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Abstract
While voting schemes provide an effective means for ag-
gregating preferences, methods for the effective elicita-
tion of voter preferences have received little attention.
We address this problem by first considering approxi-
mate winner determination when incomplete voter pref-
erences are provided. Exploiting natural scoring metrics,
we use max regret to measure the quality or robustness
of proposed winners, and develop polynomial time algo-
rithms for computing the alternative with minimax regret
for several popular voting rules. We then show how min-
imax regret can be used to effectively drive incremental
preference/vote elicitation and devise several heuristics
for this process. Despite worst-case theoretical results
showing that most voting protocols require nearly com-
plete voter preferences to determine winners, we demon-
strate the practical effectiveness of regret-based elicita-
tion for determining both approximate and exact winners
on several real-world data sets.

1 Introduction
Effective schemes for the aggregation of user preferences is
critical in settings where a single consensus decision or rec-
ommendation must be made for a group of users. While so-
cial choice theorists have studied such problems for decades,
the availability of data about the preferences of millions of in-
dividuals afforded by search engines, recommender systems,
and related artifacts, has made the practical, computational
solution to such problems all the more relevant.

Incremental elicitation of preferences is critical to easing
cognitive and communication demands on users and mitigat-
ing privacy concerns. However, the use of voting schemes
to support consensus decision making rarely takes this into
account. In most schemes, users or voters express their pref-
erences over the space of options or alternatives. The voting
scheme then selects a consensus option, or winner. Requir-
ing voters to express full preference orderings can be onerous
(especially for large sets of alternatives) and often captures
more information than is needed to determine the winner.
While winners can’t be determined in many voting schemes
without a large amount of information in the worst case [5;
6], this does not diminish the practical imperative to mini-
mize the amount of information elicited from voters.

To address this, we consider two key issues. First, given
partial information about voter preferences, how does one
choose a suitable approximate winner? Note that we are dis-
cussing informational approximation (cf. existing work on
computational approximation of voting schemes focus under
conditions of full information). In this sense, our approach
shares much with research on possible and necessary win-
ner determination [11; 12; 19]; however, we propose a gen-
eral technique by which one actually chooses a winner in set-
tings with incomplete preferences. Using maximum regret to
quantify the worst-case error, the alternative that minimizes
this error is selected, providing us with a form of robust op-
timization. We develop methods for computing the minimax-
optimal alternative for a selection of voting rules.

The second issue we address is incremental vote elicitation.
If the available voter preference information is too limited,
the potential error associated with the robust winner (i.e., its
max regret) may be unacceptable. We use the solution to the
robust winner determination problem to choose which queries
to ask of which voters. We discuss distribution-free heuristics
that allow us to determine queries that quickly allow one to re-
duce minimax regret. Our experimental results on randomly-
generated and real-world data sets show that winners can be
determined even when voters express a relatively small pro-
portion of their preferences. While our elicitation schemes
do not exploit preference distribution information, they can
be readily extended to do so (as we discuss in Sec. 6).

The paper is organized as follows. We provide brief back-
ground on social choice and voting rules in Sec. 2. We de-
fine minimax regret for voting rules, and discuss its relation-
ship with possible and necessary winners, in Sec. 3, deferring
discussion of algorithms and complexity to Sec. 4. Sec. 5
presents heuristics for elicitation along with empirical results
demonstrating their effectiveness on several data sets. Sec. 6
concludes with discussion of future research directions.

2 The Social Choice Problem
We begin with a review of basic concepts from social choice
and several common voting schemes (see [7; 14] for fur-
ther background). We assume a set of agents (or voters)
N = {1, . . . , n} and a set of alternatives A = {a1, . . . , am}.
Alternatives can represent any outcome space over which the
voters have preferences (e.g., product configurations, restau-
rant dishes, candidates for office, public projects, etc.) and for



which a single collective choice must be made. Let ΓA be the
set of rankings (or votes) over A (i.e., permutations over A).
Voter k’s preferences are represented by a ranking vk ∈ ΓA.
Let vk(a) denote the rank of a in vk. Then k prefers ai to
aj , written ai �k aj (or ai � aj when k is clear from con-
text), if vk(ai) < vk(aj). We refer to a collection of votes
v = 〈v1, . . . , vn〉 ∈ Γn

A as a preference profile. Let V be the
set of all such profiles.

