xm, and let ` = max{xi :
yi = 1} and r = min{xi : yi = 0}.

LeftERM(S) = 1(−∞, `] (2.3)

RightERM(S) = 1(−∞, r)

ERMRandom(S)(x) =


1 if x ≤ `

0 if x ≥ r

1 with probability 1/2

RandomERM(S) ∼ Bernoulli({LeftERM(S),RightERM(S)}, 1/2). (2.4)

The deterministic algorithm ERMRandom outputs a stochastic classifier that out-
puts a random guess in the interval [x`, xr], this is different than the randomized
algorithm RandomERM that flips a fair coin and outputs the classifier LeftERM(S)
or RightERM(S). Note that we need not output a hypothesis in H, just one that has
smallest empirical error with respect to those in H (of course we need to be careful
with overfitting). For the rest of this thesis, we will assume that ERM chooses a
hypothesis in H with smallest empirical error.

Now, this is the stage where we show the connection between uniform conver-
gence and sample complexity. Namely, that uniform convergence justifies the ERM
principle, which in turn imply an upper bound on the SL sample complexity.

Theorem 2.2 (Agnostic Supervised Learning Upper Bound). Let C be the constant
in Theorem 2.1, and

m0 :=
4C

ε2

(
VC(H) + ln

(
1

δ

))
. (2.5)

If m ≥ m0 then for any distribution P over X × Y,

Pr
S∼Pm

(
ErP (ERM(S))− inf

h∈H
ErP (h) ≤ ε

)
≥ 1− δ .

In other words the SL sample complexity mSL(ε, δ,H) ≤ m0.

Proof. Let2 h∗P := argminh∈H ErP (h). By Theorem 2.1, assuming m ≥ m0, then
for all P , with probability 1− δ over sample S, the following holds,

ErP (ERM(S)) ≤ ErS(ERM(S)) +
ε

2
by (2.2)

≤ ErS(h∗P ) +
ε

2
by definition of ERM

≤
(

ErP (h∗P ) +
ε

2

)
+
ε

2
by (2.2)

= ErP (h∗P ) + ε ,

which is exactly the requirement from (2.1) for learning.

2While the optimal hypothesis in H with respect to P may not exist, we can take a hypothesis
that gets close enough to the infimum for the proof to follow through.
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It turns out that ERM is optimal with respect to the SL sample complexity, up
to constant factors. The following is a corresponding lower bound for the sample
complexity (i.e. no algorithm has better than constant sample complexity). This
lower bound essential results from Vapnik and Chervonenkis (1974).

Theorem 2.3 (Agnostic Supervised Learning Lower Bound). For (ε, δ) ∈ (0, 1/64)2,

mSL(ε, δ,H) ≥ VC(H)

320ε2

if H contains at least two hypotheses then for ε ∈ (0, 1) and δ ∈ (0, 1/4), we also
have

mSL(ε, δ,H) ≥ 2

⌊
1− ε2
ε2

ln
1

8δ(1− 2δ)

⌋
The proofs of Theorem 2.1 and Theorem 2.3 can be found in the expository

book of Anthony and Bartlett (1999, Chap. 4 and 5, respectively). Now we will
turn our focus to the sample complexity of the realizable setting where one makes
the strong assumption that a zero error hypothesis lies in the chosen hypothesis
space.

2.5.2 Realizable Setting

For the realizable setting (see the definition in Section 2.4) there are better sample
complexity bounds. Basically, the ε2 in the denominator of the sample complex-
ity upper bound (see Equation (2.5)) reduces to ε. The corresponding algorithm
which matches the sample complexity upper bounds is, unsurprisingly, ERM. The
following upper bound was originally proved by Blumer et al. (1989).

Theorem 2.4 (Realizable Supervised Learning Upper Bound). The supervised
learning sample complexity, mSL(ε, δ,H), for the realizable setting satisfies

mSL(ε, δ,H) ≤ 4

ε

(
VC(H) ln

(
12

ε

)
+ ln

(
2

δ

))
.

This bound is achieved by ERM which outputs any hypothesis that is consistent with
the training sample.

The following lower bound, which matches the upper bound up to a factor of
ln(1/ε), first appeared in Ehrenfeucht et al. (1989).

Theorem 2.5 (Realizable Supervised Learning Lower Bound). The supervised
learning sample complexity, mSL(ε, δ,H), for the realizable setting satisfies

mSL(ε, δ) ≥ VC(H)− 1

32ε

and if H contains at least two hypotheses then for ε ∈ (0, 3/4) and δ ∈ (0, 1/100),

mSL(ε, δ) >
1

2ε
ln

(
1

δ

)
.
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The proofs of these bounds can also be found in (Anthony and Bartlett, 1999,
Chap. 4 and 5).

Now we are ready to move onto the next chapter of this thesis, where we will
present a new model for semi-supervised learning that is based on the PAC model
discussed in this chapter.
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Chapter 3

Modelling Semi-Supervised
Learning

In this chapter we will present a new, formal mathematical model for semi-supervised
learning. This model is “utopian,” where we assume that the distribution of the
unlabeled data is given to the semi-supervised learner. The intuition here is that
unlabeled data is abundant and cheap and that the learner can essentially “re-
construct” the distribution over the unlabeled data. From this point of view of
semi-supervised learning, any positive result in the usual model of SSL, where a
sample of unlabeled data is given rather than an entire distribution, is a positive
result in our utopian model. And of course, any inherent limitations of this utopian
SSL model implies inherent limitations in the usual model. Our model is based on
the Probably Approximately Correct (PAC) model of Valiant (1984) and also its
agnostic version (Haussler, 1992; Kearns et al., 1992, 1994). See Chapter 2 for
background on PAC learning.

The purpose of this new model is to analyze SSL in a clean way without dealing
with unlabeled data sampling issues, and to also compare the potential gains of
this utopian model of SSL with that of supervised learning. This last part will
be investigated further in Chapter 4. This chapter will be devoted to presenting
the model, discussions about the model, and how it fits with related work on the
practice and theory of SSL.

In Section 3.1 we present the new model of semi-supervised learning, its motiva-
tions and consequences for the ordinary model of semi-supervised learning. We dis-
cuss related work in Section 3.2 on the theory of semi-supervised learning and how
they are unsatisfactory, as well as putting into perspective various approaches—
both practically and theoretically inspired—in the use of unlabeled data. In Sec-
tion 3.3 we investigate (naturally occurring) scenarios that can hurt semi-supervised
learning under the practically popular “cluster assumption,” and show the inher-
ent dangers with using inaccurate prior knowledge about the relationship between
labels and the unlabeled data structure.
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3.1 Utopian Model of Semi-Supervised Learning

In the usual setup for semi-supervised learning a learner is given training data that
consists of labeled data

(x1, y1), (x2, y2), . . . , (xm, ym) ∈ X × Y

and in addition, unlabeled data

xm+1, xm+2, . . . , xm+u ∈ X ,

and the goal, or rather hope, is to output a hypothesis h : X → Y that is better
than what we can get from the labeled data alone. In applications such as nat-
ural language processing or computer vision the unlabeled data is typically much
more abundant than labeled data. Whereas labeled data may need to be obtained
through the use of specialized human annotators (e.g. labeling web pages), unla-
beled data is typically widely available (e.g. web pages, emails). Let us first define
some terms before continuing our discussion.

Definition 3.1. An unlabeled probability distribution D is a distribution over X .
For a labeled distribution P over X ×Y , we denote D(P ) the marginal distribution
of P over X . That is, for every measurable set A ⊆ X, D(P )(A) := P (A × Y).
The extension of an unlabeled distribution D is

Ext(D) := {P : P is a distribution over X × Y , D(P ) = D}.

For an unlabeled distribution D and a hypothesis h let Dh be the distribution over
X ×Y such that Dh(y = h(x) | x) = 1. For an unlabeled sample S = {x1, . . . , xm},
we denote by (S, h(S)) the labeled sample {(x1, h(x1)), . . . , (xm, h(xm))}.

Of course, to provide theoretical guarantees for semi-supervised learning one
must make restrictions on the data generating process just as in the PAC model.
A very natural extension is to assume that there is an underlying data generating
distribution P from which the labeled training data is drawn i.i.d. and also the
underlying unlabeled distribution D(P ) from which the unlabeled data is drawn
i.i.d.

Because unlabeled data is usually plentiful, we are going to make the “utopian”
assumption that the unlabeled distribution is fully given to the learner. That is,
the learner gets as input a sample of labeled data from P and also the complete
distribution D(P ). While this may seem like providing the learner with too much
help, we show that there is still limitations of what the learner can gain over not
knowing the unlabeled distribution at all. We are being somewhat informal with
what it means to compute with distributions (whose support can be continuous),
but basically the algorithm has access to the probability of any measurable set as
well as samples drawn i.i.d.
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One can imagine that in this model, we can obtain so much unlabeled data
that we can “reconstruct” the distribution. Of course, this is not completely true
because we cannot uniformly estimate the probability of all measurable sets (i.e.
there is always overfitting) with finite sample. But it gives a framework in which:

1. We steer clear of the sampling issues

2. Any negative result in our model implies negative results in the usual semi-
supervised learning model

3. Any positive result in the usual model implies a positive result in our model.

Definition 3.2. Let H be a hypothesis class, and D the set of all unlabeled dis-
tributions over X . A semi-supervised (SSL) learning algorithm is an algorithm

A :
∞⋃
i=0

(X × Y)i ×D→ YX ,

such that for every (ε, δ) ∈ (0, 1]2, there exists a non-negative integer m such that
for all probability distributions P over X × Y ,

Pr
S∼Pm

(
ErP (A(S,D(P )))− inf

h∈H
ErP (h) ≤ ε

)
≥ 1− δ .

We will also use term semi-supervised algorithm to refer to an algorithm that take
as input a labeled sample and an unlabeled distribution and outputs a hypothesis
(but need not “learn”).

In theory, the definition allows the semi-supervised algorithm to output hy-
potheses not belonging to H. In fact, the algorithm can construct a hypothesis
class HD dependent on unlabeled distribution D, and output a hypothesis in HD,
but as will be defined later on, the performance must be measured with respect
to a hypothesis class fixed before seeing D. This requirement is necessary for a
well-defined, and meaningful comparison between supervised and semi-supervised
learning (see Section 4.1).

A semi-supervised learning algorithm for the realizable setting (see Section 2.4)
can also be analogously defined, except the requirement “for all probability dis-
tributions P” it can be replaced with “for all probability distributions Dh where
h ∈ H.”

Definition 3.3. We define the semi-supervised learning (SSL) sample complexity
with respect to semi-supervised algorithm A, ε, δ > 0, hypothesis class H, and
distribution P over X × Y as

mSSL(A, ε, δ,H, P ) :=

min

{
m

∣∣∣∣ Pr
S∼Pm

(
ErP (A(S,D(P )))− inf

h∈H
ErP (h) ≤ ε

)
≥ 1− δ

}
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and we define semi-supervised learning (SSL) sample complexity as

mSSL(ε, δ,H) := min
A

sup
P
mSSL(A, ε, δ,H, P ).

Remark. We note that this sample complexity is only concerned with the amount
of labeled data needed, since we are not concerned about the supply of unlabeled
data. We can also extend this definition to the realizable setting by restricting the
set of data generating distributions to those P where there is some h ∈ H with
ErP (h) = 0.

It turns out that the semi-supervised learning sample complexity mSSL(ε, δ,H)
(on worst P ) is uninteresting as it can be shown that the worst distribution gives
sample complexity bounds as bad as that of supervised learning. Specifically, the
bad distribution is concentrated at shattered points with very high noise. See
Corollary 4.10 for the sample complexity. Instead we are interested in comparing
the sample complexity of SL and SSL for any fixed unlabeled distribution. Before
moving further to address this question, we discuss some previous semi-supervised
learning paradigms—how they are related to our model and how they differ.

3.2 Related Work

Analysis of performance guarantees for semi-supervised learning can be carried out
in two main setups. The first focuses on the unlabeled data distribution and does
not make any prior assumptions about the conditional label distribution. The sec-
ond approach focuses on assumptions about how the conditional labeled distribu-
tion is related to the unlabeled distribution, under which semi-supervised learning
has potentially better label prediction performance than learning based on just la-
beled samples. The investigation of the first setup was pioneered by Vapnik in the
late 1970s in his model of transductive learning (see for example, Chapelle et al.,
2006, Chap. 24). There has been growing interest in this model in the recent years
due to the popularity of using unlabeled data in practical label prediction tasks.
This model assumes that unlabeled examples are drawn i.i.d. from an unknown
distribution, and then the labels of some randomly picked subset of these exam-
ples are revealed to the learner. The goal of the learner is to label the remaining
unlabeled examples minimizing the error. The main difference between this model
and SSL is that the error of learner’s hypothesis is judged only with respect to the
known initial sample and not over the entire input domain X .

