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Abstract
Marketing organizations often design multiple market-
ing campaigns to meet a variety of objectives. Market-
ing resources must be allocated carefully across cam-
paigns to minimize conflicts and maximize organiza-
tional value (e.g., impact on customer lifetime value).
While data-driven analytics has greatly improved the
ability to predict the effect of marketing actions on in-
dividual customers, such fine-grained discrimination
of customers has made multi-campaign optimization
much more difficult. We propose a new dynamic seg-
mentation approach for linear programming in large-
scale, multi-campaign targeting optimization. Using
on a novel form of column generation, our method
produces segments of customers who are provably
treated identically in the optimal solution of the un-
derlying (unsegmented) problem. The resulting com-
pression allows problems involving hundreds of cam-
paigns and millions of customers to be solved opti-
mally in fractions of a second. We also describe how
the data-intensive components of the algorithm can
be distributed to take advantage of modern cluster-
computing frameworks.

1. Introduction
The marketing landscape has evolved dramatically over the
past few years (Adobe Systems, 2013). Sophisticated mar-
keters have increasingly come to rely on large amounts of
data about consumer behavior, and advances in machine
learning and predictive analytics, to increase the effective-
ness of their marketing activities. Data might include:
customer profiles; product ownership; transaction history;
surveys; responses to past marketing approaches; behav-
ioral data (e.g., browsing, mobile app usage); social me-
dia (e.g., blogs, reviews, tweets, Facebook likes); social
network connections; and a variety of others. Coupled
with advances in predictive analytics, machine learning and
distributed data processing, these rich data sources enable
extremely fine-grained predictions of customer behavior,

†Patent Pending.

ranging from propensity to act, to responses to marketing
activities, to the expected value of such responses.

Taking advantage of such insights requires some form of
marketing optimization to allocate the resources required
to undertake specific marketing activities. These optimiza-
tions are very complex when considering the delivery of
multiple marketing campaigns. Large marketing organi-
zations routinely run dozens or hundreds of simultane-
ous campaigns, each designed with a specific objective in
mind. For example, a retail bank might run concurrent
campaigns to to cross-sell new financial products to eligi-
ble customers; to reduce the risk of customer defection (or
churn); and to improve brand awareness. Each campaign
requires resources, including budget for its design and exe-
cution, and access to the marketing channels that are likely
to be most effective given the nature of the campaigns and
its targeted customers.

Most critically, each campaign places demands on cus-
tomer attention. Sending multiple (perhaps conflicting, in-
consistent) messages to a customer usually leads to lower
response rates and negative impact on goodwill. To ensure
customers are not inundated with multiple messages, it is
essential to limit customer contacts. Doing so effectively
requires the use of optimization to determine how best to
allocate customer attention to specific campaigns.

These optimizations are often modeled using linear pro-
grams (LPs), mixed integers programs (MIPs), or other
mathematical programming models. In this work, we focus
on LP formulations. While state-of-the-art solvers scale
polynomially with the number of decision variables, they
typically cannot handle problems involving more than a
handful of campaigns and channels, and a few million cus-
tomers in practice. One practical approach to alleviating
this bottleneck to create customer segments based on (ob-
servable, predicted, or derived) customer attributes. By
treating all customers within a segment as indistinguish-
able, one can dramatically reduce the number of decision
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variables, making optimization feasible. Unfortunately,
there is no principled way to segment the customer base
a priori that will admit an optimal solution. Customers
will be grouped for whom very different predictions of
behavior, response, or value are made. This effectively
means that one is losing the value derived from the sophisti-
cated analytics used to produce these predictions in the first
place. Unless this grouping is done in a way that respects
the ultimate objective of the optimization process, the lost
value can be significant.

In this work, we show how to get the best of both worlds.
We develop a dynamic segmentation technique, called dy-
namic cell abstraction (DCA), that creates a small set of
customer segments (or cells) based on predictive models
and marketing objectives. Our segmentations have a very
small number of cells, rendering optimization tractable—
indeed, able to support real-time optimization. At the same
time, these cells are provably optimal; i.e., all customers in
a cell would be treated the same even if we had the com-
putational power to optimally personalize the approach to
each without segmentation.

DCA essentially discovers the customer attributes that are
most relevant to solving the optimization problem, allow-
ing us to abstract away irrelevant distinctions in order to
render the optimization problem tractable. Our procedure
is based on a form of column generation a classic tech-
nique for tackling LPs and MIPs with large numbers of
variables (Lübbecke & Desrosiers, 2005). However, be-
cause we need to both introduce multiple columns at each
stage, and remove redundant columns, we must modify col-
umn generation scoring: we adapt the method introduced
by (Walsh et al., 2010), in the context of online advertising,
to our marketing optimization problem.