Given a preference profile, we consider the problem of se-
lecting a consensus alternative, requiring the design of a so-
cial choice function or voting rule r : V → A which selects
a “winner” given voter rankings/votes. Plurality is one of the
most common rules: the alternative with the greatest number
of “first place votes” wins (various tie-breaking schemes can
be adopted). Plurality does not require that voters provide
rankings; however, this “elicitation advantage” means that it
fails to account for relative voter preferences for any alterna-
tive other than its top choice. Other schemes produce winners
that are more sensitive to relative preferences, among them:

• Positional scoring rules: Let α(1), . . . , α(m) score each rank
position with α(i) ≥ α(i + 1). The score of a is sα(a,v) =∑
k α(vk(a)). The winner is the awith the greatest score. The

well-known Borda count is a positional rule withα(i) = m−i.
Plurality (with α(1) = 1 and α(i) = 0 for i > 1), k-approval
(with α(i) = 1 if i ≤ k, α(i) = 0 o.w.), k-veto (α(i) = 1 if
i ≤ m− k, α(i) = 0 o.w.) are also positional rules.

• Maxmin fairness: Let sf (a,v) = min{m− vk(a) : k ∈ N}.
The winner is the a with maximum score (i.e., the alternative
whose worst rank among all voters is highest).

• Copeland: Define W (ai, aj ;v) to be 1 if more voters pre-
fer ai to aj , 0.5 if tied, and 0 otherwise. Let sc(ai) =∑
j 6=iW (ai, aj ;v). The a with highest score sc(a) wins.

• Maximin: Let N(ai, aj ;v) = |{vk : vk(ai) < vk(aj)}| be
the number of voters who prefer ai to aj . Let sm(ai,v) =
minj 6=iN(ai, aj ;v). The awith highest score sm(a,v) wins.

• Bucklin: The Bucklin score sB(a,v) is the smallest k ∈
{1, . . . ,m} such that more than half of all voters rank a above
position k. The winner is the a with smallest Bucklin score.

We will mention other voting rules below without defining
them; see [19] for brief descriptions. Notice that these vot-
ing schemes explicitly score alternatives, implicitly defining
“societal utility” for each alternative. This is true of many
(though not all) voting schemes.

One obstacle to the widespread use of voting schemes that
require full rankings is the informational and cognitive bur-
den imposed on voters, and concomitant ballot complexity.
(Political factors play a role as well). This partly explains
the popularity of plurality voting in many jurisdictions [14],
and the advocacy of more expressive methods (e.g., approval
voting [3]) that fall short of full ranking. Elicitation of suffi-
cient, but still partial information about voter rankings could
alleviate some of these concerns.

The elicitation question has been studied from a theoreti-
cal perspective, addressing whether winners for some voting
rules can be determined with incomplete voter preferences
(rankings). Unfortunately, worst-case results are generally
discouraging. Conitzer and Sandholm demonstrate that the
communication complexity of several common voting pro-
tocols, such as Borda and Copeland, is O(nm logm), essen-

tially requiring communication of full voter preferences in the
worst-case [6]. Indeed, determining which votes to elicit to
determine a winner is NP-hard in many schemes (e.g., Borda)
[5; 18]. However, almost no work has addressed the question
of practical vote elicitation—we discuss one exception, the
recent work of Kalech et al. [9], in Sec. 5.

A question somewhat related to vote elicitation pertains to
determining necessary and possible winners [11; 12; 19]. We
define these problems formally below, but intuitively, given
partial voter preferences, one asks whether alternative a must
win under any completion of the preferences, or whether a
could win under some completion. Both concepts are tightly
related to questions of elicitation (see below).

Despite the theoretical complexity of partial elicitation,
practical means of eliciting partial rankings and making deci-
sions with incomplete preferences are vital. We first address
winner determination under partial preferences, then turn our
attention to elicitation.

3 Robust Winner Selection and Partial
Profiles

Suppose we have only partial information about the prefer-
ences of some or all of the voters. We assume the partial
ranking of a voter k takes a very general form, namely, a par-
tially ordered set over domain A, or equivalently (the transi-
tive closure of) a collection of pairwise comparisons of the
form ai � aj . Most natural constraints on preferences, in-
cluding the responses to natural queries (e.g., pairwise com-
parison, positional, top-t, and other queries) can be repre-
sented in this way.1 Let pk be the partial ranking of voter
k. A completion of pk is any vote vk that extends pk. Let
C(pk) denote the set of completions of pk, that is, the set of
all (complete) votes vk that extend pk. We introduce the fol-
lowing notation: Neck(a � b) iff a � b in all completions
of pk; Posk(a � b) iff a � b in some completion of pk; and
Inck(a, b) iff Posk(a � b) and Posk(b � a). An incomplete
profile is a collection of partial votes p = 〈p1, . . . , pn〉. Let
C(p) = C(p1)× . . .×C(pn) be the set of completions of p.