However, there are no known bounds in the transductive setting that are strictly
better than supervised learning bounds1. The bounds in Vapnik (2006) are almost
identical. El-Yaniv and Pechyony (2007) prove bounds that are similar to the usual

1We are not formal about this, but we are comparing the accuracy parameter ε (between
training error and test data error) in the uniform convergence bounds of transductive learning
with that of supervised learning.
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margin bounds using Rademacher complexity, except that the learner is allowed to
decide a posteriori the hypothesis class given the unlabeled examples. But they do
not show whether it can be advantageous to choose the class in this way. Their
earlier paper (El-Yaniv and Pechyony, 2006) gave bounds in terms of a notion
of uniform stability of the learning algorithm, and in the broader setting where
examples are not assumed to come i.i.d. from an unknown distribution. But again,
it’s not clear whether and when the resulting bounds are better than the supervised
learning bounds.

Kääriäinen (2005) proposes a method for semi-supervised learning, in the re-
alizable setting, without prior assumption on the conditional label distributions.
The algorithm of Kääriäinen is based on the observation that one can output the
hypothesis that minimizes the unlabeled distribution probabilities of the symmetric
difference to all other hypothesis of the version space (i.e. consistent hypothesis).
This algorithm can reduce the error of empirical risk minimization by a factor of
two. For more details on this algorithm, see Definition 4.5 and the discussion that
follows.

Earlier, Benedek and Itai (1991) presented a model of “learning over a fixed
distribution.” This is closely related to our model of semi-supervised learning, since
once the unlabeled data distribution is fixed, it can be viewed as being known to the
learner. The idea of Benedek and Itai’s algorithm is to construct a minimum ε-cover
of the hypothesis space under the pseudo-metric induced by the data distribution.
The learning algorithm they propose is to apply empirical risk minimization on the
hypotheses in such a cover. Of course this ε-cover algorithm requires knowledge of
the unlabeled distribution, without which the algorithm reduces to ERM over the
original hypothesis class. We will explain this algorithm in more detail below (See
Section 3.2.1).

The second, certainly more popular, set of semi-supervised approaches focuses
on assumptions about the conditional labeled distributions. A recent extension of
the PAC model for semi-supervised learning proposed by Balcan and Blum (2005,
2006) attempts to formally capture such assumptions. They propose a notion of a
compatibility function that assigns a higher score to classifiers which “fit nicely”
with respect to the unlabeled distribution. The rationale is that by narrowing down
the set of classifiers to only compatible ones, the complexity of the set of potential
classifiers goes down and the generalization bounds of empirical risk minimization
over this new hypothesis class improve. However, since the set of potential classi-
fiers is trimmed down by a compatibility threshold, if the presumed label-structure
relationship fails to hold, the learner may be left with only poorly performing classi-
fiers. One serious concern about this approach is that it provides no way of verifying
these crucial modelling assumptions. In Section 3.3 we demonstrate that this ap-
proach may damage learning even when the underlying assumptions seem to hold.
In Lemma 3.1 we show that without prior knowledge of such relationship that the
Balcan and Blum approach has poor worst-case generalization performance.

Other investigations into theoretical guarantees of semi-supervised learning have
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shed some light on specific approaches and algorithms. Typically, these generaliza-
tion bounds become useful when some underlying assumption on the structure of
the labeled distribution is satisfied. In the rest of the discussion we will point out
some of these assumptions used by popular SSL algorithms.

Common assumptions include the smoothness assumption and the related low
density assumption (Chapelle et al., 2006) which suggests that a good decision
boundary should lie in a low density region. For example, Transductive Support
Vector Machines (TSVMs) proposed by Joachims (1999) implements the low den-
sity assumption by maximizing the margin with respect to both the labeled and
unlabeled data. It has, however, been observed in experimental studies (T. Zhang,
2000) that performance degradation is possible with TSVMs.

In Section 3.3, we give examples of mixtures of two Gaussians showing that
the low density assumption may be misleading even under favourable data gener-
ation models, resulting in low density boundary SSL classifiers with larger error
than the outcome of straightforward supervised learning that ignores the unlabeled
data. Such embarrassing situations can occur for any method implementing this
assumption.

Co-training Blum and Mitchell (1998) is another empirically successful tech-
nique which has been backed by some generalization bounds by Dasgupta et al.
(2001). The idea is to decompose an example x into two “views” (x1, x2) and try
to learn two classifiers that mostly agree in their classification with respect to the
two views. The crucial assumption on the labeled distribution is that x1 occurs
independently from x2 given the class labels.

Cozman and Cohen (2006) investigate the risks of using unlabeled data in ex-
plicitly fitting parametric models (e.g. mixture of Gaussians) P (x, y | θ), where θ
is some parameter, to the ground truth data generating distribution P (x, y) (i.e.
learning generative classifiers). They show a result of the form: if P (x, y) does
belong in the parametric family, then the use of unlabeled data will indeed help,
otherwise using unlabeled data can be worse than simply ignoring it and performing
supervised learning. The former (positive) statement has been known since the late
1970s and is also shown in Castelli (1994); Castelli and Cover (1996); Ratsaby and
Venkatesh (1995). Their result attempts to explain experimental observations that
show unlabeled data can degrade the performance of generative classifiers (e.g.
Bayes nets) when the wrong modelling assumptions are made (see for example,
Bruce, 2001).

However, all these approaches, are based on very strong assumptions about the
relationship between labels and the unlabeled distribution. These are assumptions
that are hard to verify, or to justify on the basis of prior knowledge of a realistic
learner.
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3.2.1 Previous Theoretical Approaches

Previous approaches to semi-supervised learning for the case when no assumptions
are made on the relation between labels and the unlabeled data structure (which we
call the no-prior-knowledge setting) have used the unlabeled sample to figure out
the “geometry” of the hypothesis space with respect to the unlabeled distribution.
A common approach is to use that knowledge to reduce the hypothesis search space.
In doing so, one may improve the generalization upper bounds.

Definition 3.4. Given an unlabeled distribution D and a hypothesis class H over
some domain X , an ε-cover is a subset H′ ⊆ H such that for any h ∈ H there
exists g ∈ H′ such that

D(set(g)∆ set(h)) ≤ ε.

Note that if H′ is an ε-cover for H with respect to D, then for every extension
P ∈ Ext(D),

inf
g∈H′

ErP (g) ≤ inf
h∈H

ErP (h) + ε.

In some cases the construction of a small ε-cover is a major use of unlabeled
data. Benedek and Itai (1991) analyze the approach, in the case when the unlabeled
distribution is fixed and therefore can thought of as being known to the learner.
They show that the smaller an ε-cover is, the better its generalization bound for
the empirical risk minimization (ERM) algorithm over this cover. However, is it the
case that if the ε-cover is smaller, then supervised ERM can also do just as good?
For example, if the unlabeled distribution has support on one point, the ε-cover will
have size at most two, and while the sample complexity goes down for the fixed
distribution learner, it also goes down for an oblivious supervised ERM algorithm.
This latter question is what differentiates the focus of this thesis from the focus of
fixed distribution learning.

Balcan and Blum (2006) suggest a different way of using the unlabeled data to
reduce the hypothesis space. However, we claim that without making any prior as-
sumptions about the relationship between the labeled and unlabeled distributions,
their approach boils down to the ε-cover construction described above.

Lemma 3.1. Let H be any hypotheses class, ε, δ > 0, and D be any unlabeled
distribution. Let H′ ⊆ H be the set of “compatible hypotheses.” Suppose A is an
SSL algorithm that outputs any hypothesis in H′. If H′ does not contain an ε-cover
of H with respect to D, the error of the hypothesis that A outputs is at least ε
regardless of the size of the labeled sample.

Proof. Since H′ does not contain an ε-cover of H, there exist a hypothesis h ∈ H
such that for all g ∈ H ′, D(set(g)∆ set(h)) > ε. Thus, for any g ∈ H ′, ErDh(g) > ε.
Algorithm A outputs some g ∈ H ′ and the proof follows.
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This lemma essentially says that either the “compatible hypotheses” form an
ε-cover—in which case it reduces to the algorithm of Benedek and Itai (1991) that
is not known to do better than supervised learning, or it hurts SSL by learning over
a hypothesis class H′ whose best hypothesis is ε worse than the best in H.

Kääriäinen (2005) utilizes the unlabeled data in a different way. Given the
labeled data his algorithm constructs the version space V ⊆ H of all sample-
consistent hypotheses, and then applies the knowledge of the unlabeled distribution
D to find the “centre” of that version space. Namely, a hypothesis g ∈ V that
minimizes maxh∈H D(set(g)∆ set(h)). See Definition 4.5 and the discussion that
follows for a concrete example of this algorithm over thresholds on the real line.

Clearly, all the above paradigms depend on the knowledge of the unlabeled
distribution D. In return, better upper bounds on the sample complexity of the
respective algorithms (or equivalently on the errors of the hypotheses produced by
such algorithms) can be shown. For example, Benedek and Itai (1991) give (for the
realizable case) an upper bound on the sample complexity that depends on the size
of the ε-cover—the smaller ε-cover, the smaller the upper bound.

In the next section we analyze a concrete example of the issues inherent in doing
semi-supervised learning with assumptions on the relationship between labels and
the unlabeled distribution. This assumption, known as the cluster assumption or
sometimes the low density assumption, is a widely held belief when performing SSL.
However, it may mislead SSL and result in a worse classifier compared to simply
performing supervised learning using only the labeled data.

3.3 Issues with the Cluster Assumption

One important point that can be raised against a no-prior-knowledge (i.e. not
making assumptions on the relationship between labels and the unlabeled data
structure) analysis of semi-supervised learning is that in practice, people often make
assumptions on the relationship between labels and the unlabeled distribution.
And while it may not be surprising that such a no-prior-knowledge analysis shows
that unlabeled can’t help by much, it is also worthwhile to note that even when
these assumptions do hold to some degree, it is still possible for the learner to
end up doing much worse than simply ignoring the unlabeled data and performing
supervised learning.

One very common assumption is known as the cluster assumption, which is
loosely defined as the following, taken from Chapelle et al. (2006, Chap.1).

Cluster Assumption. “If points are in the same cluster, they are
likely to be of the same class.”

This seems like a very natural assumption. Data points that are “clustered” closely
together should share the same labels, and two data points that are more distant
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should belong to different classes (this is not explicitly stated in the assumption,
though). Of course, this assumption as stated above depends on a definition of
what it means for two points to be in the same “cluster,” which is not a well-
defined notion in unsupervised learning.

A popular intuition for what clusters are is the belief that if there is a high-
density path (with respect to the data generating distribution) between two points,
then those two points should belong in the same cluster, otherwise they should
belong in different clusters. This gives rise to a similar, sometimes known as being
equivalent, SSL assumption (taken from Chapelle et al., 2006, Chap. 1)

Low Density Boundary Assumption. “The decision boundary
should lie in a low density region.”

For example, the popular Transductive Support Vector Machine of Joachims (1999)
uses this assumption. However, this again, is an ill-defined assumption. While the
density of a decision boundary is a well-defined mathematical notion, it is not clear
what it means for the boundary to lie in a low density region. Should it be the
lowest density boundary possible or should it have density some ε away from the
lowest density boundary? What should this tolerance, ε, be?

To make the above issues concrete, consider the examples shown in Figures 3.1,
3.2 and 3.3. In Figure 3.1, there is a mixture of two Gaussians on the real line with
the same variance but different means. Each Gaussian always generates labels of
one type and the other Gaussian generates labels of another type. The Bayesian
Optimal separation boundary is at x = 1. However, their combined distribution
has the highest density at x = 1! First, the cluster assumption does not even apply,
and second the low density assumption is misleading as the highest density point
is the best decision boundary.

