
Learning Mallows Models with Pairwise Preferences:

Supplementary Material

1 Proofs

Theorem 1 ([1]). Given a partial order v, computing the number of linear extensions of v, that is |Ω(v)|,
is #P-complete.

To show that computing a function f(x) is #P-hard for input x, it is sufficient to show that a #P-complete
problem can be reduced to it in polynomial time.

Proof of Proposition 5. We reduce counting the number of linear extensions to this problem. Given v, notice
that any r = r1 . . . rm ∈ Ω(v) has a uniform posterior probability of 1/|Ω(v)|. Let Φ−1

σ (r) = (j1, . . . , jm).
Now make m− 1 calls to the subroutine for computing GRIM insertion probabilities piji with partial order
v for each i ∈ {2, . . . ,m}. The posterior probability of r is 1/|Ω(v)| =

∏
i piji this implies we can compute

|Ω(v)| by inverting the product of the insertion probabilities. Note that this reduction is polytime because
we use a topological sort to find u.

Proof of Theorem 11. We reduce counting the number of linear extensions to this problem. Let v be a partial
order (i.e. an input to counting linear extensions), encode the input to the log likelihood computation as
follows: let V = (v), K = 1 with φ = 1 (σ can be any ranking). Hence L = L(π, σ, φ|V ) = ln

∑
r∈Ω(v) 1/m!.

Thus we can recover the number of linear extensions by computing exp(L) ·m!. We can do this in polytime
by noting that L is polynomial in m and by using the power series expansion

∑
i≥0 Lim!/i! where we can

simplify truncating the series at polynomial number of steps when the terms no longer impact the number’s
integer portion.

Proof of Proposition 6. Inserting σi in any rank less than li is impossible since either li = 1 (can’t insert
in rank 0) or σi is above rli which contradicts the requirement in tc(v) that rli must be ranked higher. A
similar argument can be made for inserting in rank below hi since rhi needs to be below σi. Finally, inserting
into any rank in {li, . . . , hi} does not violate tc(v) since the item will be inserted below all items that must
precede it in tc(v) and all items that must succede it.

Proposition 2. For all i ≥ 2 and all rankings of items σ1, . . . , σi−1 that is consistent with v, we have that
li ≤ hi. That is, AMP always has a position to insert item σi.

Proof. Let r be a ranking of σ1, . . . , σi−1 consistent with v. Let x be the lowest ranking item in r such that
x �tc(v) σi and y the highest ranking item in r with y ≺tc(v) σi. Thus by transitivity, x �tc(v) y. Now if
hi < li (as defined in terms of r) this implies y �r x, but this contradicts the assumption that r is consistent
with v.

Proof of Proposition 7. Since the algorithm never violates the constraints in tc(v), and it will always have
non-empty valid insertion positions as given by Proposition 2, the algorithm will always output a ranking
consistent with v. For the other direction, let r ∈ Ω(v) and Φ−1

σ (r) = (j1, . . . , jm) the insertion ranks. We
argue that for all i ∈ [m], ji ∈ {li, . . . , hi}. Suppose this is not true, then there exists a smallest i′ ∈ [m]
(note i′ ≥ 2 since the first item is always inserted into the first position) such that ji′ /∈ {li′ , . . . , hi′} but
then by our observations about li and hi this would lead to a ranking inconsistent with v—so this is not
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possible. Since AMP puts positive probability for any insertion position in {li, . . . , hi} then r has positive
probability under AMP.

Proof of Proposition 8. Let Φ−1
σ (r) = (j1, . . . , jm) be the insertion ranks. We have already established that

AMP puts positive probability on these valid insertion ranks. In fact the probability of r under AMP is

m∏
i=1

φi−ji

(φi−li + φi−li−1 + · · ·+ φl−hi)
=

φ
Pm
i=1 i−ji∏m

i=1(φi−li + φi−li−1 + · · ·+ φl−hi)

=
φd(r,σ)∏m

i=1(φi−li + φi−li−1 + · · ·+ φl−hi)
,

where the last inequality comes from a property of the Kendall-tau metric.