Let r be a voting rule. We define possible and necessary
winners as follows [11; 12]: a is a possible winner under p
iff there is some v ∈ C(p) such that r(v) = a; and a is a nec-
essary winner under p iff r(v) = a for all v ∈ C(p). Com-
putationally, the possible winner question is typically hard
(NP-complete), while necessary winner computation can be
easy (polynomial time) or difficult (coNP-complete) depend-
ing on the rule [11; 19].

In the sequel, we assume the existence of a scoring func-
tion s(a,v) that measures the quality of any candidate given
a preference profile v. Specifically, consider some voting rule
r : V 7→ A. We say a scoring function s is consistent with
rule r iff r(v) ∈ argmaxa∈A s(a,v) for all v ∈ V . This is,
of course a minimal requirement, since any voting rule can be
defined using an indicator function as the score. Many voting
rules are, however, defined using a “natural” score. Indeed,

1One exception involves constraints that are naturally disjunc-
tive, e.g., a response to the question “What alternative is ranked tth?”
cannot be mapped to a set of pairwise preferences unless the posi-
tions t are queried in ascending or descending order.



all rules discussed above have natural scoring functions (this
fact is exploited in the algorithms for necessary winner de-
termination developed in [19]). The notions of possible and
necessary winners can be generalized when scores are used
to allow for ties: a necessary co-winner is a candidate who
has a maximum score in all possible completions of a partial
profile (hence, even if the tie-breaking rule used by r goes
against it, a is still “as good” a candidate as any winner); pos-
sible co-winners are defined similarly [19].

Suppose we have a partial profile p and we are forced
to make a decision in the face of this incomplete informa-
tion.2 Necessary and possible winners do not resolve this is-
sue satisfactorily: necessary winners often do not exist, and
possible winners can only be used to narrow the set of op-
tions. We are unaware of any work that attempts to address
the question of suggesting winners regardless of the degree
of incompleteness of the votes. Here we propose the use
of the minimax regret solution concept. This concept has
been used for robust decision making, and for driving pref-
erence elicitation, in a variety of single-agent domains [1; 2;
4] and in mechanism design [8]; but our work is the first appli-
cation of the notion to voting and (rank-based) social choice.

Intuitively, we measure the quality of any proposed winner
a given p by considering how far from optimal a could be in
the worst case (i.e., given any completion of p). The minimax
optimal solution is any alternative that is nearest to optimal in
the worst case. More formally:

Regret(a,v) = maxa′∈As(a
′,v)− s(a,v) (1)

= s(r(v),v)− s(a,v)
PMR(a, a′,p) = maxv∈C(p)s(a

′,v)− s(a,v) (2)
MR(a,p) = maxv∈C(p)Regret(a,v)

= maxa′∈APMR(a, a′,p) (3)
MMR(p) = mina∈AMR(a,p) (4)

a∗p ∈ argmin
a∈A

MR(a,p) (5)

Regret(a,v) is the loss (or regret) of selecting a as a win-
ner instead of choosing the optimal alternative under rule r or
score s.3 PMR(a, a′,p) denotes the pairwise max regret of
a relative to a′ given partial profile p, namely, the worst-case
loss—under all possible realizations of the full profile—of se-
lecting alternative a rather than a′. Notice that pairwise max
regret can be negative. Max regret MR(a,p) is the worst-
case loss associated with a. We can view this as adversarial
selection of a complete profile v to maximize the loss be-
tween our chosen alternative a and the true winner under v.
Our aim is to chose the a with minimal max regret: MMR(p)
denotes minimax regret under partial profile p, while a∗p de-
notes the minimax optimal alternative.4 This gives us a form
of robustness in the face of vote uncertainty: every alternative
has worst-case error at least as great as that of a∗p.

2We distinguish our partial information setting from the ques-
tion of aggregating preferences of voters whose preferences reflect
genuine incomparability (see, e.g., [15]).

3See Smith [17] who uses score-based regret to measure the per-
formance of various voting rules, including range voting.