Figure 3.2 shows a similar phenomenon, except the two (homogeneous labeled)
Gaussians have different variance and mean. Their combined density first reaches
a high density point, then drops to a low density point and then rises to another
high density point. The cluster assumption and the low density assumption says
that there should be two clusters here, separated by the least dense threshold. In
this case the lowest density threshold is close to x = 3, but the Bayesian Optimal
threshold is close to x = 2! This results in a significant difference in the error of
the low density output and the optimal. Figure 3.3 shows a similar issue, except
the mixtures are not Gaussians but still homogeneous “blocks.” In this case, the
error of the low density classifier is twice as bad as that of the optimal.

In all three of the above examples, a supervised learning algorithm that performs
a simple ERM scheme will pick something close to the optimal boundary, given
sufficient labeled examples. But semi-supervised learning that implements these
assumptions can be mislead and always end up choosing the bad classifier regardless
of the size of the labeled examples.

The approach of Balcan and Blum (2005) suffers from the same issue. The
threshold of the compatibility function may be such that the remaining compatible
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Figure 3.1: Mixture of two Gaussians N (0, 1) (labeled ’-’) and N (2, 1) (labeled ’+’)
shows that the optimum threshold is at x = 1, the densest point of the unlabeled
distribution. The sum of these two Gaussians is unimodal.

hypothesess are all bad classifiers. For example, the compatible hypotheses may
only be those ones that have the lowest possible density, of which none might be
the best classifier.

Rigollet (2007) presents a formal model of the cluster assumption. Given a
probability distribution, D over some Euclidean data domain and its corresponding
density function f , define, for any positive real number, a, L(a) = {x : f(x) > a}.
The cluster assumption says that points in each of the connected components of
L(a) (after removal of “thin ribbons”) have the same Bayesian optimum label.
These components are the “clusters” and the SSL learner Rigollet proposes simply
assigns the majority label to each cluster, given the labeled data. This is a very
strong assumption under which one uses unlabeled data.

Since Rigollet’s SSL learner’s hypothesis space is data dependent (i.e. all pos-
sible labellings of the discovered clusters), it does not fit our framework where the
hypothesis space must be fixed before seeing the unlabeled distribution. Thus, it
is not really comparable with supervised learning in our setting.

However, in spite of the strong cluster assumption of Rigollet and the data
dependent hypothesis space, we can prove that the ratio between the sample com-
plexity of SSL and SL is at most d, the Euclidean dimension of the input data.
In particular, the results of Section 4.4 (see Theorem 4.9) show a lower bound of

Ω
(
k+ln(1/δ)

ε2

)
on the sample complexity of SSL learning under this cluster assump-

tion2, where k is the number of connected components of L(a) (i.e. “clusters”).

2Note that technically this lower bound applies when the unlabeled distribution mass of each

27



−2 −1 0 1 2 3 4

1
2N(0, 1)

1
2 (N(0, 1) + N(4, 2))

1
2N(4, 2) OPT

min density

Figure 3.2: Mixture of two Gaussians N (0, 1) (labeled ’-’) and N (4, 2) (labeled ’+’)
with difference variances. The minimum density point of the unlabeled data (the
sum of the two distributions) does not coincide with the optimum label-separating
threshold where the two Gaussians intersect. The classification error of optimum
is ≈ 0.17 and that of the minimum density partition is ≈ 0.21.

P1, slope = −1

P2, slope = 1− ε

OPT

min density

Err(min density) ≈ 2Err(OPT)

Err(OPT)

Figure 3.3: The solid line indicates the distribution P1 (labeled ’-’) and the dotted
line is P2 (labeled ’+’). The x coordinate of their intersection is the optimum label
prediction boundary. The slope of the solid line is slightly steeper than that of the
dotted line (|−1| > 1− ε). The minimum density point occurs where the density of
P1 reaches 0. The error of the minimum unlabeled density threshold is twice that
of the optimum classifier.
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For a supervised learner that only has access to labeled examples, the learner can
apply a simple ERM algorithm to the class of all k-cell Voronoi partitions of the
space. Since the VC-dimension of the class of all k-cell Voronoi partitions in Rd is
of order kd, the usual VC-bounds on the sample complexity of such a SL learner is

O
(
kd+ln(1/δ)

ε2

)
examples.

In Chapter 4 we will formally analyze what semi-supervised learning can gain
over supervised learning (in the labeled sample complexity) under our framework
when no assumptions are made between the relationship of labels and the unlabeled
distribution (i.e. a no-prior-knowledge analysis).

of the clusters are the same, but its proof can be adapted so that there’s an extra constant hidden
in the lower bound that depends on how “evenly balanced” the cluster probability masses are.
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Chapter 4

Inherent Limitations of
Semi-Supervised Learning

While it may appear that having complete knowledge of the unlabeled distribu-
tion can provide great advantage in the labeled sample complexity required when
doing SSL in practice, compared to supervised learning, we give evidence in this
chapter that there are in fact inherent limitations of the advantage of having this
extra knowledge. There is an important caveat here, we conjecture for any general
hypothesis space, and prove it for some basic hypothesis classes, that knowing the
unlabeled distribution does not help without making assumptions about the rela-
tionship between labels and the unlabeled distribution. That is, our analysis in
this chapter can be called a no-prior-knowledge analysis where one does not make
additional assumptions than what is assumed in the typical PAC model (e.g. one
does not assume the cluster assumption).

Of course, one may object and say that not making SSL specific assumptions
obviously implies unlabeled data is unuseful. However, there are a few points to
make about this issue:

1. We prove that the “center of version space” algorithm of Kääriäinen (2005)
(that do not make SSL assumptions) for thresholds over the real line can gain
a factor of two over currently known upper bounds on the sample complexity
of supervised learning.

2. We have shown in Section 3.3 that there is a potential danger of damag-
ing learning when making SSL assumptions. The danger occurs when these
assumptions don’t fit, if even slightly.

3. The current state of the art in (unlabeled) distribution-specific learning do not
provide tight upper and lower bounds on the sample complexity that match,
within a constant factor independent of the hypothesis class, the upper bound
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of supervised learning, for any unlabeled distribution1. For example, the lower
bound of Benedek and Itai (1991) is very loose.

It is true that when doing SSL in practice, many practitioners make assump-
tions on the relationship between labels and the unlabeled data distribution (e.g.
cluster assumption). But we have seen that this can potentially lead to undesirable
situations. It remains to investigate for future research how to decrease the risks
of SSL, relax strong assumptions, while guaranteeing significantly better sample
complexity. However, this thesis attempts to understand under which scenarios
unlabeled data can’t help and when it can potentially help.

In Section 4.1 we present an ambitious and fundamental conjecture that pro-
claims for any fixed unlabeled distribution, the sample complexity of supervised
ERM is not much worse than the sample complexity of the best SSL algorithm.
This will set the stage for the remainder of the chapter where we prove the con-
jecture for some basic hypothesis classes over the real line. In Section 4.2 we show
that for some natural hypothesis classes over the real line, doing SSL with “nice”
unlabeled distributions is equivalent to supervised learning under the uniform dis-
tribution. This simplification allows us to prove the conjecture for the realizable
case of thresholds in Section 4.3 and also for the agnostic case of thresholds and
union of intervals in Section 4.4. Finally we end the chapter in Section 4.5 with
an alternate formulation of comparing SSL with SL and show that it still does not
provide advantages for SSL.

4.1 Fundamental Conjecture on No-Prior-Knowledge

SSL

The conjecture that we propose roughly asserts that semi-supervised learning in
our utopian model cannot improve more than a constant factor over the sample
complexity of supervised learning on any unlabeled distribution. The key point
here is that no prior SSL assumptions are held, therefore any noisy labeled distri-
bution is allowed, even ones that for example, do not intuitively satisfy the cluster
assumption.

Conjecture 4.1. In the agnostic setting, there exists constants C ≥ 1, ξ, ξ′ > 0,
and a fixed empirical risk minimization algorithm ERM0, such that for all X , ε ∈
(0, ξ), δ ∈ (0, ξ′), for every hypothesis class H over X , for every distribution D
over X , we have

sup
P∈Ext(D)

mSL(ERM0, ε, δ,H, P ) ≤ C min
A

sup
P∈Ext(D)

mSSL(A, ε, δ,H, P ) (4.1)

1Some bounds have been proven for specific distributions like the uniform distribution on the
unit ball in Euclidean space, however proving tight bounds for any distribution still seems like a
far goal.
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There are several important things to note about this conjecture.

• The constant C. Notice the order of the quantifiers in the statement:
the constant C cannot depend on H (or X , ε, δ). If the quantifiers were
reversed and allowed to depend on H, and supposing H contains some h
and h̄ (i.e. h̄ = 1 − h) then one can show the conjecture to be true by

letting c = O(VC(H)). This follows from a lower bound of Ω( ln(1/δ)
ε2

) for
SSL (see Lemma 4.7) and standard distribution-free ERM upper bounds of

O(VC(H)+ln(1/δ)
ε2

) for supervised learning (see Theorem 2.1).

• Hypothesis class is same for both SSL and SL. If we compare the sam-
ple complexities of SL under some hypothesis class H and that of SSL under
a hypothesis class dependent on D it is not a well-defined or meaningful com-
parison. For example, if H consist of a singleton, then SL sample complexity
is trivially zero. Meanwhile if the SSL hypothesis class (that is dependent on
D) is more complex, it can have much greater sample complexity. Also note
that the universal quantifier over the hypothesis class comes before that for
the unlabeled distribution.

• There can be different ERM algorithms. There can be many hypothesis
that have minimum sample error in H, so different ERM algorithms have
different rules when choosing. See Example 2.2.

• Algorithm ERM0 cannot depend on D, but A can. In the conjecture,
the order of the quantifiers says that there exists an ERM algorithm ERM0

before the universal (i.e. for all) quantifier over unlabeled D’s. However, the
semi-supervised algorithm A can be dependent on D. In other words, A can
potentially exploit the knowledge of D. And this conjecture says that it can’t
significantly exploit it to its advantage for all unlabeled distributions D, even
ones that may behave “nicely.”

• Comparing ERM and best SSL algorithm on fixed distribution. The
condition (4.1) must hold for all unlabeled distributions. Given any fixed
D, the condition is essentially saying that the worst conditional distribution
over D, with respect to sample complexity, for supervised ERM0 is not much
worse than the worst conditional distribution for the best SSL algorithm for
D.

• ERM sample complexity may be better than O(VC(H)/ε2). For an
unlabeled distribution with support on a single point, the best algorithm for
both SL and SSL is to predict the majority. Thus, the two algorithms are the
same and have the same sample complexity of Θ( ln(1/δ)

ε2
) (see Lemma 4.7 for

lower bound, upper bound comes from Chernoff bound).

• Condition (4.1) is for all D. It is not interesting to compare the SL sample
complexity and SSL sample complexity over a worst-case D. The quantifier
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must be universal, not existential, otherwise it is not hard to show the con-
jecture because we can let D to be concentrated on VC(H) shattered points
and both SL and SSL will have same sample complexity (see Corollary 4.10).

Thus, what’s interesting about the for all quantifier over D is that it in-
cludes D’s for which there exists a low density separator, which many prac-
titioners doing SSL believe is a good predictor (it turns out the low density
separator can be consistently estimated with unlabeled data (see Ben-David
et al., 2009)), but the conjecture says there is some bad labeled distribution
P ∈ Ext(D) for which SSL provides no significant advantage.

• Taking the supremum is considering the worst possible labeled dis-
tribution. And perhaps this is the most unrealistic and controversial aspect
of our analysis. In practice, people make assumptions when doing SSL. These
assumptions are about the relationship between the labels (i.e. conditional
distribution given x ∈ X ) and the unlabeled distribution. For example, for
the cluster assumption, one should expect that the low density region of D
divides the domain into different label classes (of course there may still be
labelling noise). Thus, rather than taking worst case over Ext(D) it is perhaps
more realistic to take the worst case over extensions of D that are reasonable
with respect to the cluster assumption.

There is also a form of this conjecture for the realizable setting. Much of the
earlier discussion also applies to this setting.

Conjecture 4.2. In the realizable setting, there exists constants C ≥ 1, ξ, ξ′ > 0,
and a fixed empirical risk minimization algorithm ERM0 such that for all X , ε ∈
(0, ξ), δ ∈ (0, ξ′), for every hypothesis class H over X , for every distribution D
over X we have

sup
h∈H

mSL(ERM0, ε, δ,H, Dh) ≤ C min
A

sup
h∈H

mSSL(A, ε, δ,H, Dh).