Proposition 3 ([2]). Let σ be a reference ranking. Let v be a partitioned preference with partition A1, . . . , Aq
of A. Let δ = #{(x, y)|y �σ x, x ∈ Ai, y ∈ Aj , i, j ∈ [q], i < j}, which is the number of pairs of items across
subsets of the partition that are misordered w.r.t. σ. Then

δ =
q−1∑
i=1

∑
x∈Ai

q∑
j=i+1

∑
y∈Aj

1[y �σ x], (1)

∑
r∈Ω(v)

φd(r,σ) = φδ
q∏
i=1

|Ai|∏
j=1

(1 + φ+ φ2 + · · ·+ φj−1). (2)

Proof of Proposition 9. Since the numerator of P̂v part of the probability of AMP outputting r is the same
as the proportional probability of the Mallows posterior, it is sufficient to show that the denominator of
P̂v equals the Mallows posterior normalization constant given in Eq. 2. Suppose σ = σ1 · · ·σm. Consider
items in Ai such that σ|Ai = σt1σt2 · · ·σt|Ai| (this is the ranking of items in Ai according to σ). Suppose
the items S = {σ1, . . . , σtk−1} are inserted. The structure of the resulting ranking is as follows, the items
(A1 ∪ A2 ∪ · · · ∪ Ai−1) ∩ S must be in the top of the ranking, then items Ai ∩ S = {σt1 , . . . , σtk−1} are in
the middle, and finally Btk = (Ai+1 ∪ · · · ∪Aq) ∩ S are at bottom. When inserting σtk into rank j, we have
j ∈ {ltk , . . . , htk} where htk = tk − |Btk | and ltk = htk − |Ai ∩ S| = tk − (k − 1) − |Btk |. Hence σtk gets
inserted to rank j with probability

φtk−j

φtk−htk + · · ·+ φtk−ltk
=

φtk−j

φ|Btk | + · · ·φk−1+|Btk |
.

The denominator can be written φ|Btk |(1 + · · · + φk−1). Observe that Btk consists of all alternatives from
that are above σtk in σ, but instead are below it in v (since all these items belong to Ai+1 ∪ · · · ∪ Aq). So∑|Ai|
k=1 |Btk | is the total number of pairs (x, y)—where x ∈ Ai and y ∈ Ai+1 ∪ · · · ∪Aq—that are misordered

with respect to σ. Thus inserting items in Ai will contribute a factor of

|Ai|∏
k=1

φ|Btk |(1 + · · ·+ φk−1) = φ
P
x∈Ai

Pq
j=i+1

P
y∈Aj

1[y�σx]
|Ai|∏
k=1

(1 + · · ·+ φk−1)

to the denominator of P̂v. Once we have inserted all items, the denominator becomes

φ
Pq
i=1

P
x∈Ai

Pq
j=i+1

P
y∈Aj

1[y�σx]
q∏
i=1

|Ai|∏
k=1

(1 + · · ·+ φk−1),

this is exactly the Mallows posterior normalization constant in Eq. 2.
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Proof of Theorem 10. Note that the acceptance ratio is always positive. The proposal distribution AMP
draws rankings that are independent of previous rankings and, as we proved, its support is Ω(v). Hence, for
any r′ ∈ Ω(v), MMP has positive probability of transitioning to any ranking in Ω(v) (thus establishing that
Ω(v) is a recurrent class), including transitioning to itself (implying aperiodicity).

While AMP does correspond to the Mallows posterior for the special case of partitioned preferences, in
general, as we saw earlier, it won’t with arbitrary paired comparisons. We will now provide some bounds on
the ratio of how close the sampling algorithm is. The main technical challenge is providing a bound on the
Mallows posterior normalization constant. We can get an upper bound by exploiting the paired comparison
interpretation of Mallows model.