4We informally write as if the optimal candidate is unique, but
there can be several a that minimize max regret.
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Fig. 1: A partial profile p where the minimax alternative is not a
possible winner (under 2-approval). Alternative b has score 2k in
every completion. Either a or c must be at the top of every vote
in set III, so one must get at least k + 1 points from set III. Hence
max(s(a), s(c)) ≥ 2k+1, and a, c are possible winners, while b is
not. Now, MR(b,p) = k + 1 (a completion that puts a at the top
of all votes in set III would give a a score of 3k + 1, the maximum
possible). But MR(a,p) = 2k + 1: if we select a, the adversary
will place c and e above a in each vote in set III, setting s(a) = k
and s(c) = 3k + 1. MR(c,p) = 2k + 1 by similar reasoning.

Notice that if MMR(p) = 0, then the minimax winner a∗p
has the same score or utility as the winner in any completion
v ∈ C(p); i.e., a∗p is guaranteed to be optimal. While this
does not imply there is a necessary winner under p (due to tie-
breaking), MMR(p) = 0 iff there is a necessary co-winner.
Thus for any rule r we have, by setting ε = 0:

Observation 1. The max regret decision problem (i.e., does
alternative a have MR(a,p) ≤ ε) is at least as computation-
ally hard as the necessary co-winner problem.

This implies minimax regret is coNP-hard for, say, the
Copeland and ranked pairs voting schemes [19]. It does not
imply the easiness of max/minimax regret when the neces-
sary co-winner problem is easy; but we describe polynomial
time algorithms for minimax regret below. The relationship
with possible winners is more complicated. For certain scor-
ing rules (e.g., plurality) the minimax winner a∗p must be a
possible winner under p. However, in general, we have:

Observation 2. The regret-minimizing alternative may not
be a possible winner for some voting rules.

Fig. 1 shows this for the 2-approval scoring rule (where
the top two candidates in each ranking receive a point): both
possible winners have a poor score under some completion of
the votes, while a compromise candidate that cannot win has
a much higher guaranteed score (i.e., lower max regret) than
either possible winner. This suggests that using the notion of
possible winners to select winners with partial votes can be
problematic for some voting rules. Indeed, there would ap-
pear to be no general way to ensure a possible winner isn’t
far from being optimal without using max regret to quantify
this risk. The fact that the minimax winner a∗p is not a possi-
ble winner is not problematic in our view, but if one insists on
selecting from the set of possible winners, max regret could
at least be used to aid in that selection (i.e., to choose the pos-
sible winner with least max regret). Still we take max regret
to be the more fundamental notion for winner determination
with partial information.

4 Computing Minimax Regret
Minimax regret can often be solved as a mixed integer pro-
gram (MIP) [1; 2]. In our voting context, a MIP formulation
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Fig. 2: An illustration of the three possible relations between al-
ternative a and adversarial alternative/witness w in a partial vote
p. To maximize a partial vote’s contribution to pairwise max re-
gret PMR(a,w,p), linearizations of p require placing the groups
of candidates indicated by rectangles in specific positions relative to
a and w in a way that depends on the scoring rule.

(with variables capturing rank placement in specific votes)
would be prohibitively expensive to solve. However, for cer-
tain voting rules and preference constraints, we can greatly
simplify minimax regret computation by directly considering
properties of worse-case completions of voter profiles with-
out directly computing them. Our constructions are tightly
related to those used by Xia and Conitzer [19] to demonstrate
polynomial time algorithms for necessary winners for the po-
sitional scoring, maximin, and Bucklin rules. Indeed, their
constructions can be viewed as attempting to maximize the
difference in score between a proposed winner and an “adver-
sarially chosen” alternative. We adapt these ideas to minimax
regret, and extend the analysis to maxmin fairness.

To demonstrate the polynomial time computability of min-
imax regret, we explicitly compute the pairwise max regret
PMR(a,w,p) of all m2 pairs of alternatives (a,w) (where a
is a proposed winner and w is an adversarial witness). With
PMR in hand, we can readily determine minimax regret us-
ing Eqs. 3 and 4. We then need only show that PMR can be
computed in polynomial time.