The results of this chapter are mainly concerned with lower bounds of sample
complexity on SSL and upper bounds of sample complexity on SL (usually given
by a ERM type algorithm), and whether these match up to a constant factor. Any
lower bound on SSL is also a lower bound on SL since, in particular, a SL algorithm
is a SSL algorithm that does not use knowledge of D, the unlabeled distribution.
What is meant by a lower bound on SSL is that there exists no SSL algorithm
(one that must PAC learn according our earlier definitions) that can have sample
complexity smaller than the lower bound, not even algorithms that make SSL type
assumptions since we are in the no prior knowledge setting.

The upper bounds on SL are given by ERM algorithms, typically as a result
of uniform convergence, however, this does not rule out any algorithms that might
perform better than ERM in some cases. For example, one might do regularization
and if one is lucky then one can do better in some cases. But regularization may
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not always work well. For example, for some tasks, the optimal linear halfspace has
small margin and the regularization algorithm would instead pick a separator with
large margin resulting in larger error.

Thus, the real gap in sample complexity between SL and SSL might be smaller
than what we prove, but we prove that the gap must be smaller than a multiplicative
factor. Note also that when the VC dimension of a hypothesis class is infinity, then
it does not make sense to compare SSL and SL in our model as learning cannot
be done. Of course, in practical situations people use regularization to compensate
for infinite VC classes, but the success of such an approach depends on whether
the regularizer is indeed good complexity control. For example, when using margin
regularization it is possible that the task at hand does not have good margin to
begin with.

In the remainder of this thesis, we will prove the conjecture for some specific
cases. Namely for the hypothesis classes of thresholds and union of intervals over
the real line. We do not prove the conjecture in its entirety, we obtain partial
results where the assertion of

“for every distribution D over X”

in Conjectures 4.1 and 4.2 is replaced with

“for every distribution D over X that has a density function.”

Note that in our examples X = R. First, in the next section we show that SSL over
certain natural hypothesis classes over the real line, assuming that the unlabeled
distribution is “smooth,” is equivalent to supervised learning with respect to the
uniform distribution.

4.2 Reduction to the Uniform Distribution on

[0, 1]

In this section we show that, over some natural hypothesis classes over the real
line, semi-supervised learning with respect to any nicely behaving distribution is,
perhaps surprisingly, equivalent to supervised (or semi-supervised learning) with
respect to the uniform distribution over the unit interval. This reduction simplifies
the proofs of upper and lower bounds on the sample complexity of semi-supervised
learning as we will only need to consider the uniform distribution. Unfortunately
this reduction technique is not useful for certain kinds of unlabeled distributions,
for example, ones which put positive probability mass on a few points.

In Section 4.2.1 we informally describe this reduction technique and provide the
main idea why it is sufficient to focus on semi-supervised learning on the uniform
distribution. We give a formal statement of this technique, its consequences and
some proofs in Section 4.2.2.
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4.2.1 The Rough Idea

Given any “nice” unlabeled distribution D over R (to be defined in Section 4.2.2),
we can map each point in R to D’s cumulative distribution function x 7→ F (x).
The induced distribution F (D) is over the unit interval and is uniform because for
any t ∈ R such that D((−∞, t]) = p, we have F (D)([0, p]) = p. Figure 4.1 shows
this reduction.

t p
F (t)

U [0, 1]

D((−∞, t]) = p

Figure 4.1: One can simplify the problem of semi-supervised learning on any “nice”
unlabeled distribution to learning with respect to the uniform distribution on [0, 1].
The figure shows that the mapping F (t) = D((−∞, t]) induces the uniform distri-
bution.

Given any semi-supervised algorithm A that “learns” with respect to all P ∈
Ext(U) where U is the uniform distribution over [0, 1] (i.e. A is “tailored” for the
uniform distribution), it can be turned into a semi-supervised learning algorithm
that learns any D (with a few restrictions on its niceness) as follows:

Semi-supervised algorithm B({(xi, yi)}mi=1, D)

1. Compute the cumulative distribution function of D, call it F .

2. Compute S ′ = {(F (xi), yi)}mi=1

3. Output A(S ′) ◦ F .

The last line essentially converts hypotheses that are restricted to the unit interval
to hypotheses over R.

In the other direction, we need to show that it is not advantageous to have access
to any unlabeled distribution (“nice” one) compared to learning on the uniform
distribution. Fix D, if we are given any semi-supervised algorithm B, then we can
create a semi-supervised algorithm A for the uniform distribution that has at most
the sample complexity of B.

Semi-supervised algorithm A({(xi, yi)}mi=1, U)
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1. Let F−1 be the inverse cumulative distribution function of D

2. Compute S ′ = {(F−1(xi), yi)}mi=1

3. Output B(S ′, U) ◦ F−1.

The above algorithm A is designed for any B and any “nice” D. Thus, the sample
complexity of any SSL algorithm for any “nice” D is equivalent to the sample
complexity of any SSL algorithm for the uniform distribution. See Section 4.2.2 for
a formal statement of this fact.

Thus, to prove that semi-supervised learning does not give much advantage
compared to supervised learning, we are essentially showing that

Distribution-free learning (supervised learning setting) is more or less
as hard as learning with respect to the uniform distribution.

By proving a sample complexity lower bound on learning under the uniform
distribution, we are really proving a lower bound on the sample complexity of
semi-supervised learning under any nice unlabeled distribution. In Section 4.3
and 4.4 we make use of this reduction to the uniform distribution in conjunction
with an averaging argument to obtain lower bounds on the semi-supervised learning
sample complexity that is within a constant factor of well-known upper bounds on
supervised learning sample complexity (e.g. distribution-free VC-dimension upper
bounds on the sample complexity of ERM).

4.2.2 Formal Proof

Let us start by defining the hypothesis classes. Recall the class of thresholds is
defined as H = {1(−∞, t] : t ∈ R} and the class of union of d intervals is

UId := {1[a1, a2) ∪ [a3, a4) ∪ · · · ∪ [a2`−1, a2`) : ` ≤ d, a1 ≤ a2 ≤ · · · ≤ a2`} .

The reduction to the uniform distribution simplification says that the semi-supervised
learning sample complexity of learning H (or UId) under any unlabeled distribution
(having a probability density) is equivalent to the sample complexity of a super-
vised learning algorithm “tailored” for the unlabeled uniform distribution (say on
the unit interval). In other words, assuming the unlabeled distribution has density,
they are all essentially the same for semi-supervised learning algorithms.

In this section we formally prove that learning any “natural” hypothesis class
on the real line has the same sample complexity for any unlabeled distribution
(having density) and is independent of its “shape.” Intuitively, if we imagine the
real axis made of rubber, then a natural hypothesis class is one that is closed under
stretching of the axis. Classes of thresholds and union of d intervals are examples
of such natural classes, since under any rescaling an interval remains an interval.
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The rescaling will apply also on the unlabeled distribution over the real line and it
will allow us to go from any unlabeled distribution (having density) to the uniform
distribution over (0, 1).

Definition 4.1. A rescaling function f : R→ [0, 1] is a function that is continuous
and increasing.

Definition 4.2. Fix a hypothesis class H and let H|[0,1] = {h|[0,1] : h ∈ H} where
h[0,1] is the restriction of h to the domain [0, 1]. A hypothesis class H is closed
under rescaling f if for all h ∈ H, we have that 1f(set(h)) = h ◦ f ∈ H|[0,1].

Our technical results in the next few sections are for the continuous uniform
distribution on [0, 1]. Thus, we shall limit ourselves to unlabeled distributions that
under rescaling, is equal to the uniform distribution. Such classes of distributions
have a probability density (as defined below). For example, distributions that have
positive probability on a single point does not belong to the class.

Definition 4.3. A distribution D over R has probability density g with respect to
the Lebesgue measure if for any Lebesgue measurable set A,

D(A) =

∫
A

g(x) dx

where the integral is taken with respect to the Lebesgue measure.

The Radon–Nikodym theorem says that, on the real line, distributions with
probability densities are precisely those distributions that are absolutely continuous.
In this thesis we will refer to these distributions as having probability densities or
simply having density in order to give a more intuitive understanding for those not
familiar with measure theory. Note that this is in contrast with our terminology
in Ben-David et al. (2008). The following definition is reproduced for completeness.
Our rescalings will be defined by the cumulative distribution, which when it has
density, is continuous.

Definition 4.4. For a distribution D over R, the cumulative distribution function
F is

F (x) = D((−∞, x]).

If D has density f , then F (x) =
∫ x
−∞ f(x) dx.

Example 4.1. Let D be any unlabeled distribution having density, then the cu-
mulative distribution function F of D is continuous and strictly increasing. Thus
F is a rescaling. The class of thresholds and the class of unions of d intervals are
closed under rescaling F . This can be observed from the fact that for any interval
I, F (I) is an interval in [0, 1].

We show that the sample complexity is unaffected by the rescalings provided
that the hypothesis class is closed under rescalings. We split the results into two
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lemmas—Lemma 4.1 and Lemma 4.2. The first lemma shows that if we have a
supervised algorithm with certain sample complexity for the case when the unla-
beled distribution is the uniform distribution over [0, 1], then the algorithm can be
translated into a semi-supervised algorithm with the same sample complexity for
the case when the unlabeled distribution has density. The second lemma shows the
translation in the other direction. Namely, that a semi-supervised algorithm with
certain sample complexity on some unlabeled distribution (having density) can be
translated to a supervised algorithm for the case when unlabeled distribution is
uniform over [0, 1].

Lemma 4.1. Let H be a hypothesis class over R closed under rescaling. Let U be
the uniform distribution over (0, 1). Let ε, δ > 0.

(a) (Realizable case): If A is any semi-supervised algorithm, then there exists a
semi-supervised learning algorithm B such that for any distribution D over R which
has density (with respect to the Lebesgue measure)

sup
h∈H

mSSL(B, ε, δ,H, Dh) ≤ sup
g∈H

mSL(A, ε, δ,H, Ug) . (4.2)

(b) (Agnostic case): If A is any semi-supervised algorithm, then there exists a
semi-supervised learning algorithm B such that for any distribution D over R which
has density (with respect to the Lebesgue measure)

sup
P∈Ext(D)

mSSL(B, ε, δ,H, P ) ≤ sup
Q∈Ext(U)

mSL(A, ε, δ,H, Q) . (4.3)

Proof. We prove this lemma for the agnostic case, but can be easily extended to
the realizable case (by replacing some quantities).

Fix H and A. We construct algorithm B as follows. The algorithm B has
two inputs, a sample S = {(xi, yi)}mi=1 and a distribution D. Based on D the
algorithm computes the cumulative distribution function F (t) = D((−∞, t]). Then,
B computes from S the transformed sample S ′ = {(x′i, yi)}mi=1 where x′i = F (xi).
On a sample S ′ and distribution U , the algorithm B simulates algorithm A and
computes h = A(S ′). Finally, B outputs g = h ◦ F .

It remains to show that for any D with continuous cumulative distribution
function (4.2) and (4.3) holds for any ε, δ > 0. We prove (4.3), the other equality
is proved similarly.

Let P ∈ Ext(D). Slightly abusing notation, we define the “image” distribution
F (P ) over (0, 1)× {0, 1} to be

F (P )(M) = P ({(x, y) : (F (x), y) ∈M})

for any (Lebesgue measurable) M ⊆ (0, 1)× {0, 1}. It is not hard to see that if S
is distributed according to Pm, then S ′ is distributed according to (F (P ))m. Since
D has density and therefore F is continuous, it can be seen that D(F (P )) = U
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(i.e. F (P ) ∈ Ext(U)). Further F is a rescaling (since it is also increasing). Hence
ErF (P )(h) = ErP (h ◦ F ) and infh∈H ErP (h) = infh∈H ErF (P )(h). We have for any ε
and any m ≥ 0

Pr
S∼Pm

[ErP (B(S,D))− inf
h∈H

ErP (h) > ε]

= Pr
S′∼F (P )m

[ErP (A(S ′) ◦ F )− inf
h∈H

ErF (P )(h) > ε]

= Pr
S′∼F (P )m

[ErF (P )(A(S ′))− inf
h∈H

ErF (P )(h) > ε] .

Therefore, for any ε, δ > 0,

mSSL(B, ε, δ,H, P ) = mSL(A, ε, δ,H, F (P )) (4.4)

≤ sup
Q∈Ext(U)

mSL(A, ε, δ,H, Q) .

Taking supremum over P ∈ Ext(D) over Equation (4.4) finishes the proof.

Lemma 4.2. Let H be a hypothesis class over R closed under rescaling. Let U be
the uniform distribution over [0, 1]. Let ε, δ > 0.