Theorem 4 (Upper Bound on Normalization). Let σ be a reference ranking, φ ∈ (0, 1] and v a preference.
The Mallows posterior normalization constant is upper bounded by∑

r∈Ω(v)

φd(r,σ) ≤ φd(v,σ)(1 + φ)(
m
2 )−d(v,σ)−s(v,σ). (3)

where s(v, σ) is the number of paired items in tc(v) that agree with σ.

Proof. We omit this lengthy proof and the required tools to a longer version of this paper.

Eq 3 tells us if d(v, σ) increase (i.e. v increasingly disagrees with σ) then the first factor dominates
and upper bound gets smaller—this corresponds to intuition since the set Ω(v) gets “further away” from
reference σ and hence its probability mass is small. Also if |tc(v)| is small then d(v, σ) + s(v, σ) is small and
the upper bound increases since the second factor will dominate. This makes sense because Ω(v) would be
large and would have more probability mass. If s(v, σ) gets larger this means more constraints in v hence
P (Ω(v)) would be smaller, likewise the upper bound would decrease. Before we derive a lower bound, we
introduce some notions from order theory.

Definition 5. Let v be a preference. An anti-chain of v is a subset X of A such that for every x, y ∈ X
they are incomparable under tc(v). A maximum anti-chain is an anti-chain whose size is at least the size of
any anti-chain. The width of v, w(v) is the size of a maximum anti-chain of v.

Theorem 6 (Lower Bound on Normalization). Let σ be a reference ranking, and φ ∈ (0, 1]. Let X be a
maximum anti-chain of v, Y = {a ∈ A\X | ∃x ∈ X, a �tc(v) x} and Z = A\(X ∪ Y ). Let δ = |{(x, y)|x ∈
X, y ∈ Y, x �σ y}|+ |{(y, z)|y ∈ Y, z ∈ Z, z �σ y}|+ |{(x, z)|x ∈ X, z ∈ Z, z �σ x}|. Denote by tc(v)|Y and
tc(v)|Z the transitive closure of v restricted to the subsets Y and Z, respectively. Also let Ω(tc(v)|Y ) denote
the rankings on Y that are consistent with tc(v)|Y , and similarly for Ω(tc(v)|Z). We have,

∑
r∈Ω(v)

φd(r,σ) ≥ φδ
 ∑
r∈Ω(tc(v)|Y )

φd(r,σ|Y )

  ∑
r∈Ω(tc(v)|Z)

φd(r,σ|Z)

 w(v)∏
i=1

i−1∑
j=0

φj (4)

Proof. We first show that Z ′ = {a ∈ A\X | ∃x ∈ X,x �tc(v) a} = Z. If a ∈ A\X does not belong to Y then
it must be comparable to at least one element in x ∈ X otherwise we can add it to Y and obtain a larger
anti-chain. Hence, since a is not in Y , then x �tc(v) a. Also, note that if a ∈ Y then a /∈ Z ′. This is because
if a belonged to both Y and Z, then there exists x1, x2 ∈ X such that x1 �tc(v) a and a �tc(v) x2 this would
mean x1 �tc(v) x2 which contradicts the anti-chain property of X. For a particular item in X, items in Y
are either incomparable to it or must be preferred to it, similarly items in Z are either incomparable or must
be dis-preferred to it.

This also implies no item in Z can be preferred over items in Y since if this were to happen, i.e. if
z �tc(v) y where z ∈ Z, y ∈ Y , then ∃x ∈ X such that y �tc(v) x, this implies z �tc(v) x which is impossible
from the above observation that Z ∩ Y = ∅.
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Consider all rankings Ω̃(v) where we place items of Y at the top, X in the middle and Z at the bottom.
Within Y and Z we rank items respecting tc(v) and since X is an anti-chain, rank these items without
restrictions. That is

Ω̃(v) = {r|∀y ∈ Y, x ∈ X, z ∈ Z, y �r x, x �r z, r|Y ∈ Ω(tc(v)|Y ), r|Z ∈ Ω(tc(v)|Z)}.