2. Problem Formulation
We begin by describing the basic marketing optimization
problem tackled in this work.

Customers and Attributes. We assume a set of customers
S who are potential targets for the marketing campaigns
under consideration. Each customer is described by a set of
features or attributes A. We assume each attribute Aj ∈ A
has finite domain Dom(Aj) = {aj1, . . . , a

j
nj} of possible

values.2 Attributes describe specific features of customers
that are used to predict customer behavior, value, or re-
sponses (such as those outlined above).3

2This is for ease of exposition only; our methods can easily be
adapted to handle continuous features as we discuss below.

3We describe our methods assuming approaches are directed
to a fixed set of identifiable customers. However, our methods can
be applied directly to settings in which customers are unknown a
priori, but the joint distribution of customer attributes is available

Campaigns, Channels and Responses. We assume a set
of marketing campaigns C designed to meet specific mar-
keting objectives. Such campaigns may be intended to ac-
quire new customers, cross-sell new products/services to
existing customers, upsell new product features to existing
customers, retain existing customers (overall or w.r.t. spe-
cific products), improve brand/product awareness, etc. A
customer can be targeted or approached with zero or more
campaigns. Each campaign must be delivered using a spe-
cific marketing channel (e.g., direct mail; email; inbound
or outbound telemarketing; online or app-specific advertis-
ing, coupons, or offers; POS couponing or communication;
broadcast media). We assume a set of channelsH.

Each campaign-channel pair j ∈ C, h ∈ H, if presented
to customer i ∈ S , induces a response r. Let Rj,h denote
the set of possible responses to campaign-channel pair. For
example, if j is a campaign that offers an extension of the
term for a discounted credit card interest-rate via a telemar-
keting call j, possible responses might be: no response;
accepts offer, and churn probability over 12mo. horizon re-
duced by 25%; rejects offer/churn probability reduced by
15%; rejects offer/churn probability unaffected; rejects of-
fer/drops credit card; rejects offer/leaves bank.

We model campaign and channel costs as follows. We
assume a unit cost ujh for campaign-channel pair 〈j, h〉;
this reflects the cost of approaching a single customer with
campaign j via channel h. Often this will depend on the
channel and not the campaign itself. In certain cases, costs
may depend on responses as well, but we capture this below
in our value models.4 Finally, we assume a capacity limit
Lh for channel h, restricting how many approaches (across
campaigns and customers) can be made using channel h
over the time period in question.

Predictive Models, Customer Values. We assume a set
of predictive models used to predict customer behaviors,
campaign responses, and value to the marketer. A response
model provides a probabilistic prediction pijh(r) of cus-
tomer i’s response to (campaign-channel) approach 〈j, h〉.
A value model vijh(r) predicts the value of i’s response r
to approach 〈j, h〉. The expected value of 〈j, h〉 to i is:

vijh =
∑

r∈Rj,h

vijh(r)pijh(r).

Generally, predictive models are learned from data, and de-
pend only on the values of a (possibly small) set of cus-
tomer attributes specific to a campaign and channel. Note
that the vijh terms can be computed directly from these
models. Such models are sometimes further decomposed

(see (Walsh et al., 2010)).
4Fixed costs fj for campaign j, incurred if j is executed (i.e.,

delivered one or more customers), are discussed below.
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into more fine-grained models that predict specific cus-
tomer behaviors that must be aggregated to determine com-
prehensive value and response models. For instance, i’s
response probability for 〈j, h〉 may be decomposed into a
channel propensity probability (i.e., probability i is reach-
able via channel h) and a “received offer” response model
(i.e., odds of response conditional on successful contact).
Similarly, value may be determined as a function of several
“joint responses;” e.g., if campaigns are measured using
impact on customer lifetime value (LTV), then the value of
an approach may depend on the impact it has on immediate
sales, as well as the impact it has on churn prevention.