(a) (Realizable case): If B is any semi-supervised algorithm and D is any distri-
bution over R which has density (with respect to the Lebesgue measure), then there
exists a semi-supervised algorithm A such that

sup
g∈H

mSL(A, ε, δ,H, Ug) ≤ sup
h∈H

mSSL(B, ε, δ,H, Dh) . (4.5)

(b) (Agnostic case): If B is any semi-supervised algorithm and D is any distri-
bution over R which has density (with respect to the Lebesgue measure), then there
exists a semi-supervised algorithm A such that

sup
Q∈Ext(U)

mSL(A, ε, δ,H, Q) ≤ sup
P∈Ext(D)

mSSL(B, ε, δ,H, P ) . (4.6)

Proof. We prove the lemma for the agnostic case since the realizable case is similar.

Fix H, B and D. Let F be the be cumulative distribution function of D. Since
D has density, F is a rescaling and inverse F−1 exists.

Now, we construct algorithmA. AlgorithmAmaps input sample S ′ = {(x′i, yi)}mi=1

to sample S = {(xi, yi)}mi=1 where xi = F−1(x′i). On a sample S the algorithm A
simulates algorithm B and computes g = B(S,D). Finally, A outputs h = g ◦F−1.

It remains to show that for any D with continuous cumulative distribution
function (4.5) and (4.6) holds for any ε, δ > 0. We prove (4.6), the other equality
is proved similarly.

Let Q ∈ Ext(U). Slightly abusing notation, we define the “pre-image” distribu-
tion F−1(Q) over I × {0, 1} to be

F−1(Q)(M) = Q ({(F (x), y) : (x, y) ∈M})
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for any (Lebesgue measurable) M ⊆ I × {0, 1}. It is not hard to see that if
S ′ is distributed according to Q, then S is distributed according to (F−1(Q))m.
We have D(F−1(U)) = D (i.e. F−1(Q) ∈ Ext(D)). Since F−1 is a rescaling,

ErF
−1(Q)(h) = ErQ(h ◦ F−1) and infh∈H ErQ(h) = infh∈H ErF

−1(Q)(h). We have for
any ε > 0 and any m ∈ N

Pr
S′∼Qm

[ErQ(A(S ′))− inf
h∈H

ErQ(h)]

= Pr
S∼F−1(Q)m

[ErQ(B(S,D) ◦ F−1)− inf
h∈H

ErF
−1(Q)(h)]

= Pr
S∼F−1(Q)m

[ErF
−1(Q)(B(S,D))− inf

h∈H
ErF

−1(Q)(h)] .

Therefore, for any ε, δ > 0,

mSL(A, ε, δ,H, Q) = mSSL(B, ε, δ,H, F−1(Q)) (4.7)

≤ sup
P∈Ext(D)

mSSL(B, ε, δ,H, P ).

Taking supremum over Q ∈ Ext(U) in Equation (4.7) finishes the proof.

4.3 Learning Thresholds in the Realizable Set-

ting

In this section we consider learning the class of thresholds, H = {1(−∞, t] : t ∈
R}, on the real line in the realizable setting and show that for any unlabeled
distribution (having density) semi-supervised learning has at most a factor of 2
advantage over supervised learning in the sample complexity, taken over worst case
distributions on X × Y whose marginal over X is equal to D.

First, in Theorem 4.3, we reproduce a ln(1/δ)
ε

upper bound on the sample com-
plexity of supervised learning. This is a well-known “textbook” result in com-
putational learning theory. Second, we consider the sample complexity of semi-
supervised learning in the case when the unlabeled distribution has density with
respect to the Lebesgue measure on R (since we use the reduction technique in Sec-
tion 4.2). In Theorems 4.4 and 4.5 we show that the sample complexity is between
ln(1/δ)

2ε
+ O(1

ε
) and ln(1/δ)

2.01 ε
− O(1

ε
).2 Ignoring the lower order terms, we see that the

sample complexity of supervised learning is (asymptotically) at most 2-times larger
than that of semi-supervised learning.

In the remainder of this section, we will be analyzing the sample complexity
of the supervised learning algorithm LeftERM that chooses the right most posi-
tive point as the threshold (for precise definition, see Equation 2.3) and the semi-
supervised algorithm MedianERM proposed by Kääriäinen (2005) which is defined
as follows.

2The 2.01 in the lower bound can be replaced by arbitrary number strictly greater than 2.
This slight imperfection is a consequence of that the true dependence of the sample complexity
on ε, in this case, is of the form 1/ ln(1− 2ε) and not 1/(2ε).
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MedianERM(S,D) = 1(−∞, α]

D

` r

D[`, α] = D[α, r]

Figure 4.2: Given a labeled sample S (squares are ‘1’, circles are ‘0’) and an
unlabeled distribution D, MedianERM(S,D) first computes ` and r, the right most
‘1’ and the left most ‘0’, respectively. Then it outputs the threshold at α such that
D[`, α] = D[α, r].

Definition 4.5 (Algorithm MedianERM). Let D be any unlabeled distribution and

S = {(x1, y2), (x2, y2), . . . , (xm, ym)}

be labeled training data. Let

` = max{xi : i ∈ [m], yi = 1} ,
r = min{xi : i ∈ [m], yi = 0} ,

t = sup{a : D((`, t′]) ≤ D((`, r])/2} ,

then (see Definition 3.2 for semi-supervised algorithm)

MedianERM(S,D) = 1(−∞, t] .

That is, the algorithm outputs the median of the distribution D restricted on the
interval [`, r). See Figure 4.2 for an illustration of this algorithm.

In general, MedianERM can be extended to arbitrary hypothesis classes for the
realizable setting (see Kääriäinen, 2005). The idea is to define a pseudo-metric
space3 (H, dD) where D is the input unlabeled distribution such that for h1, h2 ∈ H,

dD(h1, h2) = D{set(h1)∆ set(h2)}.

Then on a sample S the algorithm considers the consistent hypotheses V = {h ∈
H : ErS(h) = 0}, and chooses the hypothesis

ĥ = argmin
f∈V

max
g∈V

dD(f, g).

3A pseudo-metric space is a metric space in which the distance between two distinct points in
the domain can be zero.

41



Clearly this is an ERM paradigm, and intuitively one expects this to do twice
as good as a supervised learning algorithm that does not have access to D and
therefore may, in the worst case, choose a hypothesis that lies on the “boundary”
of V whereas the semi-supervised algorithm would choose the “centre.” But it is
unknown whether this will always provide a factor two advantage in the sample
complexity over supervised ERM algorithms as it depends on the structure of H.

In our analysis below, we show that it appears to give a factor two advantage
in sample complexity over supervised learning algorithms when H are thresholds.
It remains an open question what the lower bound for supervised learning sample
complexity is for thresholds in the realizable setting, although we strongly believe
it is factor two worse than semi-supervised learning (e.g. one can show LeftERM in
the worse case is twice worse than MedianERM on learning the target 1(0, 1] when
X = (0, 1]).

Theorem 4.3 (Supervised Learning Upper Bound). Let H be the class of thresholds
and LeftERM be the supervised learning algorithm as in Definition 2.3. For any D,
for any ε, δ > 0,

sup
h∈H

mSL(LeftERM, ε, δ,H,Dh) ≤ ln(1/δ)

ε
.

Proof. This is a well-known result and can be found in textbooks such as Kearns
and Vazirani (1994), we prove it here for convenience. Suppose we fix a “target”
h, and ε, δ > 0. For a fixed labeled sample S that is consistent with h, the event
that ErP (LeftERM(S)) ≤ ε occurs if and only if the event (with a little abuse of
notation) S ∩ [t− ξ, t] 6= ∅ occurs where ξ = inf{a ≤ t : D(P )([a, t]) ≤ ε} (that is,
some point hits the interval [t− ξ, t]). The probability that a point hits the interval
[t− ξ, t] is exactly

Pr
S∼Pm

(ErP (LeftERM(S)) ≤ ε) = 1− (1− ε)m

Thus, we require that

δ ≤ (1− ε)m

m ≥ ln δ

ln(1− ε)
≥ ln δ

−ε since exp(x) ≥ 1 + x for x ≤ 1.

=
ln 1

δ

ε
.

Now we show that MedianERM can take advantage of the knowledge of the
distribution by picking the unlabeled distribution’s median in the version space.
The sample complexity indeed drops by a factor of two compared with LeftERM.
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Theorem 4.4 (Semi-Supervised Learning Upper Bound). Let H be the class of
thresholds and MedianERM be the semi-supervised learning algorithm as in Defini-
tion 4.5. For any unlabeled distribution D having density, any ε ∈ (0, 1

4
), δ ∈ (0, 1

2
),

and any “target” h ∈ H,

mSSL(MedianERM, ε, δ,H,Dh) ≤ ln(1/δ)

2ε
+

ln 2

2ε
.

Proof. By reduction to the uniform distribution (see Lemma 4.1 part (a)) we can
assume that D is uniform over [0, 1]. Fix ε ∈ (0, 1

4
), δ ∈ (0, 1

2
) and h ∈ H. We show

that, for any m ≥ 2,

Pr
S∼Dm

h

[ErDh(MedianERM(S,D)) ≥ ε] ≤ 2(1− 2ε)m , (4.8)

from which the theorem easily follows, since if m ≥ ln(1/δ)
2ε

+ ln 2
2ε

, then m ≥ 2 and
2(1− 2ε)m ≤ 2 exp(−2mε) ≤ δ.

In order to prove (4.8), let h = 1(−∞, t] be the “target”. Without loss of
generality t ∈ [0, 1

2
]. Let us assume that ` ∈ [0, t] and r ∈ [t, 1]. When given S, `, r

and D the uniform distribution, then MedianERM(S,D) = (`+ r)/2 the midpoint.
For ErDh(MedianERM(S,D)) ≤ ε to hold, we require

t− ε ≤ `+ r

2
≤ t+ ε

⇐⇒ r ∈ [max(2t− `− 2ε, t),min(2t− `+ 2ε, 1)]

Let a(`) = max(2t− `− 2ε, t) and b(`) = min(2t− `+ 2ε, 1). We lower bound the
probability of success

p = Pr
S∼Dm

h

[ErDh(MedianERM(S,D)) ≤ ε] .

There are two cases:

Case 1: If t > 2ε, then we integrate over all possible choices of the rightmost
positive example in S (which determines `) and leftmost negative example in S
(which determines r). There arem(m−1) choices for the rightmost positive example
and leftmost negative example. Also, we require that no other points (i.e. m − 2
of them) fall in between [`, r], which occurs with probability (1− (r − `))m+2. We
have

p ≥ p1 = m(m− 1)

∫ t

0

∫ b(`)

a(`)

(1− r + `)m−2 drd` .

This inequality is actually strict since we have not accounted for the case when no
positive points are in the sample, but the output can still be ε close to t.

Case 2: If t ≤ 2ε, then we integrate over all possible choices of the rightmost
positive example in S and leftmost negative example in S. Additionally we also
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consider samples without positive examples (the second term in the sum), and
integrate over all possible choices of the leftmost (negative) example. We have

p ≥ p2 = m(m− 1)

∫ t

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`+m

∫ 2ε

t

(1− r)m−1 dr

Both cases split into further subcases.

Subcase 1a: If t > 2ε and t + 4ε ≤ 1 and t + ε ≥ 1/2, then 0 ≤ 2t + 2ε − 1 ≤
t− 2ε ≤ t and

p1 = m(m− 1)

[ ∫ 2t+2ε−1

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+

∫ t−2ε

2t+2ε−1

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+

∫ t

t−2ε

∫ b(`)

a(`)

(1− r + `)m−2 drd`

]
= m(m− 1)

[ ∫ 2t+2ε−1

0

∫ 1

2t−`−2ε

(1− r + `)m−2 drd`

+

∫ t−2ε

2t+2ε−1

∫ 2t−`+2ε

2t−`−2ε

(1− r + `)m−2 drd`

+

∫ t

t−2ε

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

]
= 1− 1

2
(1− 2t− 2ε)m − 1

2
(−1 + 2t+ 6ε)m − (1− 2ε)m

≥ 1− 2(1− 2ε)m .