Now we argue Ω̃(v) ⊆ Ω(v). Note that we satisfy preference constraints when ranking within Y , X and Z.
Also as we showed above, items in Y are never dis-preferred to items in X or Z and items in X are never
dis-preferred to items in Z.

For the lower bound, first observe if r ∈ Ω̃(v) then d(r, σ) = d(r|Y , σ|Y ) + d(r|X , σ|X) + d(r|Z , σ|Z) + δ
where δ is defined in the theorem as the number of misorderings of items across X,Y, Z, which is independent
of r. Hence,

∑
r∈Ω(v)

φd(r,σ) ≥
∑

r∈eΩ(v)

φd(r,σ) = φδ

 ∑
r∈eΩ(v)

φd(r|Y ,σ|Y )

  ∑
r∈eΩ(v)

φd(r|X ,σ|X)

  ∑
r∈eΩ(v)

φd(r|Z ,σ|Z)

 ,
Finally, it can be seen that the sum inside the third factor is exactly the normalization constant of an
unconstrained Mallows model with |X| = w(v) items, and hence equal to

∏w(v)
i=1

∑i−1
j=0 φ

j , the second and
fourth factors involve sums over rankings of Y and Z consistent with tc(v). This proves the lower bound.

While the lower bound is not in “closed-form” it is useful if w(v) is large, in other words if there are a
sparse number of preference constraints in v (e.g. involving only a small subset of items) we expect Ω(v)
to be large and hence higher probability mass. We fully recover the Mallows model normalization constant
if v = ∅ since w(v) = m. If v is highly constrained—Ω(v) has smaller probability mass—then w(v) will be
small, but so are the factors involving summations. Note that φδ will decrease whenever there are more
comparisons in v that disagree with σ this again corresponds to intuition in the upper bound case.

Corollary 7. Let L and U be the lower and upper bound as in Theorem 6 and 4, respectively. Then for
r ∈ Ω(v),

L∏m
i=1

∑hi
j=li

φi−j
≤ P (r|v, σ, φ)

P̂v(r)
≤ U∏m

i=1

∑hi
j=li

φi−j
(5)

Proof. P̂v(r) has the form given in Proposition 8 while P (r|v, σ, φ) ∝ φd(r,σ). Then apply upper and lower
bounds on the normalizing constant of P (r|v, σ, φ).

2 Computing a Local Kemenization

Alg. 1 works by first initializing the new σk to σold
k of the previous EM iteration. Then focusing on items x

from the top to the bottom of the ranking, successively make adjacent swaps between x and item y above it,
whenever the majority of rankings in Sk prefer x over y, otherwise stop swapping and move onto the next
item x. This gives a locally optimal ranking: when we finish swapping item x upwards, either x is at the
very top or some y is preferred to x by the majority of Sk. In the final constructed ranking y may still be
above x in which case x cannot be moved up, if a different y′ is above x, then y′ must be below x in the
initial ranking and was swapped above x because y′ is preferred to x by majority in Sk. Hence making an
adjacent upward swap for x cannot improve the Kemeny cost. Note that instead of storing all rankings of
Sk all we need is its pairwise tournament graph: which is a complete directed graph where vertices are A
and the weight of each edge x → y, is cxy = |{ρ ∈ Sk : y �ρ x}|. This is the “Kemeny cost” of deciding to
place x above y.
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Algorithm 1 LocalKemeny

Input: Sk = (ρk1, . . . , ρkjk)
1: σ ← σold

k

2: Compute pairwise tournament graph:
3: for all pair (x, y) : x, y ∈ A and x 6= y do
4: cxy = |{ρ ∈ Sk : y �ρ x}|.
5: end for
6: d←

∑
{x,y} : x�σky

cxy
7: for i = 2..m do
8: x← item in i-th rank of σ
9: for j = i− 1..1 do

10: y ← item in j-th rank of σ
11: if cxy < cyx then
12: Swap x with y
13: d← d− cxy + cyx
14: else
15: quit this loop
16: end if
17: end for
18: end for
Output: σ, Kemeny cost d

3 Derivation for Non-Parameteric Estimators

This section gives the full derivations of using importance sampling for non-parametric estimators on paired
comparison data.