We assume that approaches do not interfere with one an-
other: if i is receives multiple approaches, her response to
each is independent of the others.5

Comparing Different Objectives. While campaigns are
often designed with different objectives in mind, their im-
pact on customer value must be phrased in terms of some
“common numeraire” against which they can all be mea-
sured. This numeraire can be flexible and can even ac-
count for weighted combinations of specific subobjectives
corresponding to the aims of different campaigns. For in-
stance, consider campaigns designed for cross-sell, upsell,
and customer retention in financial services. Cross-sell and
upsell campaigns are often comparable using the revenue
generated by any net new sales; or LTV over some hori-
zon might be appropriate. Customer retention campaigns
usually have a different objective—preventing customers
from dropping specific products, or dropping the firm en-
tirely. In this case, we might measure effectiveness using
the (expected) number of customers that a campaign pre-
vents from defecting. However, even comparing two reten-
tion campaigns is problematic, e.g., if each is designed for a
different service—how can one compare the value of a pre-
vented defection of one product vs. the other? One obvious
metric for comparison is again impact on revenue or LTV.
Similarly, cross-sell and upsell campaigns may have ancil-
lary benefits w.r.t. customer retention. These too can be
measured by focusing not on only on the new revenue from
new product sales, but on the total effect on LTV, which
can serve as a common numeraire.

It may be difficult to assess the value of brand exposure, or
retaining a customer, in a way that is commensurate with
a numeraire like LTV. We describe below how scenario
analysis can be used without committing to precise tradeoff
values. Our model readily supports eligibility and opt-out

5Such effects can be modeled using, e.g., random utility or
stochastic choice models (Shepard, 1959; Luce, 1959; Louviere
et al., 2000), which can require more complicated formulations
due to (a) the combinatorics of choosing sets of offers; and (b) the
typically nonlinear nature of these effects. We leave the integra-
tion of such models into our DCA framework to future work.

constraints as well.

Optimization Models. We describe a straightforward LP
formulation of the campaign optimization problem without
fixed costs. We assume a contact limit L (i.e., at most L ap-
proaches per customer);6 channel capacities (or limits) Lh
on the usage of each channel h; campaign budgets Bj lim-
iting the cost incurred by campaign j ∈ C; a global budget
B limiting total cost; and lead limitsLj restricting the num-
ber of customers that can be contacted by j ∈ C. Let bi-
nary variable xijh denote that customer i receives approach
〈j, h〉. We can solve the optimization using the MIP:

max
xijh

∑
i,j,h

xijh(vijh − ujh) (1)

s.t.
∑
j,h

xijh ≤ L ∀i ∈ S (2)

∑
i,h

xijhujh ≤ Bj ∀j ∈ C (3)

∑
i,j,h

xijhujh ≤ B (4)

∑
i,h

xijh ≤ Lj ∀j ∈ C (5)

∑
i,j

xijh ≤ Lh ∀h ∈ H (6)

xijh ∈ {0, 1} ∀i ∈ S, j ∈ C, h ∈ H (7)

It is not hard to show that the variables xijh can be
relaxed so the problem can be solved as an LP (setting
xijh ∈ [0, 1]). Other constraints can be accommodated
(e.g., limiting customers to one contact per campaign).

If we include fixed costs fj for using a campaign j (or chan-
nel h), then we must include (non-relaxable) integer vari-
ables: a 0-1-indicator variable Ij for each j ∈ C indicating
if campaign j has been delivered to any customers.7

3. Dynamic Segmentation
A key difficulty with LP (and MIP) approaches to the multi-
campaign, multi-channel optimization models above is the
sheer number of decision variables: the xijh variables grow
with the product |S||C||H| of the number of customers,
campaigns and channels.8 Fixed costs exacerbate the prob-
lems by introducing integer variables.

We now describe a dynamic segmentation method that seg-
ments the the customer population into cells of various

6The contact limit need not be constant, but can vary with cus-
tomer attributes, channel or campaign.

7Our methods can be applied to the LP relaxation of this MIP,
providing “approximate” cells for the MIP; we leave evaluation
of this approach to an extended paper.

8Eligibility restrictions reduce this number: we can eliminate
any xijh where i is ineligible for j or h. But even if customers
are eligible for a constant fraction of approaches, this offers only
a constant factor reduction in decision variables.
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sizes, and optimizes the approach for each cell rather than
for individual customers. If the number of cells is kept
small, scalability is no longer an issue. At the same time,
unless cells are crafted carefully, significant value may be
sacrificed. Our technique, dynamic cell abstraction (DCA),
provides an anytime approach that gradually refines cells
and is guaranteed to converge to a set of cells such that
no value is lost. Furthermore, in practice, it finds very high
value or optimal solutions with a very small number of cells
by finding just those customer distinctions required to make
optimal decisions and nothing more.