Subcase 1b: If t > 2ε and t+ ε ≤ 1/2, then 2t+ 2ε− 1 ≤ 0 ≤ t− 2ε ≤ t and

p1 = m(m− 1)

[ ∫ t−2ε

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+

∫ t

t−2ε

∫ b(`)

a(`)

(1− r + `)m−2 drd`

]
= m(m− 1)

[ ∫ t−2ε

0

∫ 2t−`+2ε

2t−`−2ε

(1− r + `)m−2 drd`

+

∫ t

t−2ε

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

]
= 1− (1− 2ε)m +

1

2
(1− 2t− 2ε)m − 1

2
(1− 2t+ 2ε)m

≥ 1− 3

2
(1− 2ε)m .
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Subcase 1c: If t > 2ε and t+ 4ε ≥ 1, then 0 ≤ t− 2ε ≤ 2t+ 2ε− 1 ≤ t, and

p1 = m(m− 1)

[ ∫ t−2ε

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+

∫ 2t+2ε−1

t−2ε

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+

∫ t

2t+2ε−1

∫ b(`)

a(`)

(1− r + `)m−2 drd`

]
= m(m− 1)

[ ∫ t−2ε

0

∫ 1

2t−`−2ε

(1− r + `)m−2 drd`

+

∫ 2t+2ε−1

t−2ε

∫ 1

t

(1− r + `)m−2 drd`

+

∫ t

2t+2ε−1

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

]
= 1− (1− 2ε)m − 1

2
(1− 2t+ 2ε)m − 1

2
(2t+ 2ε− 1)m

≥ 1− 2(1− 2ε)m .

Subcase 2a: If t ≤ 2ε and t+ ε ≥ 1/2, then t− 2ε ≤ 0 ≤ 2t+ 2ε− 1 ≤ t and

p2 = m(m− 1)

[ ∫ 2t+2ε−1

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+

∫ t

2t+2ε−1

∫ b(`)

a(`)

(1− r + `)m−2 drd`

]
+m

∫ 2ε

t

(1− r)m−1 dr

= m(m− 1)

[ ∫ 2t+2ε−1

0

∫ 1

t

(1− r + `)m−2 drd`

+

∫ t

2t+2ε−1

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

]
+ (1− t)m − (1− 2ε)m

= 1− 3

2
(1− 2ε)m − 1

2
(2t+ 2ε− 1)m

≥ 1− 2(1− 2ε)m .
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Subcase 2b: If t ≤ 2ε and t+ ε ≤ 1/2, then t− 2ε ≤ 0, 2t+ 2ε− 1 ≤ 0 and

p2 = m(m− 1)

∫ t

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+m

∫ 2ε

t

(1− r)m−1 dr

= m(m− 1)

∫ t

0

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

+ (1− t)m − (1− 2ε)m

= 1− 3

2
(1− 2ε)m − 1

2
(1− 2t− 2ε)m

≥ 1− 2(1− 2ε)m .

We could have removed subcase 1c by assuming ε ∈ (0, 1/8), for example.

Finally, we can also show that MedianERM is the optimal semi-supervised learn-
ing algorithm up to a constant additive factor of O(1/ε). Note that this lower bound
also applies to supervised learning, since any supervised learning algorithm can be
turned into a semi-supervised learning algorithm by just ignoring the input unla-
beled distribution.

Theorem 4.5 (Semi-Supervised Learning Lower Bound). For any randomized
semi-supervised algorithm A that can output stochastic hypotheses, any ε ∈ (0, 0.001),
any δ > 0, any unlabeled distribution D (with density), there exists h ∈ H, such
that

mSSL(A, ε, δ,H,Dh) ≥ ln(1/δ)

2.01ε
− ln 2

2.01ε
.

Proof. By reduction to the uniform distribution (see Lemma 4.2 part (a)) we can
assume that D is uniform over [0, 1]. Fix A, ε, δ. For a fixed labeled sample S, let
QS be the distribution over all functions {0, 1}[0, 1] such that A(S,D) ∼ QS (for a
deterministic A, the support of QS is a single hypothesis). We show the existence
of a “bad” h by an averaging argument. Let t be a random variable uniformly
distributed on [0, 1] and let h = 1(−∞, t]. We prove that for all m ≥ 0,

E
t

Pr
S∼Dm

h

E
A(S,D)∼QS

[ErDh(A(S,D)) ≥ ε] ≥ 1

2
(1− 2ε)m . (4.9)

For the remainder of this proof, we will simplify notation by ignoring the expecta-
tion over QS (we show later it does not matter). The left-hand side can rewritten
as

E
t

Pr
S∼Dm

h

[ErDh(A(S,D)) ≥ ε] = E
t

E
S∼Dm

h

1{(t, S) : ErDh(A(S,D)) ≥ ε}.
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For t chosen from the uniform distribution on (0, 1) and then drawing S ∼ Dm
h , S

has the same distribution as drawing S ′ ∼ Dm and labelling S ′ with a random t.
Hence, we can flip the expectations on the right hand side to get

= E
S∼Dm

E
t

1{(t, S) : ErDh(A((S, h(S)), D)) ≥ ε}
= E

S∼Dm
Pr
t

[ErDh(A((S, h(S)), D)) ≥ ε]

To lower bound the last expression, fix unlabeled points 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤
1. For convenience, let x0 = 0 and xm+1 = 1. We claim that

Pr
t

[
ErDh(A((S, h(S)), D)) ≥ ε

] ≥ m∑
i=0

max(xi+1 − xi − 2ε, 0) . (4.10)

To prove it we fix i ∈ [m] and restrict t to lie in the interval (xi, xi+1]. The labels in
(S, h(S)) are hence fixed. Let g = A((S, h(S)), D) ∼ Q(S,h(S)), the following holds
for any g ∫ xi+1

xi

1
{
t : ErDh(g) ≥ ε

}
dt ≥ max(xi+1 − xi − 2ε, 0) , (4.11)

which follows from the fact that {t : ErDh(g) < ε} is contained in an interval of
length at most 2ε. Taking the expectation over the right hand side over random
choices of g does not affect the quantity since it is independent of g. Summing over
all i we obtain (4.10). We note that (4.11) also holds if g is a stochastic function,
the details are messier.

In order to prove (4.9) we will compute expectation over S ∼ Dm of both sides
of (4.10). Expectation of the left side of (4.10) equals to the left side of (4.9). The
expectation of the right side of (4.10) is equal to

Im = m!

∫ xm+1

0

∫ xm

0

∫ xm−1

0

· · ·
∫ x2

0︸ ︷︷ ︸
m times

m∑
i=0

max(xi+1 − xi − 2ε, 0)

dx1 · · · dxm−2dxm−1dxm ,

since there are m! equiprobable choices for the order of the points x1, x2, . . . , xm
among which we choose, without loss of generality, the one with x1 ≤ x2 ≤ · · · ≤
xm. We look at Im as a function of xm+1 and we prove that

Im(xm+1) = (max(xm+1 − 2ε, 0))m+1 , (4.12)

for any m ≥ 0 and any xm+1 ∈ [0, 1]. The bound (4.9) follows from (4.12), since
Im = Im(1) = (1 − 2ε)m+1 ≥ 1

2
(1 − 2ε)m for ε ≤ 1/4. In turn, (4.12) follows, by

induction on m, from the recurrence

Im(xm+1) = m

∫ xm+1

0

Im−1(xm) + xm−1
m max(xm+1 − xm − 2ε, 0) dxm ,
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which is valid for all m ≥ 1. In the base case, m = 0, I0(x1) = max(x1 − 2ε, 0)
trivially follows by definition. In the inductive case, m ≥ 1, we consider two cases.
First case, xm+1 < 2ε, holds since max(xi+1−xi−2ε, 0) = 0 and hence by definition
Im(xm+1) = 0. In the second case, xm+1 ≥ 2ε, from the recurrence and the induction
hypothesis we have

Im(xm+1) = m

∫ xm+1

0

(max(xm − 2ε, 0))m

+ max(xm+1 − xm − 2ε, 0) · xm−1
m dxm

= m

∫ xm+1

2ε

(xm − 2ε)m dxm

+m

∫ xm+1−2ε

0

(xm+1 − xm − 2ε)xm−1
m dxm

=
m

m+ 1
(xm+1 − 2ε)m+1

+
1

m+ 1
(xm+1 − 2ε)m+1

= (xm+1 − 2ε)m+1 .

To finish the proof, suppose m < ln(1/δ)
2.01ε

− ln 2
2.01ε

. Then 1
2
(1− 2ε)m > δ, since

ln

(
1

2
(1− 2ε)m

)
= − ln 2 +m ln(1− 2ε) > − ln 2−m(2.01ε) > ln δ ,

where we have used that ln(1− 2ε) > −2.01ε for any ε ∈ (0, 0.001). Therefore since
the average over all targets is at least (4.9), there exists a target h = 1(−∞, t] such
that with probability greater than δ, algorithm A fails to output a hypothesis with
error less than ε.

It is unknown if any supervised algorithm (deterministic or randomized) that

has asymptotic sample complexity c ln(1/δ)
ε

for any constant c < 1. For example,
perhaps surprisingly, the randomized algorithm RandomERM (see Equation 2.4)
that outputs with probability 1/2 the hypothesis 1(−∞, `] and with probability 1/2
the hypothesis 1(−∞, r) still cannot achieve the semi-supervised learning sample
complexity.

We now turn our attention to the agnostic setting, in which we show (limiting to
“nice” unlabeled distributions) that semi-supervised learning cannot provide more
than a constant factor advantage over supervised learning on the class of thresholds
and the union of the intervals.

4.4 Thresholds and Union of Intervals in the Ag-

nostic Setting

In this section, we show that even in the agnostic setting semi-supervised learning
does not have more than a constant factor improvement over supervised learning.
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We prove some lower bounds for some basic classes over the real line. We introduce
the notion of a b-shatterable distribution, which intuitively, are unlabeled distribu-
tions where there are b “clusters” that can be shattered by the hypothesis class.
The main lower bound of this section are for such distributions (see Theorem 4.9).
We show how this lower bound results in tight sample complexity bounds for two
concrete problems. The first is learning thresholds on the real line where we show

a bound of Θ(ln(1/δ)/ε2). Then we show sample complexity of Θ
(

2d+ln(1/δ)
ε2

)
for

the union of d intervals on the real line.

The sample complexity of the union of d intervals for a fixed distribution in
a noisy setting has also been investigated by Gentile and Helmbold (1998). They
show a lower bound of Ω

(
2d log 1

∆
/(∆(1− 2η)2)

)
where ∆ is the probability mass

of the symmetric difference between the true target hypothesis and the output
hypothesis that the algorithm should guarantee with high probability, and η is
the noise parameter (i.e. the probability that a correct label is corrupted, see
classification noise model of Angluin and Laird (1987)). This notation implies that
the difference in true error of the target and the algorithm’s output is ε = (1−2η)∆.
Setting η = 1/2−ε/4 gives Ω(2d/ε2). We note that we do not make the assumption
of a constant level of noise for each unlabeled example. It turns out, however, that
in our proofs we do construct worst case distributions that have a constant noise
rate that is slightly below 1/2.

We point out two main differences between our results and that of Gentile and
Helmbold. The first being that we explicitly construct noisy distributions to obtain
ε2 in the denominator. The second difference is that our technique appears to be
quite different from theirs, which uses an information theory approach, whereas we
make use of known techniques based on lower bounding how well one can distinguish
similar noisy distributions, and then applying an averaging argument. The main
tools used in this section come from Anthony and Bartlett (1999, Chapter 5).

We first cite a result on how many examples are needed to distinguish two simi-
lar, Bernoulli distributions in Lemma 4.6. Then in Lemma 4.7 we prove an analogue
of this for arbitrary unlabeled distributions. The latter result is used to give us a
lower bound in Theorem 4.9 for b-shatterable distributions (see Definition 4.6).
Corollary 4.8 and 4.11 gives us tight sample complexity bounds for thresholds and
union of intervals on R.

Lemma 4.6 (Anthony and Bartlett (1999)). Suppose that P is a random vari-
able uniformly distributed on {P1, P2} where P1, P2 are Bernoulli distributions over
{0, 1} with P1(1) = 1/2 − γ and P2(1) = 1/2 + γ for 0 < γ < 1/2. Suppose that
ξ1, . . . , ξm are i.i.d. {0, 1} valued random variables with Pr(ξi = 1) = P (1) for each
i. Let f be a function from {0, 1}m → {P1, P2}. Then

E
P

Pr
ξ∼Pm

[f(ξ) 6= P ] >
1

4

(
1−

√
1− exp

(−4mγ2

1− 4γ2

))
=: F (m, γ).
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1
2 − γ

1
2 + γP1 P2

0 1 0 1

Figure 4.3: Lemma 4.6 is saying one needs at least Ω(ln(1/δ)/γ2) examples chosen
from P ∼ Bernoulli(P1, P2) to distinguish the two distributions with confidence
at least δ.