Define a joint distribution q` over the probability space Ω(v`)× Ω,

q`(s, r) =
φd(r,s)

|Ω(v`)|Zφ
(6)

where Zφ is the Mallows normalization constant with respect to dispersion φ. This distribution corresponds
to drawing a ranking s uniformly at random from Ω(v`) and then drawing r according to Mallows with
reference ranking s and dispersion φ. The estimator, extended to any set of paired comparisons, is

p(v) =
1
n

∑
`∈N

q`(s ∈ Ω(v`), r ∈ Ω(v)) (7)

=
1
n

∑
`∈N

∑
s∈Ω(v`)

∑
r∈Ω(v)

φd(r,s)

|Ω(v`)|Zφ
.

Note that this is a distribution over rankings and not incomplete preferences, the above is simply a marginal
over Ω(v). A special case arises when V consists entirely of full rankings, which simplifies to a mixture of
Mallows with n equally weighted components each with v`’s as centres and dispersion φ. This estimator can
be useful for making inferences over the posterior p(r|v) = p(r)1[r ∈ Ω(v)]/p(v) for r ∈ Ω(v). Fix v, let
f(s) =

∑
r∈Ω(v) φ

d(r,s). Then

p(v) =
1

nZφ

∑
`∈N

∑
s∈Ω(v`)

1
|Ω(v`)|

f(s)

=
1

nZφ

∑
`∈N

E
s∼Ω(v`)

f(s)
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where s is drawn uniformly from Ω(v`). One can estimate the expectation by importance sampling. Suppose
we draw, for each `, rankings s(1)

` , . . . , s
(T )
` from AMP(v`, σ, φ = 1) so as to approximate uniform sampling

(choose a σ say from Ω(v`)). Let w`t = 1/P̂v(s
(t)
` ) Then the estimate is

p̂(v) =
1

nZφ

∑
`∈N

∑T
t=1 w`tf(s(t)

` )∑T
t=1 w`t

.

Evaluating f(s(t)
` ) is intractable but can be approximated using our earlier techniques for approximating the

log likelihood. In summary we use a nested sampling procedure to first approximate the outer expectation
over s and the inner summation f(s).

4 Experiments

We performed five sets of experiments. The first compares how good the posterior sampling method AMP,
based on the generalized repeated insertion method, approximates the true Mallows posterior. It turns out
to be an excellent approximation. The second experiment compares how good our Monte Carlo evaluation
of the log likelihood is. Again, it turns out to be a very good approximation. Building on these two positive
results, the last three experiments test our EM algorithm on synthetic data, sushi data, and Movielens data
(large m). The synthetic data experiments confirm the effectiveness of our EM algorithm and also reveals
insights on how size of preference data (either n or α) impacts learning, and its connections to wisdom of the
crowds. Experiments on sushi and Movielens datasets reveal interesting clustering patterns in preferences of
agents.

4.1 Approximating Mallows Posterior

For the first set of experiments, we want to get a sense of how well the sampling method AMP approximates
the true Mallows posterior P (r|v, σ, φ). In particular, we like to measure the KL divergence of the true pos-
terior to P̂v(r) which is the distribution defined by the algorithm AMP. We experimented with varying three
parameters: number of items m, dispersion parameter φ and the fraction of paired comparisons contained
in v. The results are show in Fig. 1. We normalized the KL divergence by the entropy of the true Mallows
posterior because, for example when increasing m, KL and entropy would corresponding scale. For each
setting of the parameters, we generated 20 instances of v according to our probabilistic model, and then
evaluated the exact KL divergence of the true posterior to P̂v, normalized by the entropy of true posterior.
We choose a canonical σ = 12 · · ·m. The results clearly demonstrate that P̂v is a very good approximation
to the true posterior.