Customer Segments. DCA creates a set of abstract cus-
tomer cells that distinguish customers based on one or more
attributes. These may include observable attributes such as
those discussed above, or the values associated with cus-
tomers by specific predictive models. Here we focus on
cells created using derived values.

We discuss dynamic cell generation below, but first detail
how the optimization model exploits such cells. Suppose
we partition the customer population S into a set ofK cov-
ering and exclusive cells S = ∪k≤KSk, s.t. Sk ∩ Sk′ = ∅
for any k 6= k′. We call such a partitioning a segmentation.
Let zk = |Sk| denote the size of cell k. For the purposes of
optimization, we treat all customers in a cell as if they have
the same expected value to any approach 〈j, h〉, namely, the
average value across all customers in the cell, i.e., as if we
randomly picked a customer sk from that cell to approach.
Letting sk be a generic customer from cell Sk, we define:

vkjh = vjh(sk) =
1

zk

∑
i∈Sk

vijh.

Approximate Optimization with Segments. Targeting
customer segments rather than individual customers sim-
ply requires that we replace the targeting variables xijh for
individual customers in LP (1) with variables xkjh corre-
sponding to specific cells: here xkjh ∈ [0, 1] is the fraction
of customers in cell k that receive approach 〈j, h〉:

max
xk
jh

∑
k,j,h

xk
jhzk(v

k
jh − ujh) (8)

s.t.
∑
j,h

xk
jh ≤ L ∀k ≤ K (9)

∑
k,h

xk
jhujh ≤ Bj ∀j ∈ C (10)

∑
k,j,h

xk
jhujh ≤ B (11)

∑
k,h

xk
jh ≤ Lj ∀j ∈ C (12)

∑
k,j

xk
jh ≤ Lh ∀h ∈ H (13)

xk
jh ∈ [0, 1]. ∀i ∈ S, j ∈ C, h ∈ H (14)

The optimization LP (8) assumes that each approach as-
signed to a cell k will attain the expected value of that ap-
proach, taking expectation over all customer i ∈ k, i.e.,
assuming each approach will be assigned uniformly at ran-
dom to some i. Obviously, this random assignment is fea-
sible and by linearity of expectation attains the objective
value of the LP in expectation.9

Notice however that the abstract LP underestimates the
value attainable by the assignment given by assuming a ran-
dom allocation. If approach 〈j, h〉 is assigned m customers
from cell k where m is significantly less than the cell size
zk, the allocation could be realized using customers i ∈ Sk
that have higher value than the mean. With multiple ap-
proaches assigned to the same cell, the optimal assignment
(i.e., the optimal packing) may have much greater than the
mean value for each approach. As a simple example, sup-
pose that the values of two approaches 〈j, h〉 and 〈j′, h′〉
are perfectly negatively correlated on a cell k (i.e., any
i ∈ Sk with high value for 〈j, h〉 has low value for 〈j′, h′〉
and vice versa). Even if the two approaches consume the
entire capacity of k, we can pack them so that each gets
only high value customers. Based on this insight we rec-
ognize that we often can improve the objective value of the
LP by splitting certain cells. In the example above, splitting
cell k into two new cells k′ and k′′ so that high value cus-
tomers for approach 〈j, h〉 fall into one cell and high value
customers for approach 〈j′, h′〉 fall into the other will offer
dramatic improvements in objective value.

Dynamic Segment Generation. To discover useful cell
splits reflecting the intuitions above, we adapt the method
of (Walsh et al., 2010), originally developed in the context
of display advertising. It is based on the well-known col-
umn generation technique. Our general approach is to use
the reduced costs produced in the solution of the abstract
LP to estimate the value of splitting a cell. Column genera-
tion is useful for LPs with large numbers of variables: since
only a small subset of the variables are active in the optimal
solution, the goal is to solve the problem using only a few
variables, to iteratively estimate which variables are active,
and gradually add them to the LP, resolving a slightly larger
LP at each iteration.