See Figure 4.3 for an illustration. One can view the lemma this way: if one
randomly picks two weighted coins with similar biases, then there’s a lower bound
on the confidence with which one can accurately predict the coin that was picked.

The next result is similar except an unlabeled distribution D is fixed, and the
distributions we want to distinguish will be extensions of D.

Lemma 4.7. Fix any X , H, unlabeled distribution D, and m ≥ 0. Suppose there
exists h, g ∈ H with D(set(h)∆ set(g)) > 0. Let Ph and Pg be the extension of D
such that Ph(h(x)|x) = Pg(g(x)|x) = 1/2 + γ. Let AD : (h∆g × Y)m → H be any
function. Then for any x1, . . . , xm ∈ h∆g, there exists P ∈ {Ph, Pg} such that if
yi ∼ P (·|xi) for all i,

Pr
yi

[ErP (AD((x1, y1), . . . , (xm, ym)))−OPTP > γD(set(h)∆ set(g))] > F (m, γ),

where OPTP = 1/2− γ. Thus if the probability of failure is at most δ, we require

m ≥
(

1

4γ2
− 1

)
ln

1

8δ
. (4.13)

Proof. Suppose for a contradiction this is not true. Let P = {Ph, Pg}. Then there
exists an AD and x1, . . . , xm such that

∀P ∈ P, Pr
yi

[ErP (AD((x1, y1), . . . , (xm, ym)))−OPTP

> γD(set(h)∆ set(g))] ≤ F (m, γ). (4.14)

Then we will show that the lower bound in Lemma 4.6 can be violated. Now
set(h)∆ set(g) can be partitioned into

∆0 = {x : h(x) = 0} and ∆1 = {x : h(x) = 1}.
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Without loss of generality assume {x1, . . . , x`} ⊆ ∆0 and {x`+1, . . . , xm} ⊆ ∆1. Let
α = AD((x1, y1), . . . , (xm, ym)). From the triangle inequality

D(set(α)∆ set(h)) +D(set(α)∆ set(g)) ≥ D(set(h)∆ set(g)).

Thus if α is closer to h then D(set(α)∆ set(g)) ≥ D(set(h)∆ set(g))/2 and vice
versa. Let P be a random variable uniformly distributed on P. For any setting of
P ∈ P We have

Pr
y1∼P (·|x1)

(y1 = 1) = · · · = Pr
y`∼P (·|x`)

(yl = 1) = P (1|x ∈ ∆0) =

Pr
y`+1∼P (·|x`+1)

(y`+1 = 0) = · · · = Pr
ym∼P (·|xm)

(ym = 0) = P (0|x ∈ ∆1).

Let ξ1, . . . , ξm ∼ P (·|x ∈ ∆0) so that

Pr(ξi = 1) =

{
1
2
− γ if P = Ph

1
2

+ γ if P = Pg
.

Let us define the function f : {0, 1}m → P as follows. It will take as input
ξ1, . . . , ξm then transform this to an input ofAD as I = (x1, ξ1), . . . , (xl, ξl), (x`+1, 1−
ξ`+1), . . . , (xm, 1− ξm) so that ξi and 1− ξj is from the same distribution as yi and
yj, respectively, for i ≤ `, j > `. Now define

f(ξ1, . . . , ξm) =

{
Ph if D(set(AD(I))∆ set(h)) < D(set(AD(I))∆ set(g))

Pg otherwise
.

We have

E
P

Pr
ξ∼Pm(·|x∈∆0)

[f(ξ) 6= P ]

≤ E
P

Pr
ξ

[D(set(AD(I))∆ set(OPTP )) > D(set(h)∆ set(g))/2]

≤ E
P

Pr
ξ

[
ErP (AD(I))−OPTP > γD(set(h)∆ set(g))

]
≤ F (m, γ),

where the last inequality follows from (4.14). This is a contradiction, so the lower
bound from Lemma 4.6 must apply. If the probability of failure F (m, γ) is at most
δ, solving the inequality for m gives (4.13).

Corollary 4.8. Recall the class of thresholds is defined as H = {1(−∞, t] : t ∈ R}.
Let ε, δ ∈ (0, 1]2, and D any unlabeled distribution. Then the following holds,

min
A

sup
P∈Ext(D)

mSSL(A, ε, δ,H, P ) = Θ

(
ln 1

δ

ε2

)
.
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C1 C2

C3

Figure 4.4: Here H consists of linear halfspaces over the Euclidean plane. The
unlabeled distribution D has support on sets C1, C2 and C3 (assigning equal prob-
abilities to each). In this case the three sets are 3-shatterable.

Proof. Upper bound comes from any ERM algorithm (note that VC(H) = 1, use
uniform convergence results in Section 2.5). Let h = 1(−∞, 0] and g = 1(−∞, 1]
so D(set(h)∆ set(g)) = 1. Set γ = ε as in Lemma 4.7.

Definition 4.6. Let D be an unlabeled distribution. The triple (X , H, D) is b-
shatterable if there exists disjoint sets C1, C2, . . . , Cb with D(Ci) = 1/b for each i,
and for each S ⊆ {1, 2, . . . , b}, there exists h ∈ H such that

set(h) ∩
(

b⋃
i=1

Ci

)
=
⋃
i∈S

Ci.

See Figure 4.4 for an example.

Theorem 4.9. If (X , H, D) is b-shatterable then for any ε, δ ∈ (0, 1/64)2 we have

min
A

sup
P∈Ext(D)

mSSL(A, ε, δ,H, P ) = Ω

(
b+ ln 1

δ

ε2

)
.

Proof. The proof is similar to Theorem 5.2 in Anthony and Bartlett (1999). The
idea is to construct noisy distributions and use the probabilistic method to show
that there is at least one noisy distribution which the a priori fixed SSL algorithm
does badly on. Let G = {h1, h2, . . . , h2b} be the class of functions that b-shatters
D with respect to C = {C1, . . . , Cb}. We construct noisy extensions of D, P =
{P1, P2, . . . , P2b} so that for each i,

Pi(x, hi(x)) =
1 + 2γ

2b
.
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For any h ∈ H, let

snap(h) := argmin
h′∈G

D(set(h)∆ set(h′)).

Suppose P ∈ P, let h∗ denote the optimal classifier which is some g ∈ G depending
on the choice of P . If i 6= j and N(hi, hj) is the number of sets in C where hi and
hj disagree, then D(set(hi)∆ set(hj)) ≥ N(hi, hj)/b, and since G is a 1/b-packing,

ErP (h) ≥ ErP (h∗) +
γ

b
N(snap(h), h∗) =

1

2

(
ErP (snap(h)) + ErP (h∗)

)
. (4.15)

Modifying the proof of Anthony and Bartlett (1999, Chap. 5) with the use of
Lemma 4.7 rather than Lemma 4.6 we get that there exists a P ∈ P such that
whenever m ≤ b/(320ε2),

Pr
S∼Pm

[
ErP (snap(A(D,S)))− ErP (h∗) > 2ε

]
> δ.

Whenever A fails, we get from (4.15)

ErP (A(D,S))− ErP (h∗) ≥ 1

2

(
ErP (snap(h)) + ErP (h∗)

) ≥ ε.

To get Ω(ln(1/δ)/ε2), we note that b-shatterability implies there exists the hypothe-
ses h and g that predicts 0 and 1, respectively, on the support of D, now apply
Lemma 4.7 with h and g.

An easy consequence of Theorem 4.9 is that there is no semi-supervised learn-
ing algorithm that has sample complexity asymptotically better than supervised
learning, taking the worst-case over all distributions P over X × Y .

Corollary 4.10. Fix H, ε, δ > 0. Assume that H contains h, g with

D(set(h)∆ set(g)) = 1

we have the following:

min
A

sup
P over X×Y

mSSL(A, ε, δ,H, P ) = Θ

(
VC(H) + ln 1

δ

ε2

)
Proof. Let A be a set of size VC(H) that is shattered by H, and let D be an
unlabeled distribution such that for any a ∈ A, D(a) = 1/VC(H), then we apply
Theorem 4.9 since (X ,H, D) is b-shatterable.

We will now apply Theorem 4.9 to give the SSL sample complexity for learning
union of intervals on the real line, for any unlabeled distribution having density.
Recall that by the reduction to the uniform distribution technique in Section 4.2, we
only need to consider the sample complexity with respect to the uniform distribution
on [0, 1].
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C1 C2 C2d−1 C2d. . .

Figure 4.5: Let the unlabeled distribution D be the uniform distribution, then the
sets C1, . . . , C2d can be 2d-shattered by the union of at most 2d intervals, UId.

Corollary 4.11. Recall the class of union of at most d intervals UId = {1[a1, a2)∪
· · · ∪ [a2l−1, a2l) : l ≤ d, 0 ≤ a1 ≤ a2 ≤ · · · ≤ a2l ≤ 1}. Let (ε, δ) ∈ (0, 1]2 and D any
unlabeled distribution having density. Then the following holds,

min
A

sup
P∈Ext(D)

mSSL(A, ε, δ,UId, P ) = Θ

(
2d+ ln 1

δ

ε2

)
.

Proof. By reduction to the uniform distribution (i.e. Lemma 4.1 and Lemma 4.2)
we can assume D to be uniform over [0, 1]. We have VC(UId) = 2d (see Claim A.1),
thus the upper bound follows immediately, by any ERM type algorithm. For the
lower bound, construct 2d-shatterable sets by letting

Ci =

[
i− 1

2d
,
i

2d

)
for i = 1, . . . , 2d. For any S ⊆ {1, . . . , 2d} define hS = 1

⋃
i∈S Ci. Now if |S| ≤ d

then clearly hS ∈ UId, if |S| > d then hS ∈ UId since |S| < d. But then [0, 1)\hS
can be covered by at most d intervals, so hS ∈ UId. Thus the set {hS : S ⊆
{1, . . . , 2d}} 2d-shatters D on [0, 1]. Also let h = [0, 0) = ∅ and g = [0, 1). Now
apply Theorem 4.9 for the bound. See Figure 4.5.

4.5 No Optimal Semi-Supervised Algorithm

One could imagine a different formulation of the comparison between supervised
learning and semi-supervised learning. For example, one might ask naively whether,
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for given class H, there is a semi-supervised algorithm A, such that for any super-
vised algorithm B, and any sufficiently small ε, δ, on any data generating distri-
bution P , the sample complexity of A is no larger than the sample complexity of
B. The answer to the question is easily seen to be negative, because for any P
there exists a supervised learning algorithm BP that ignores the labeled examples
and simply outputs the hypothesis h ∈ H with minimum error ErP (h) (or even
the Bayesian optimal classifier for P ). On P the sample complexity of BP is zero,
unfortunately, on P ′, sufficiently different from P , the sample complexity of BP can
be infinite.

One might disregard algorithms such as BP and ask the same question as above,
except that one quantifies over only the subset of algorithms that on any distribu-
tion over X × {0, 1} have sample complexity that is distribution-free (e.g. poly-
nomial in 1/ε and ln(1/δ)). That is, restricting oneself to learning algorithms (see
Definition 2.5). The following theorem demonstrates that such restriction does not
help and the answer to the question is still negative.

Theorem 4.12. Let H = {1(−∞, t] : t ∈ R} be the class of thresholds over
the real line. For any unlabeled distribution D having density (with respect to the
Lebesgue measure), any semi-supervised algorithm A, any ε > 0 and δ ∈ (0, 1

2
),

there exists a distribution P ∈ Ext(D) and a supervised learning algorithm B (see
Definition 2.8) such that

mSSL(A, ε, δ,H, P ) > mSL(B, ε, δ,H, P ) .

Proof. Fix any A, D unlabeled distribution having density, and m. Let LeftERM
be the algorithm that chooses the right most positive point (for precise definition,
see Equation 2.3). For any h ∈ H we also define algorithm

LeftERMh(S) :=

{
h if ErS(h) = 0

LeftERM(S) otherwise.

First, note that LeftERM = LeftERM1∅. Second, for any h, LeftERMh is an ERM
paradigm (see Definition 2.11), and since VC(H) = 1, it is a learning algorithm.
Third, clearly the sample complexity of LeftERMh on Dh is zero independently of
the choice of ε and δ.