4.2 Evaluating Log Likelihood

We showed the #P-hardness of evaluating the log-likelihood and derived a Monte Carlo estimate based on
sampling from AMP. We experimented with how good of an approximation the estimator is. We varied
three parameters: (1) number of items m, (2) number of components K, and (3) number of samples T
per agent and per component. The results are shown in Fig. 2. In all experiments we fixed number of
agents (i.e. number of input preferences) to n = 50. For (1), we generated v from a mixture model with
K = 3, π = (1/3, 1/3, 1/3), σ drawn uniformly at random K independent times, φ = (1/2, 1/2, 1/2) and
α = 0.2. For (2), we generated v from a model with m = 8, π = (1/K, . . . , 1/K), φ = (1/2, . . . , 1/2), σ
draw uniformly at random K times and α = 0.2. For (3), mixture parameters were K = 1, m = 8, σ chosen
uniformly at random, φ = 0.5 and α = 0.2. The parameters for which we evaluated the log likelihood on
is generated as follows: π sampled from a Dirichlet distribution with parameter being a vector of K 5’s.
Reference rankings σ were drawn uniformly at random, and φ drawn uniformly at random in interval (0, 1).
Overall the results show that the Monte Carlo approximation is very good, and improves significantly while
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Figure 1: Comparing AMP to the true Mallows posterior. Box and whisker plots with box giving 25-75
percentile of 20 runs, line inside box indicate median and ‘+’ outliers. (1) Varying α, fixing φ = 0.5, m = 10
(2) varying φ, fixing α = 0.2, m = 10 (3) Varying m, fixing φ = 0.5 and for m ≤ 13, α = 0.2, for m > 13,
α = 0.5.

reducing variance if we increase the sample size for each agent’s log likelihood (as captured by K · T ), also
increasing m slightly degrades the approximation, although it is still an excellent estimate.
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Figure 2: Comparing ratio of true to approximated log likelihood. We ran 20 instances for each setting of
parameters. In plot (1) we varied m, fixed T = 5 (2) varied K, fixed T = 5 (3) varied T .

4.3 EM on Synthetic Data

Having empirically established that sampling procedure AMP is a good approximation to the true posterior,
and that the log likelihood can be closely approximated by importance sampling, we can now evaluate how
effective our EM algorithm is at recovering parameters in a controlled setting. In our setup, we performed
four experiments where we: (1) varied α (2) varied number of items m (3) varied number of components K
and (4) varied training data size, that is, number of agent preferences n. For each experiment, we generated
random model parameters π from a Dirichlet with vector of K 5’s, σ uniformly at random, and φ values
uniformly at random in the interval [0.2, 0.8]. The training data is generated from our probabilistic model
using these generated parameters. While varying one parameter for each experiment, we fix the other three,
and in particular when fixing the parameters they were always α = 0.2, m = 20, K = 3 and n = 50K.
Results are shown in Fig. 3. We analyze the performance of EM by (approximately) evaluating the ratio
of the log likelihood of the true model parameters π, σ, φ to the EM learned parameters, on test data
(preferences) generated from the true model parameters where we chose ntest = n and αtest = 1.
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The results suggest that: learning is better when α or n is larger, in other words, when we have more
preference data; learning is relatively worse when increasing number of components—because there is less
data; and learning improves when increasing m while fixing α—because the transitive closure for larger m
gives more preference information (e.g. a1 � a2 � a3 � a4 � a5 � a6 has 5 paired comparisons and is 1/9
of all paired comparisons on m = 10 while a1 � a2 � · · · � a100 has 99 paired comparisons which is 1/50 of
all paired comparisons but its transitive closure is a full ranking).

An interesting implication is the wisdom of the crowds’ effect, for example when estimating an objective
ranking, i.e. K = 1. The amount of data needed for estimating an objective ranking can be traded off by
either increasing α, the average number of paired comparisons revealed per agent, or by increasing number
of agents n and decreasing α. That is, asking more agents about their objective assessments while decreasing
questions per agent, provides roughly the same data needed to find an objective ranking as asking less agents
but demanding more objective assessments per agent.
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Figure 3: Performance of EM on synthetic dataset. Each plot illustrates the ratio of the log likelihood of true
model parameters π,σ,φ to the learned parameters. We ran 20 instances for each setting of experimental
parameters. Log likelihoods were approximated by importance sampling with T = 10.