Each iteration in the standard column generation proce-
dure proceeds as follows: suppose we solve an LP with

9Two small caveats: First, if contact limit L > 1, the random
assignment must be over all L-tuples of approaches that have a
positive assignment to k. For instance, if L = 2 and three ap-
proaches a, b, c are assigned fractions pa, pb, pc (resp.), then the
random assignment of the approach pair (a, b) to fraction pa · pb
of cell k (similarly for (a, c) and (b, c)) ensures satisfaction of the
contact limit constraint while attaining the LP objective value in
expectation. Second, if allocated fractions are non-integral, small
rounding errors may arise; but since our cell sizes tend to be in
the many thousands, these are negligible.
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only a subset of its variables (but assume all constraints
are present). This corresponds to solving an LP with the
columns (in the objective vector and constraint matrix) for
the missing variables deleted. Equivalently, we can view
this as a basic feasible solution of the LP with all miss-
ing variables treated as nonbasic (i.e., set to zero), much
like in simplex. In column generation we assess the value
of adding a new variable to the reduced LP much like we
would the value of entering a non-basic variable into the
basis in simplex. Specifically, define the reduced cost of a
(missing) variable x to be:

rc(x) = vx − cπ

where vx is the objective function coefficient associated
with x in the (unreduced) LP, c is the column vector of
constraint coefficients associated with x in the (unreduced)
LP, and π is the vector of dual variables (or shadow prices)
at the optimal solution of the reduced LP. The reduced
cost rc(x) corresponds to the marginal increase in objec-
tive value per unit increase in (nonbasic variable) x if one
were to add x to the LP.

In column generation, we typically add the variable that
has maximum reduced cost. Solving this pricing subprob-
lem requires some intelligence and exploitation of prob-
lem structure to evaluate which variable has maximum re-
duced cost from a large (often exponential or infinite) set
of choices, and is often formulated as a subsidiary opti-
mization problem. Note also that if all columns have non-
positive reduced costs, then the solution to the reduced LP
is in fact the optimal solution to the full LP; hence this
approach can be used to prove the optimality of the re-
duced/relaxed solution.

In our setting, when we split a cell k into two new cells
k1 and k2, we are not adding a single variable to the LP.
Rather we are: (a) adding a set of variables to the LP, all
those of the form xk1

jh and xk2

jh; and (b) removing a set of
variables, all those of the form xkjh. Removing variables
doesn’t (negatively) impact the LP, since every assignment
that can be accomplished with cell k can also be accom-
plished with cells k1 and k2. But adding these new vari-
ables is somewhat problematic because certain constraints
are not present in the reduced LP. Specifically, the “sup-
ply constraint” Eq. (9) associated with the new cells k1 and
k2 are not present in the reduced LP. Since we haven’t ex-
plicitly modeled these two new cells, we do not have dual
variables associated with their constraints, and we don’t
have columns for the new k1 and k2 allocation variables.
This makes pricing of these columns difficult. However,
following (Walsh et al., 2010), we can prove that the so-
lution to the reduced LP is also an optimal solution to the
LP that is obtained by adding the supply constraints for k1
and k2 to the reduced LP (assuming one maintains the old
xkjh variables, but does not introduce the new xk1

jh and xk2

jh

variables). Furthermore, we can show that the correspond-
ing dual variables πk1 and πk2 are zero. As a result, we
can accurately score a column corresponding to a new split
cell k1 or k2 using only the shadow prices produced by the
original reduced LP.

More precisely, suppose cell k′ is a descendent (one side of
the split) of a cell k that is under consideration. We define
the reduced cost of the variable xk

′

jh to be:

rc(xk
′

jh) = vk
′

jh − ck
′

jhπ (15)

where ck
′

jh is the column vector in the constraint matrix cor-
responding to xk

′

jh, and π is the vector of dual variables
(shadow prices) in the reduced LP. The non-zero terms in
ck
′

jhπ are the following (assuming formulation LP (8)):

• The supply constraint corresponding to cell k, with
dual variable value πk and coefficient 1 for xk

′

jh. This
is the only supply constraint in which xk

′

jh participates.

• The budget constraint for every campaign j ∈ C, with
dual variable value πBj

and coefficient ujh for xk
′

jh.

• The global budget constraint with dual variable value
πB and coefficient ujh for xk

′

jh.

• The lead constraint for each campaign j ∈ C, with
dual variable value πLj

and coefficient 1 for xk
′

jh.

• The capacity constraint for each channel h ∈ H, with
dual value πLh

and coefficient 1 for xk
′

jh.