A scoring rule is (additively) decomposable if s(a,v) =∑
i s(a, vi); i.e., it is the sum of votewise scores. This implies

that regret is decomposable, since

Regret(a,w,v) = s(w,v)− s(a,v) (6)

=
∑
i

s(w, vi)−
∑
i

s(a, vi) (7)

=
∑
i

[s(w, vi)− s(a, vi)]. (8)

Given a set of partial votes pi, their completions by an ad-
versary can be undertaken independently, so we can compute
PMR by independently choosing completions vi of each pi
that maximize vi’s local regret:

PMR(a,w,p) = max
v∈C(p)

s(w,v)− s(a,v) (9)

=
∑
i

max
vi∈C(pi)

s(w, vi)− s(a, vi). (10)

All positional scoring rules are decomposable in this way.
We illustrate our constructions by first examining the sim-

ple case of PMR(a,w,p) for a linear positional scoring

rule.5 Since PMR is decomposable, we determine, for any
partial vote pi, the completion vi with maximum contribution
to PMR. Fig. 2 illustrates three different cases. In the first
case, we have Neci(a � w), so pi’s contribution to PMR
must be negative: we maximize regret with a completion vi
that minimizes the positional gap between a and w (i.e., max-
imize the adversary’s (negative) advantage). Note that all al-
ternatives bear one of six distinct relationships to a and w.6
To minimize the gap, it suffices to order set D below w (ar-
bitrarily), set C above a, and U either above a or below w.
The (negative) contribution to PMR is exactly −(|B| + 1):
we needn’t compute an actual linearization of pi, but simply
determine the cardinality of set B. The case of Neci(w � a)
proceeds similarly (see figure), but instead we maximize the
positional gap between w and a by placing sets F , E and
U (arbitrarily) between w and a. Hence, the contribution to
PMR by pi is |B′ ∪ F ∪ E ∪ U | + 1 = m − |A ∪W | − 1.
Finally, in the third case of Inci(a,w), (positive) advantage
is maximized by ordering w over a and placing sets E, F and
U between the two.

Computing PMR thus requires, for each partial vote, cat-
egorizing all alternatives as belonging to the sets in Fig. 2.
This is a simple matter: one compares each alternative a′ to
a and w, classifying it into the appropriate set, which takes
O(m) time, making PMR(a,w,p) computable in O(nm)
time for linear (and nonlinear, see below) scoring rules. With
m2 pairs, computing MMR(p) (and the optimal a∗p and its
witness) takes O(nm3) time. In many practical settings, m
can be treated as a small constant relative to n, in which case
our algorithms scale linearly in n.

With linear positional rules, arbitrary placement of alterna-
tives that do not influence the positional gap between w and
a (i.e., set U when Neci(a � w)) is allowed. For nonlinear
rules, the size of the gap and the position of a,w can influ-
ence the advantage. However, the required placement can be
found by simply examining splits of set U of different cardi-
nalities to determine how many to place above a and below w
to minimize a’s advantage over w—again, this can be accom-
plished in O(m) time. Certain special cases can be treated
more efficiently; e.g., if a positional rule is monotonic non-
increasing (i.e., si − si+1 ≥ si+1 − si+2) then U is placed
above a (and if non-decreasing, below w). In any case, the
minimax regret computation remains O(nm3).

PMR and minimax regret can be computed using indepen-
dent completion of partial votes for non-decomposable scor-
ing rules in some cases. Consider maxmin fairness, where
s(a,v) = mini{m− vi(a)}. While minimizing or maximiz-
ing the score of a candidate in partial vote pi is straightfor-
ward, the way in which adversarial advantage is maximized
in pi can depend on other votes. In the cases Neci(w � a)
and Inci(a,w), there is only one way to maximize the local

5Linear implies that an alternative’s score is a linear function of
its rank in v, hence the difference in two rank positions uniquely
determines their difference in score. Veto, approval, and plurality
are not linear, but Borda is (linear rules are all “Borda-like”).

6A is the set of alternatives (if any) preferred to both a and w;
D are those less preferred than a but with unknown relation to w; U
have unknown relation to both a and w; etc.



advantage of w over a (see above). But when Neci(a � w),
the placement of U either above a or below w influences the
maximin score of a and w in a way that depends on other
votes. However, one can show that unless PMR(a,w,p)
is negative, then advantage is maximized by ordering U be-
low w. Informally, placing U below w can improve the min
score of both a and w. However, this placement can only
improve the min score of a if vote vi gives a its min score
over all pi, in which case the min score of w is strictly less
than that of a, and PMR(a,w,p) is negative. Since max re-
gret can never be negative, the pair (a,w) cannot define a’s
max regret. This lets us prove that, unless PMR is negative,
PMR(a,w,p) is maximized by ordering U below w in any
pi where Neci(a � w). The running time for PMR isO(nm)
and for MMR is O(nm3), as in the case of positional scoring
rules, since we only need to identify the relevant sets in Fig. 2.