4.4 Sushi Data

This dataset consists of sushi preferences surveyed across Japan. We used the first part of the dataset
consisting of 5000 complete preferences over m = 10 sushi varieties. We split this into 3500 preferences
for training and 1500 for validation. Because the full preferences are available, we ran several experiments
where we generated training preferences by revealing paired comparisons with probability α. To avoid local
maxima, we ran EM ten times (more than what is necessary) for each instance. Fig. 4 shows the results.
The plot shows that, even without full preferences, learning is still quite good with only .5 or .4 fraction
of all paired comparisons. Learning degrades as less paired preference data becomes available (e.g. going
from α = .3 to .2). However, there is still enough data for learning with K = 1, 2. From the plot it appears
K = 6 is a good model fit when training on full preferences, Table 1 shows the learned clusters. The pattern
emerging is that, with exception of one group, fatty tuna is very well liked. Salmon roe and sea urchin are
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Figure 4: Sushi dataset. Plots of average validation log likelihood when the training data, paired comparisons,
are revelead with probabilities α = .2, .3, .4, .5. Learning degrades as α gets closer to 0.2, that is, as more
paired comparisons are censored.

π0 = 0.17 π1 = 0.15 π2 = 0.17 π3 = 0.18 π4 = 0.16 π5 = 0.18
φ0 = 0.66 φ1 = 0.74 φ2 = 0.61 φ3 = 0.64 φ4 = 0.61 φ5 = 0.62
fatty tuna shrimp sea urchin fatty tuna fatty tuna fatty tuna
salmon roe sea eel fatty tuna tuna sea urchin sea urchin
tuna squid sea eel shrimp tuna salmon roe
sea eel egg salmon roe tuna roll salmon roe shrimp
tuna roll fatty tuna shrimp squid sea eel tuna
shrimp tuna tuna sea eel tuna roll squid
egg tuna roll squid egg shrimp tuna roll
squid cucumber roll tuna roll cucumber roll squid sea eel
cucumber roll salmon roe egg salmon roe egg egg
sea urchin sea urchin cucumber roll sea urchin cucumber roll cucumber roll

Table 1: Learned model for K = 6 on the sushi dataset with full rankings.

either really liked or hated together, likely because they are not typical “fish meat.” Cucumber roll is mostly
dispreferred.

4.5 Movielens Data

We applied our EM algorithm on the Movielens dataset1 to find “preference types” of users. The dataset
consists of ∼1 million movie ratings in year 2000 of ∼3900 movies made by ∼6000 users. The ratings were
integers from 1 to 5. In our experiments, we focused on the 200 most rated movies. We converted user ratings
into paired comparisons as follows: movie x1 � x2 was added to a user’s v` if the rating of x1 was strictly
greater than that of x2. If the ratings are tied, then they are incomparable and the paired comparison is
not added. For example, if A and B had rating 5, C had rating 3 and D rating 1 then the user preference
becomes v = {A � C,A � D,B � C,B � D,C � D}. We discarded preferences that became empty on
the top 200 movies, and used 3986 preferences for training and set aside 1994 for validation. The average
number of paired comparisons per user (both training and validation) was roughly 1300.

We ran EM for each component size K ∈ {1, . . . , 20}, and for each K we reran EM 20 times to avoid