Taken together, we have:

rc(xk
′

jh) = vk
′

jh−πk−ujhπBj−ujhπB−πLj−πLh
. (16)

Finally, we need to consider how to score the actual split
of a cell k into k1 and k2, given that it introduces a number
of columns which replace a number of others. Suppose we
ignore budget, lead and capacity constraints, and focus on
the simple problem that uses only supply constraints. If
we split k into k1 and k2, all customers in new cell k1 will
go to the approach 〈j∗, h∗〉 that has highest expected value
vk1

j∗h∗ for that new cell. Therefore the true improvement in
expected value will in fact be rc(xk1

j∗h∗)zk1
. Thus we score

splits as follows:

score(k, k1, k2)= max
j∈C,h∈H

{rc(xk1
jh)zk1}+ max

j∈C,h∈H
{rc(xk2

jh)zk2}.
(17)

Searching for Splits. Apart from evaluating splits, we
require methods to search through the space of poten-
tial splits, scoring these splits to determine which ones to
adopt. An ideal “split language” is compact enough to al-
low all splits to be effectively evaluated during optimiza-
tion, while also offering the expressiveness and flexibility
to find near-optimal solutions with relatively few cells.
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In this work, we focus on splits over derived customer val-
ues.10 Specifically, assume only that we have the derived
values vijh associated with each customer i and approach
(j, h), provided in unstructured form (null values, e.g., de-
noting ineligibility, are permitted). We treat each approach
(j, h) as a real-valued feature over the set of customers S.
Splits are defined over these features. We limit possible
splits to quantiles for each such feature. Focusing on binary
splits,11 given a cell k, it can be split into a pair of cells k1

and k2, where k1 = {i ∈ k : vijh ≤ τ} and τ = vi′jh for
some i′ ∈ k and approach (j, h); and k2 = k \ k1. Given
a cell of size n, there are (n − 1)|C||H| splits to evaluate,
far too many to be practical for cells of significant size. For
this reason, in practice we restrict splits a small number of
quantiles. For instance, we may permit splitting only at the
nine decile boundaries, 10%, 20%, . . . , 90%); or we may
consider a single split point per feature (e.g., the median).

If we allow m splits per cell-approach pair, the evaluation
of a cell’s splits requires computing the reduced cost score
Eq. 17 for m|C||H| splits. If the DCA algorithm currently
has c cells, then determining the split with maximum score
requires O(cm|C||H|) time, subject to two key assump-
tions: score computation takes constant time; and the ap-
propriate split points are computable in constant time. Nei-
ther of these hold in practice. Score computation for a cell
split on vijh requires computing the mean of vijh (over i)
in the two new cells—this scales linearly with the size of
the cell. Computing quantiles of a large data set can also
be accomplished in linear time (and approximated readily).
While linear-time computation is viable in some settings,
for large customer sets this may not be acceptable. Fortu-
nately, computation of these statistics can be distributed to
exploit modern cluster-computing frameworks.

Distributed Implementation. Let a “customer record” for
i ∈ S refer to any relevant customer data together with
values vijh for all approaches (j, h). We assume that cus-
tomer records contain cell indicators which evolve during
DCA. To distribute the computation of quantiles within and
cell mean values vkjh, we partition customer records across
M compute nodes in a cluster computing framework, with
(roughly) |S|/M records per node. The number of compute
nodes can be chosen to meet specific performance demands
(e.g., to allow all data to fit and be processed in memory).

10If predictive models and direct customer attributes are pro-
vided, one can search for splits over this attribute space directly.
This can be especially effective if predictive models exhibit struc-
ture (e.g., each model uses only a small number of customer at-
tributes). However, we will often not have access to the models
themselves (e.g., for privacy or proprietary reasons). Instead we
may have only the actual response, value, or other predictions; or
perhaps just the derived values for each customer. In this work,
we assume only access to the latter.

11Multiway splits can be realized by a sequence of binary splits.

Computing the mean value vkjh of approach (j, h) for cell
k can be accomplished in O(|S|/M) time, by passing
sum and count data from each compute node to the mas-
ter node (which coordinates DCA and solves the opti-
mization). Computing quantiles in a distributed fashion
is somewhat less straightforward, but various methods for
approximating quantiles in distributed settings (including
sampling-based methods) can be used (Shrivastava et al.,
2004). Note that computing exact quantiles is not essen-
tial to the performance of DCA; even crude approximations
perform very well (as we see below).