Theorem 4.5 shows that there exists a h ∈ H such that the sample complexity
of A on Dh is positive, in fact, it is increasing as ε and δ approach zero. Thus,
there exists a supervised algorithm B = LeftERMh with lower sample complexity
than A.
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Chapter 5

Conclusion

This thesis has presented a fresh, new look at the theoretical underpinnings of
semi-supervised learning. We proposed a novel, utopian model of semi-supervised
learning where we assume the entire unlabeled distribution is given to the learner
and thus bypassing sampling issues of unlabeled training data.

Our analysis is concerned with the inherent limitations of semi-supervised learn-
ing. In particular, we analyze the potential sample complexity gains in our utopian
model of semi-supervised learning compared with that of supervised learning. All
these analyses are done under what can be termed as the no-prior-knowledge set-
ting, where no assumptions are made on the relationship between labels and the
unlabeled data distribution.

Our main point is that semi-supervised learning cannot provide signifi-
cant benefits over supervised learning, unless one is absolutely sure that
an assumption holds on the relationship between labels and the unlabeled
data distribution.

More technically, what we have proved is that for the class of thresholds (real-
izable and agnostic) and union of intervals (agnostic) SSL cannot have better than
a constant factor advantage in the sample complexity. We conjecture this to be a
more general phenomenon that applies to any hypothesis class. Of course, this does
not take into account the situation in which the learner makes SSL type assumptions
(e.g. the cluster assumption) and is positive these assumptions hold. However, the
difficulty of verifying SSL assumptions or mathematically formalizing them is still
a wide open question. For example, we have illustrated counter-intuitive hazards
of learning under the cluster assumption.

Our work is the first in addressing the fundamental limitations of semi-supervised
learning in a theoretical setting. We hope it is also a first step in bridging the gap
between theory and practice of semi-supervised learning. There is still much future
work to be done and a few of them are given below.

56



5.1 Proving Conjectures 4.1 and 4.2

The main reason why one should believe the conjecture to be true (at least for the
realizable case) is the algorithm of Kääriäinen (2005). That is, a generalization of
MedianERM for arbitrary domains X where one finds the “centre” of the version
space (i.e. consistent hypothesis on labeled data) where the (pseudo)-metric over
the hypothesis space is defined by the unlabeled distribution mass of the symmetric
difference of two hypotheses. Intuitively, supervised learning cannot find this centre,
therefore in the worst-case it chooses a hypothesis on the “boundary” of the version
space resulting in error at most the diameter of the version space whereas SSL
achieves error at most the radius of the version space.

While we have shown the conjecture to be true for “smooth” unlabeled distri-
butions (i.e. ones having a density function) for the class of thresholds in both
the realizable and agnostic settings, and union of intervals in the agnostic setting,
it would be nice to prove it for unlabeled distributions that don’t have densities.
These distributions include ones that are discrete, or a combination of discrete and
continuous parts. For example, if the distribution is concentrated on one point, the
best SSL and SL algorithms do the same thing.

It would also be nice to prove a lower bound for supervised learning under
thresholds in the realizable setting (for unlabeled distributions having density). We
believe the lower bound should match the best known upper bound (e.g. LeftERM)
of ln(1/δ)/ε within some negligible additive factor. This would imply that for any
unlabeled distribution having density, the SSL sample complexity is exactly twice
better than SL sample complexity—without making SSL assumptions!

Of course, it will be quite interesting to prove the conjecture for classes in
higher dimensions. Unfortunately the reduction technique of Section 4.2 cannot
be easily extended for higher dimensions. For example, consider R2, and the map
(x, y) 7→ (F1(x), F2(y)) where F1 and F2 are the CDFs for the x and y components,
respectively. In order for this mapping to induce a uniform distribution over [0, 1]2,
we need that F (x, y) = F1(x)F2(y) where F is the CDF over R2. In other words F
must be a product distribution (having density). The class of axis-aligned rectangles
will retain its “shape” under this type of transformation, but not necessarily for
linear halfspaces (e.g. product Gaussian truncated beyond the unit square and
halfspace defined by y = 1 − x). However, we do not know of a lower bound on
learning axis-aligned rectangles with respect to the fixed uniform distribution over
the unit cube. Note that there are still transformations that will induce the uniform
distribution for non-product distributions, but it may disfigure the shape of say,
axis-aligned rectangles.

5.2 Verifying SSL Assumptions

Our examples in Section 3.3 underscores the pitfalls when doing SSL with the
cluster assumption. A natural question to consider is: is there’s a way to verify
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these SSL assumptions?

Our examples show that the cluster assumption hold at varying degrees. That
is, while the best separator may not lie in the least dense region of the unlabeled
distribution, it may lie at some region with density slightly larger. Thus when
verifying this assumption it is important to verify at what degree the assumption
holds.

The main issue is that in order to verify the degree to which a SSL assumption
holds, one will likely need to set aside existing labeled data to do so. After per-
forming the verification, SSL will have less labeled data to train with. However,
supervised learning does not need perform this kind of verification, therefore it has
more labeled training data, which can result in a predictor that is just as good as
the SSL one.

Perhaps a way to overcome this issue is to consider the setting when one has
related tasks in the sense that they share the same labels/unlabeled distribution
relationship. In practice a learner may use SSL assumptions for the current task
that are known to work for related tasks. The main potential advantage here is
that once the assumption has been verified on another task, it can be applied to the
related task without using more labeled data for further verification. The definition
of “relatedness” is important here, and the learner’s new problem is to make sure
the tasks are related.

5.3 SSL Sample Complexity Incorporating As-

sumptions

As discussed in Section 4.1, the analysis of the SSL sample complexity does not
consider SSL assumptions and is a worst-case analysis. Specifically, for a fixed
hypothesis class H, unlabeled distribution D, ε, δ > 0,

Worst-case-mSSL(ε, δ,H, D) := min
A

sup
P∈Ext(D)

mSSL(A, ε, δ,H, P )

The supremum is over P ∈ Ext(D), that is, worst-case (labeled) distribution whose
marginal equals D. This is somewhat unrealistic, as it allows for P ’s that is very
noisy, which would result in bad performance for both SSL and SL.

How can this worst-case be modified to be more realistic for SSL with assump-
tions? A possible idea is to consider a restricted subset of Ext(D) that satisfy an
assumption. That is, let T be an assumption (e.g. cluster assumption) and let
T (D) ⊆ Ext(D) such that each P ∈ T (D) satisfy the assumption T . Thus we can
define an assumption-based SSL sample complexity,

Assumption-T -mSSL(ε, δ,H, D) := min
A

sup
P∈T (D)

mSSL(A, ε, δ,H, P )
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In the extreme case T (D) consists of only a single distribution and the (labeled)
sample complexity is zero. For example, if T (D) consists of the distribution that is
defined by the lowest density linear separator (of D), then the task is to find this
separator using only unlabeled data, since we know it has zero error. Clearly this
is too strong an assumption. On the other extreme, T consists of all Ext(D) which
probably will not provide a significant advantage over supervised learning. Thus it
is up to the learner to specify a T that takes into account this tradeoff.
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Appendix A

Examples of VC Dimension

This appendix shows some examples of the VC dimension of some basic hypothesis
classes. These classes include thresholds over the real line, finite union of intervals
and linear halfspaces in Euclidean space. In this thesis we make use of the VC
dimension of the first two hypothesis classes, but the calculations for halfspaces is
left for didactical purposes.

Recall from Definition 2.10 that the Vapnik-Chervonenkis dimension of a hy-
pothesis class H over input domain X is defined as

VC(H) := sup{d : ∃A ⊆ X , |A| = d, |H(A)| = 2d},
where H(A) = {h(A) : h ∈ H}. That is, it is the size of the largest subset A of X
such that for any S ⊆ A, there is a hS ∈ H with set(hS) ∩ A = S.

A.1 Thresholds

The class of thresholds over the real line is defined as

H = {1(−∞, a] : a ∈ R}.
Figure A.1 shows an example hypothesis.

It is not hard to see that H can shatter one point, say 0, by the hypothesis
1(−∞,−1] and 1(−∞, 1]. Let a, b ∈ R be any two points. Does there exist a t
such that (−∞, t] ∩ {a, b} = {b}? No, because then t ≥ b which implies a must be
in the intersection. Thus, VC(H) = 1.

t1(−∞, t] R
1 0

Figure A.1: The class of thresholds consists of hypothesis that predicts 1 if a point
is less than the threshold, otherwise it predicts 0.
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A.2 Union of Intervals

We define the union of at most d intervals as

UId := {1[a1, a2) ∪ [a3, a4) ∪ · · · ∪ [a2`−1, a2`) : ` ≤ d, a1 ≤ a2 ≤ · · · ≤ a2`}.
Claim A.1. VC(UId) = 2d.

Proof. For the lower bound, let A = { 1
2d

: 0 ≤ i ≤ 2d− 1}. For any subset S of A,
suppose |S| ≤ d, then clearly we can construct

hS = 1

|S|⋃
i=1

[
si, si +

1

2d

)
where si’s are the elements of S, such that set(hS) ∩ A = S. If |S| > d then
|A\S| < d, this implies there exists hA\S such that its set intersection with A is

A\S. But note that hA\S is a union of at most d intervals—technically not true,
but can be easily modified into one—whose set intersection with A results in S.

For the upper bound, let A consist of (at least) 2d + 1 points a1, a2, . . . , a2d+1,
it can be seen that S = {a1, a3, . . . , a2d−1, a2d+1} of size d+ 1 requires d+ 1 disjoint
intervals to cut away S from A.

A.3 Linear Halfspaces

The hypothesis class of the linear halfspaces in Euclidean dimension d is defined by

Ld = {I(w1x1 + w2x2 + . . .+ wdxd + w0 ≥ 0) : w ∈ Rd+1,x ∈ Rd},
where I(·) is the indicator function.

Claim A.2. VC(Ld) ≥ d+ 1.

Proof. Let A = {0, e1, e2, . . . , ed} ⊂ Rd where ei is the vector with all zeroes except
at the i-th coordinate where it is a 1. Let

S ′ = {e`1 , . . . , e`k : `1 ≤ `2 ≤ · · · ≤ `k} ⊂ A.

We let w0 = −1/2, wi = 1 if i = `j for some j ∈ [k], and wi = 0 for all other
i’s. We let hS′ be the halfspace defined by the given weights. It is clear that
set(hS′) ∩ A = S ′. Also if S = S ′ ∪ {0} then we adjust w0 = 0 to include the zero
vector. This shows that we can “cut out” all the possible subsets of A from A.

In turns out this is the largest sized set that is shatterable by halfspaces (equiv-
alent to number of parameters of the halfspace). To show the upper bound, we
need a simple observation.
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Definition A.1. The convex hull of a finite1 set of points S = {s1, . . . , sm} ⊆ Rn

is

CH(S) =

{
λ1s1 + . . .+ λmsm : λ ≥ 0,

m∑
i=1

λi = 1

}
.

Theorem A.3 (Radon). Let A = {a1, . . . , ad+2} ⊂ Rd, then there exists two parti-
tions of A, P,Q such that CH(P ) ∩ CH(Q) 6= ∅.

Proof. Consider the vectors A′ = {(a1, 1), . . . , (ad+2, 1)} ⊂ Rd+1 where an extra 1 is
added to the last coordinate. Basic linear algebra says that A′ is linearly dependent,
that is, there exists constants c1, . . . , cd+2 ∈ R not all zero such that

c1(a1, 1) + c2(a2, 1) + . . .+ cd+2(ad+2, 1) = 0.

This implies these separate conditions,

d+2∑
i=1

ciai = 0

d+2∑
i=1

ci = 0

Let P = {ai : ci > 0} and Q = A\P . By the above equations, the point

∑
i:ai∈P

[
ci∑

j:aj∈P cj

]
ai =

∑
i:ai∈Q

[
ci∑

j:aj∈Q cj

]
ai

is in both CH(P ) and CH(Q).

Corollary A.4. VC(Ld) = d+ 1.

Proof. The upper bound comes from Claim A.2. Given any A with at least d + 2
points, we can find a partition of A, say P,Q such that their convex hulls do not
intersect. A basic result in convex analysis says that a sufficient and necessary
condition for linear separability of two sets of points is that their convex hulls do
not intersect. This means P and Q cannot be linearly separated, therefore neither
P nor Q can be “cut out” from A.

1The convex hull of any set (e.g. uncountable) can also be defined, but we will not need it
here.
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