1see www.grouplens.org
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local maxima, which is a lot more runs than is needed to avoid local maxima. Then for each K, we took the
best run in the sense that the training log likelihood was largest and evaluated the average log likelihood on
a validation set whose purpose is in selecting a good K. The log likelihoods were approximated using our
Monte Carlo estimate (with K · T = 120, i.e. sample size per preference is 120). A C++ implementation
was quite fast and resulted in EM running times between 15 to 20 minutes, depending on K (Intel Xeon
dual-core 3GHz). The log likelihood plot is shown in Fig. 5. On validation data, the best component sizes
were 10 and 5 (with 10 slightly beating 5). While there are various ways to choose the right K (e.g. Bayesian
or Akaike information criteria), we use Occam’s principle and display the learned components for K = 5 in
Table 2. This table shows the top 20 movies of each cluster centre as well as the mixture proportions and
dispersion paramters.
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Figure 5: Movielens dataset: average training and validation log likelihoods on the learned model parameters
of different component sizes.
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Citizen Kane (1941) Godfather, The (1972) Raiders of the Lost Ark

(1981)
Shawshank Redemption,
The (1994)

Usual Suspects, The (1995)

Godfather, The (1972) Dr. Strangelove (1963) Godfather, The (1972) Life Is Beautiful (1997) Shawshank Redemption,
The (1994)

Dr. Strangelove (1963) Citizen Kane (1941) Schindler’s List (1993) Raiders of the Lost Ark
(1981)

Schindler’s List (1993)

Schindler’s List (1993) Casablanca (1942) Rear Window (1954) Schindler’s List (1993) Life Is Beautiful (1997)
Rear Window (1954) Star Wars: Episode IV - A

New Hope (1977)
Star Wars: Episode IV - A
New Hope (1977)

Star Wars: Episode IV - A
New Hope (1977)

Christmas Story, A (1983)

Shawshank Redemption,
The (1994)

Usual Suspects, The (1995) Shawshank Redemption,
The (1994)

Matrix, The (1999) This Is Spinal Tap (1984)

American Beauty (1999) Raiders of the Lost Ark
(1981)

Casablanca (1942) Sixth Sense, The (1999) American Beauty (1999)

Godfather: Part II, The
(1974)

Monty Python and the Holy
Grail (1974)

Sixth Sense, The (1999) Sting, The (1973) Sixth Sense, The (1999)

One Flew Over the Cuckoo’s
Nest (1975)

Rear Window (1954) Psycho (1960) Forrest Gump (1994) Pulp Fiction (1994)

Casablanca (1942) Maltese Falcon, The (1941) Citizen Kane (1941) Usual Suspects, The (1995) Princess Bride, The (1987)
Usual Suspects, The (1995) Blade Runner (1982) Sting, The (1973) Braveheart (1995) Silence of the Lambs, The

(1991)
Pulp Fiction (1994) One Flew Over the Cuckoo’s

Nest (1975)
Usual Suspects, The (1995) Green Mile, The (1999) Godfather, The (1972)

Monty Python and the Holy
Grail (1974)

Clockwork Orange, A (1971) Saving Private Ryan (1998) Indiana Jones and the Last
Crusade (1989)

Forrest Gump (1994)

Fargo (1996) 2001: A Space Odyssey
(1968)

Godfather: Part II, The
(1974)

Saving Private Ryan (1998) Fight Club (1999)

Life Is Beautiful (1997) North by Northwest (1959) Silence of the Lambs, The
(1991)

Princess Bride, The (1987) Fargo (1996)

Graduate, The (1967) Pulp Fiction (1994) Wizard of Oz, The (1939) Star Wars: Episode V - The
Empire Strikes Back (1980)

Ferris Bueller’s Day Off
(1986)

North by Northwest (1959) Godfather: Part II, The
(1974)

Dr. Strangelove (1963) Silence of the Lambs, The
(1991)

Raising Arizona (1987)

GoodFellas (1990) Chinatown (1974) Jaws (1975) Good Will Hunting (1997) Saving Private Ryan (1998)
Chinatown (1974) Apocalypse Now (1979) Braveheart (1995) Ferris Bueller’s Day Off

(1986)
Good Will Hunting (1997)

Raiders of the Lost Ark
(1981)

Shawshank Redemption,
The (1994)

Aliens (1986) When Harry Met Sally
(1989)

Matrix, The (1999)

Table 2: Learned model for K = 5 on Movielens. Shows the top 20 (out of 200) movies.
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