The most computationally intensive aspect of DCA is not
optimization itself—the LPs generated by DCA will re-
main very small. Rather it is the data processing required
to compute quantiles and means within cells. The fact that
these operations are readily distributable means that practi-
cal scalability can be achieved by the addition of commodi-
tized computing resources/compute nodes.12 We have care-
fully designed DCA to work in a distributed environment
so that the algorithm can scale with problem size, both in
terms of computation time and memory. We use Apache
Spark (Zaharia et al., 2010), a general-purpose cluster com-
puting engine, on top of Hadoop’s distributed filesystem
containing customer records. DCA is implemented using
as a series of map-reduce operations that allow the parallel
computation of customer values and their aggregate statis-
tics for the relevant cells. Exploration of the DCA tree and
reduced-cost computation for the splits is managed using
mean value computations, and caching of these results. Us-
ing Spark allows us to cache the repeatedly accessed cus-
tomer values and avoid both redundant re-computation and
persistence to disk, improving performance w.r.t. systems
like Hadoop MapReduce.

4. Scenario Analysis and Refinement
Our empirical results below suggest that DCA offers very
effective optimization scaling. Indeed, it can find near-
optimal solutions with remarkably few, well-chosen cells.
Since LP solution times scale with the number of cells, op-
timization times are extremely fast. However, the iterative
DCA process remains data-intensive, even with large-scale
parallelization. This can be a concern when decision mak-
ers want to explore different settings of the optimization
parameters. For instance, one may want to explore the im-
pact of varying global or campaign-specific budget levels,
lead limits, eligibility criteria, or even the effect of varying
the LP objective. In such a case, we would like to avoid re-
running DCA if possible; but the cells constructed for one
LP may not support the solution of another.

12Data can also be distributed “horizontally” by distributing
data for different (sets of) approaches.
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To handle this issue, we augment DCA so that we don’t
solve a single LP during DCA, but instead solve multi-
ple “representative” LPs. For instance, if we anticipate the
need to optimize at a variety of budget levels, we can solve
an LP for each possible budget level, or for several repre-
sentative levels that “span” the anticipated range. We then
use the solutions of these multiple LPs to assess the value
of a split. Specifically, we score each split for each of the
LPs using the usual method above. But since our goal is to
find cells that support the solution of all LPs, we sum these
scores to determine the overall score of a split.13 This tends
to create more cells; but once they are created, they support
the optimization of a variety of different LPs.

If the solution of a new LP created during scenario analy-
sis falls “out of range”, the existing set of cells can be used
as a starting point for DCA refinement: we refine the ex-
isting abstraction to accommodate the new LP. If the set
of representative LPs provide any guidance for the new
LP, we expect the number of refinement steps needed to
solve the new LP to be few. Furthermore, the computa-
tional cost of cell splitting drops dramatically with cell size
(as we show below). This means that additional iterations
of DCA needed to refine a pre-existing abstraction will be
much faster than the original iterations.

5. Empirical Analysis
We now describe experiments that illustrate the perfor-
mance and value of DCA. All experiments are run on cus-
tomer data sets of various sizes (250K, 500K, 750K, 1M,
2M, 4M, 6M, and 10M) using a set of 100 possible ap-
proaches (e.g., 20 campaigns and 5 channels, or 10/10).
Data are generated randomly using a simulator developed
using real marketing campaign predictive/value data. All
DCA splits are binary and are restricted to the median
(quantile 0.5) of any cell.14 All optimizations use a state
of the art, commercial LP solver on a high performance
platform (dual Intel 2.6GHz processors, 244 Gb of RAM).

Fig. 1 shows the quality of the solution reached as a func-
tion of the number of DCA iterations (limited to 101
iterations)—since we only consider binary splits, the num-
ber of cells is the number of iterations (the first iteration
processes the initial cell S). For customer sizes under two
million, solution quality is shown as a percentage of the op-
timal LP value (computed by solving the exact LP model
Eq. 1 as discussed below). For the 2–10M instances, rela-
tive solution quality (w.r.t. the final value obtained at itera-
tion 101) is shown only since the optimal benchmark is un-

13Other combinators can be used, e.g., weighted sums to ac-
count for the fact that some LPs have naturally higher objective
values than others, or the maximum of the scores.