We consider to other nondecomposable rules, maximin and
Bucklin, which require more intricate computation. To com-
pute pairwise max regret for the maximin rule, one must also
consider possible alternatives a′ ∈ A\{a,w}. For any partial
vote pi, the adversarial construction is the same as for posi-
tional scoring rules in the cases Neci(w � a) and Inci(a,w).
The case Neci(a � w) is different: one must consider, for
each a′, the adversarial placement of a′ over a, if possible,
and everything else below w. This gives O(nm2) time for
computing PMR and consequently O(nm4) time for com-
puting minimax regret. For Bucklin, to compute pairwise
max regret one asks questions of the form “Is there a com-
pletion where at least half of the voters rank a below position
j and more than half of the voters rank w at or above rank
j′?” Such questions can be answered in polynomial time, and
again the adversarial constructions can be done vote-wise,
with the most involved case being Neci(a � w), where one
must check whether (and which of) a or w can be ranked
above/below j or j′. These constructions are again similar to
those of Xia and Conitzer [19]. We defer details to a longer
version of this paper.

5 Vote Elicitation
We now turn to vote elicitation. As discussed above, while
elicitation can be difficult (w.r.t. computation and communi-
cation complexity) in the worst case, minimax regret can be
used effectively to guide the elicitation process. As a valu-
able measure of solution quality, it can be used to terminate
elicitation whenever regret falls to some suitable threshold
(including zero if optimality is desired).7 More importantly,
the solution to the minimax optimization can guide the se-
lection of queries (and voters to ask) so that an (approximate
or exact) optimal solution can be found quickly. In this sec-
tion, we describe a simple heuristic strategy to do just this.
We focus on linear positional rules (Borda-like) and two spe-
cific query types; but these ideas generalize to other rules and
other forms of queries. (These generalizations are described
in a longer version of this paper.)

7If determining optimal termination is hard [5; 18], then so is
minimax regret; or equivalently, if computing minimax regret is easy
(as demonstrated for certain rules above), so is termination.

The Current Solution Strategy (CSS). We consider two
forms of queries. A comparison query asks a voter k to com-
pare two alternatives: “Is a �k b?”. A top-t query asks voter
k to state which alternative is tth in their ranking (we assume
that the first t − 1 alternatives have already been articulated
by k). We describe our key heuristic below using comparison
queries, but the intuitions are easily adapted to the selection
of top-t queries (see our experiments).

The current solution strategy generates queries by consid-
ering the current solution to the minimax optimization—i.e.,
the minimax optimal alternative a and adversarial witness
w—and using this to choose a voter-query pair with greatest
potential to reduce minimax regret. Notice that if the advan-
tage of w over a is not reduced in some partial vote pk in
response to a query, PMR(a,w) will not change, thus, unless
the response changes the minimax optimal solution, MMR
will not change. So CSS selects queries that tackle this gap
directly. We determine the value of posing a query to voter
k, by considering the three cases in Fig. 2, in each case deter-
mining the query with the largest potential reduction given a
positive response by k:

Case 1: a � w: We can reduce PMR(a,w) by asking two
different types of queries: d � w for some d ∈ D or a � c
for c ∈ C. In each case, a positive response will position
alternatives between a and w, thus reducing PMR(a,w) by
increasing the (worst-case) position of a relative to w in pk.
We pick the alternative in C ∪D (and voter) with greatest po-
tential to reduce PMR (i.e., in the case of a positive response).
For linear rules, this potential is measured by the number of
ancestors of d in set D (all of which will be positioned be-
tween a and w if d is), and the number of descendents of c
in set C. If C ∪ D = ∅, we can ask two other query types,
u � w or a � u for some u ∈ U . These do not reduce PMR
directly, but move u and its ancestors in U to set C (for query
u � w) or u and its descendents in U to set D (for query
a � u). The u that can move the greatest number of items
within U to some other set is chosen.