14Allowing a richer set of splits will provide better results with
fewer cells, at the cost of further evaluation of the “cell tree”.
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Figure 2. Avg. Time per DCA Iteration (binned, log scale).

available. The anytime profile is very similar to the smaller
instances, suggesting convergence to a near-optimal result.
We see that DCA is able to dynamically segment customers
so that very few cells are required to achieve near-optimal
results. This is true even with the extremely limited set of
median-splits that we allow. Total run time (in seconds)
for DCA on a 10-node cluster for different instance sizes is
shown in the first row of the following table:

Size .25M .5M .75M 1M 2M 4M 6M 10M
DCA time (s) 611 679 847 1437 3072 3636 6971 9129
DCA opt (s) 0.022 0.016 0.015 0.012 0.018 0.016 0.019 0.015

LP opt (s) 163 2458 3412 4434 – – – –

Fig. 2 shows the average time to complete an iteration of
DCA for various customer size ranges (we focus on larger
problems only), binned by varying ranges of iterations. Not
surprisingly, later iterations of DCA require significantly
less time, since cell sizes decrease exponentially with it-
eration; indeed (noting the log-scale) we see that iteration
times exhibit an exponential decrease. As discussed above,
this is a critical property for the real-time cell refinement
that supports scenario analysis. Indeed, the final five itera-
tions require only a few seconds on average.

We tested a “typical” customer-attribute-based segmenta-
tion on the 1M-customer instance, segmenting using two
sets of available customer attributes. The first segmenta-
tion gives a set of 738 cells; the second is a strict refine-
ment of the first with 26198 cells. The first gives a solution
that is only 51% of optimal (soln. time 0.1s.); the second is
only 72.5% of optimal (4.3s.). This compares to the 97.6%-
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optimality attained by DCA with only 100 cells.

We note that DCA scales effectively with the number of
compute nodes used to assess relevant cell statistics. For
the 10M instance, the following table shows how total DCA
time (101 iterations) reduces with the number of nodes. We
see compute time reduces nearly linearly with the number
of nodes, with a small 7–8% overhead.

Nodes 10 20 40
DCA time (min) 152.2 (100%) 87.2 (57.3%) 50.2 (33.0%)

One of the most important metrics is the time to solve the
marketing optimization problems using the cells generated
by DCA. Because the number of cells needed to support
high-quality solutions is so small, optimization time is es-
sentially negligible, on the order of hundredths of a second
(see table above). By contrast the solution of the complete
unabstracted LP was only feasible for problems of up to
size 1M—beyond that memory limits are reached despite
the high-performance platform used. The 1M instance took
about 74min to solve. Indeed, with the exception of the
250K instance, unabstracted LP solution times are signifi-
cantly longer than the time taken to run the entire DCA pro-
cess. Of course, once DCA is run, the cells can be used for
multiple optimizations; hence the overhead of DCA can be
amortized over the analysis of multiple scenarios. We turn
our attention to this now.

To test the ability to support scenario analysis, we ap-
plied DCA to the simultaneous solution of 1M-customer in-
stances using six different LPs; the base level LP is the one
used above, while five additional LPs were solved with dif-
ferent lead limits—0.5, 2, 3, 4 and 5 times the base level—
with both global and campaign-specific limits adjusted by
the same factor. Note that a single collection of cells is
produced to solve all six optimization problems. Fig. 3 il-
lustrates the change in the objective value of each LP as the
number of cells increases. We see that a set of cells simi-
lar in size to that produced for the single original LP does
well for all six. The objective value obtained using the cells
produced by DCA are near-optimal for all six LPs: 96.0%
(0.5X); 96.7% (Baseline); 98.0% (2X); 98.2% (3X); 98.5%

(4X); and 98.5% (5X). The slight bias towards splits that
favor the LPs with larger limits is due to the fact that we
use an unweighted sum of objective values (since the larger
limits offer greater total return on marketing spend). The
difference in DCA time/iteration w.r.t. solving a single LP
is negligible.

Finally, to the robustness of these cells, we used them to
compute solutions for new lead limits different than those
used to create the cells. With limits of 2.5X and 4.5X, the
solutions produced using the cells above were 98.6% and
98.4% optimal, respectively. While a rather minimal test,
this does suggest that cells produced for a well-chosen set
LPs can generalize to new problems well.

6. Concluding Remarks
We have developed DCA, a dynamic segmentation method
for marketing optimization problems that allows for the
optimal allocation of marketing resources—including bud-
get, channel access and customer attention—in problems
significantly larger than those that can be addressed using
standard models, and with solution quality guarantees that
cannot generally be offered by techniques that use man-
ual or purely statistical segmentation. Apart from produc-
ing optimal or near-optimal results, the data-intensive com-
putation required can be distributed effectively to exploit
modern parallel/cluster computing frameworks, ensuring
extreme scalability. DCA also offers strong anytime per-
formance, and can be used to support real-time scenario
analysis. Future directions include incorporating additional
contact-response models (e.g., sequential contacts, slates
of offers that influence one another), and analyzing perfor-
mance on MIP relaxations (e.g., using branch-and-price).
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