Case 2: w � a: We can reduce PMR(a,w) by asking four
different types of queries: a � f for some f ∈ F ; a � u for
u ∈ U ; e � w for some e ∈ E; or u � w for some u ∈ U .
A positive response to any such query will reduce PMR by
increasing the (worst-case) score of a in pk or reducing that of
w. Selection is again made by picking the alternative, query
and voter that will have the greatest potential (i.e. in the case
a positive response is received) reduction in PMR.

Case 3: Inc(a,w): We can reduce PMR(a,w) by asking
several different queries, however, heuristically, we always
choose to ask if a � w, since a positive response reverses pk’s
contribution to PMR from positive to negative. Any response
will move partial vote pk into either case 1 or case 2.

CSS must eventually terminate with an optimal solution:

Proposition 3. Unless MMR = 0, CSS will always select a
voter k and comparison query ai �k aj s.t. Inck(ai, aj).

If partial vote pk falls into Case 3, this is obvious. In cases
1, 2, we can show that at least one of the designated sets for
some voter must be nonempty if MMR > 0.

CSS can be adapted, using similar intuitions, to generate
top-t queries (see a longer version of the paper). Top-t queries



are asked of any voter in order: so no voter is asked for the
second-ranked candidate before their first, their third before
their second, etc. Note that CSS need only select a voter at
any stage, not a query.

As benchmarks in our experiments, we use two other
strategies as well. The random strategy (Rand) randomly
chooses a voter k and a comparison query such that
Inck(ai, aj) (so the query response always bears informa-
tion). With top-t queries, Rand only needs to choose voter
k at random. The volumetric strategy (Vol) selects a voter k
and query ai � aj that maximizes the number of new pair-
wise preferences revealed (given the worst response):

Vol(pk) = max
ai,aj

min

{
|tc(pk ∪ {ai � aj})|,
|tc(pk ∪ {aj � ai})|

}
,

where tc denotes transitive closure. This strategy reduces
preference uncertainty maximally, without regard for “rele-
vance” to winner determination (much like volumetric strate-
gies for single-agent settings). Its application to top-t queries
involves selecting the voter whose next-ranked candidate re-
duces uncertainty the most: since this voter must be one who
has ranked the fewest candidates, the strategy reduces to a
simple sequential iteration where each voter is asked for their
top-ranked candidate, then each is asked for their second-
ranked, and so on. We dub Vol in this case SequentialTop.

In very recent work, Kalech et al. [9] developed two elicita-
tion algorithms for winner determination with scoring-based
rules (e.g., Borda, Range voting). This seems to be the first
significant investigation of practical incremental elicitation.
Their first is essentially the SequentialTop method, which
proceeds in rounds in which each voter is queried for their
next most preferred choice. It uses necessary winner compu-
tation for termination. This contrasts with our CSS approach,
which is much more subtle and incremental: we identify a
particular voter to query at each stage by evaluating its po-
tential to reduce minimax. We see in our experiments that this
can reduce the number of required queries substantially. Fur-
thermore, our elicitation methods are anytime: querying can
terminate when minimax regret is sufficiently small, and we
show below that this further reduces the number of queries
significantly.

Their second algorithm proceeds for a predetermined num-
ber of rounds, asking each voter at each stage for fixed num-
ber of positional rankings. Since termination is predeter-
mined, necessary winners may not result (instead possible
winners are returned), and interesting tradeoffs between the
number of rounds and amount of information per round are
explored. One attractive feature of this model is the batching
of queries (voters are only queried a fixed, ideally small, num-
ber of times, though each query may request a lot of informa-
tion), thus minimizing interruption, waiting time, etc. As the
authors acknowledge, this scheme provides no guarantee of
winner optimality or any bounds on quality. A key advantage
of our minimax regret-based schemes is that a natural, precise
objective is being minimized, and anytime quality guarantees
are provided.8

8We also note that elicitation of pairwise preferences is not con-
sidered in [9]; such queries are extremely valuable and arise natu-

Experiments We test CSS on three datasets: (a) Sushi,
[10], with 5000 preference rankings over 10 varieties of sushi;
(b) Irish, with 2002 voting data from the Dublin North con-
stituency, comprising 3662 rankings over 12 candidates;9 and
(c) Mallows, 100 random rankings over 20 items generated
from the Mallows preference model [13].10 These datasets
were used to generate responses to elicitation queries, and
span both political voting and recommender systems.

We tested CSS on each data set, using both paired and top-t
queries, assuming Borda voting (similar results hold for other
rules), and compared it to the random and volumetric elicita-
tion strategies on the two real-world sets. Fig. 3 shows MMR
as a function of the number of queries asked (both paired and
top-t). On both Sushi and Irish, CSS offers superior elicita-
tion performance with both paired and top-t queries. With
Sushi CSS reaches the optimal solution (i.e., the provable
winner with MMR = 0) after an average of only 11.82 paired
queries per voter (cf. 20.64 for Vol, 20.63 for Rand, and 25
queries required by the theoretically optimal MergeSort to de-
termine full voter rankings), and after 3.40 top-t queries per
voter (cf. 4.18 for Seq, 5.50 for Rand). With Irish, results are
similar: CSS reaches optimality with 18.57 paired and 5.47
top-t queries per user (cf. 31.82, 6.91 for Vol/Seq; 31.22, 8.38
for Rand, 33 for MergeSort). Note that top-t queries are “in-
formation rich” as they provide many pairwise comparisons
per response. Thus, while CSSTop’s advantage is somewhat
less (though RandomTop still asks over 50% more queries to
reach MMR = 0 in Irish), the fact that there is an advantage
is of greater significance. Critically, if one is interested in
approximate solutions, we see that CSS reduces MMR very
quickly. For example, with Irish, CSS reduces MMR to 18%
of its initial value (with no voter preference data) after only
5.82 paired queries per voter (cf. 25.77 for Vol, 24.03 for
Rand), a small fraction of the queries required to elicit full
rankings. CSS took a few milliseconds on average (wall clock
time) to find the best agent/comparison query (including time
needed to recompute the MMR-solution).

On the synthetic Mallows data set, we sampled 10 com-
plete voter profiles for each value of φ and run CSS. With
larger φ, more queries are clearly needed to reach the same
level of regret, which conforms to our intuitions that intelli-
gent elicitation schemes can take significant advantage of less
uniform preferences to minimize queries and voter effort (and
conversely, that with almost uniformly random preferences,
nearly full rankings must be obtained). Work in behavioral
social choice strongly suggests that real-world preferences
are not uniformly random [16], and CSS seems to perform
especially well in this case; indeed our results on Sushi and
Irish suggest that real preferences are not uniform, and con-
tain regularities that can be readily exploited to reduce the
informational complexity of voting.

rally in many domains such as search, IR, consumer product com-
parisons, etc.

9The data has 43, 942 top-t ballots; 3662 are complete (i.e., t =
12). See www.dublincountyreturningofficer.com.

10Mallows is a distribution over rankings given by a modal rank-
ing σ and dispersion φ ∈ (0, 1] with Pr(r|σ, φ) ∝ φd(r,σ), where
d is Kendall’s τ -distance. Smaller φ concentrates mass around σ,
while φ = 1 gives the uniform distribution.
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Fig. 3: Performance of elicitation algorithms (paired and top queries) on Sushi, Dublin and Mallows data.

6 Concluding Remarks
We have proposed the use of minimax regret as a means of
robust winner determination to support the informational ap-
proximation of voting rules, as well as to guide the process of
incremental elicitation of voter preferences. We demonstrated
the tractability of regret computation for a collection of com-
mon voting rules, and demonstrated the power of regret-based
elicitation on two real-world data sets and on synthetic data.
Specifically, regret-based elicitation allows one to determine
both approximate and exact winners using only a small frac-
tion of (pairwise) voter preferences.

While our results suggest that incremental elicitation is
viable in many practical domains, a number of interesting
avenues for future research remain. Apart from develop-
ing computational and elicitation schemes for additional vot-
ing rules, we are currently extending our approach to mul-
tiattribute domains, which are especially relevant in recom-
mender systems and product configuration. We are also de-
veloping formalisms, analytical techniques, and elicitation
schemes that are tuned to the demands of particular popu-
lation preference distributions (e.g., Mallows, Plackett-Luce,
etc.). Such a probabilistic framework would allow for more
subtle analysis of elicitation performance and new elicitation
heuristics. The models could be purely (Bayesian) decision-
theoretic; but more interesting analyses would mix proba-
bilistic and regret-based reasoning (e.g., the expected number
of queries needed to determine a winner or to reduce mini-
max regret to some acceptable threshold). This is an impor-
tant step in making incremental vote elicitation practical in
real-world settings. There are also interesting questions con-
necting elicitation to vote manipulation, where the elicitation
process may reveal preference information that a manipulat-
ing coalition can exploit (see also [5]).
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