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Abstract

Learning preference distributions is a key prob-
lem in many areas (e.g., recommender systems,
IR, social choice). However, many existing meth-
ods require restrictive data models for evidence
about user preferences. We relax these restric-
tions by considering as data arbitrary pairwise
comparisons—the fundamental building blocks
of ordinal rankings. We develop the first algo-
rithms for learning Mallows models (and mix-
tures) with pairwise comparisons. At the heart is
a new algorithm, the generalized repeated inser-
tion model (GRIM), for sampling from arbitrary
ranking distributions. We develop approximate
samplers that are exact for many important spe-
cial cases—and have provable bounds with pair-
wise evidence—and derive algorithms for evalu-
ating log-likelihood, learning Mallows mixtures,
and non-parametric estimation. Experiments on
large, real-world datasets show the effectiveness
of our approach.

1. Introduction

With the abundance of preference data from search
engines, review sites, etc., there is tremendous de-
mand for learning detailed models of user preferences
to support personalized recommendation, information
retrieval, social choice, and other applications. Much
work has focused on ordinal preference models and
learning user or group rankings of items. We can dis-
tinguish two classes of models. First, we may wish
to learn an underlying objective (or “correct”) ranking
from noisy data or noisy expressions of user preferences
(e.g., as in web search, where user selection suggests
relevance), a view adopted frequently in IR and “learn-
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ing to rank” (Burges, 2010) and occasionally in social
choice (Young, 1995). Second, we might assume that
users have different types with inherently distinct pref-
erences, and learn a population model that explains
this diversity. Learning preference types (e.g., by seg-
menting or clustering the population) is key to effective
personalization and preference elicitation; e.g., with
a learned population preference distribution, choice
data from a specific user allows inferences to be drawn
about her preferences. We focus on the latter setting.

Considerable work in machine learning has exploited
ranking models developed in the statistics and psycho-
metrics literature, such as the Mallows model (Mal-
lows, 1957), the Plackett-Luce model (Plackett, 1975;
Luce, 1959), and others (Marden, 1995). However,
most research to date provides methods for learning
preference distributions using very restricted forms of
evidence about individual user preferences, ranging
from full rankings, to top-t/bottom-t items, to par-
titioned preferences (Lebanon & Mao, 2008). Missing
from this list are arbitrary pairwise comparisons of
the form “a is preferred to b.” Such pairwise prefer-
ences form the building blocks of almost all reasonable
evidence about preferences, and subsumes the most
general evidential models proposed in the literature.
Furthermore, preferences in this form naturally arise
in active elicitation of user preferences and choice con-
texts (e.g., web search, product comparison, advertise-
ment clicks), where a user selects one alternative over
others (Louviere et al., 2000).

While learning with pairwise preferences is clearly of
great importance, most believe that this problem is
impractically difficult; so, for instance, the Mallows
model is often shunned in favor of more inference-
friendly models (e.g., Plackett-Luce, which accommo-
dates more general, but still restrictive, preferences
(Cheng et al., 2010; Guiver & Snelson, 2009)). To date,
no methods have been proposed for learning from arbi-
trary paired preferences in any of the commonly used
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ranking models in ML. We tackle this problem directly
by developing techniques for learning Mallows models,
and mixtures thereof, from pairwise preference data.

Our core contribution is the generalized repeated in-
sertion model (GRIM), a new method for sampling
from arbitrary ranking distributions—including condi-
tional Mallows—that generalizes the repeated inser-
tion method for unconditional sampling of Mallows
models (Doignon et al., 2004). Though we prove
this problem is #P-hard in general, we derive an-
other method, AMP, which efficiently and approxi-
mately samples from the conditional Mallows distri-
bution. Moreover, we show that AMP is exact for im-
portant classes of evidence (including partitioned pref-
erences), and that empirically it provides very close
approximations given pairwise evidence. We use this
sampler as the core of a Monte Carlo EM algorithm to
learn Mallows mixtures as well as evaluating log likeli-
hood. We also extend the non-parametric framework
of Lebanon & Mao (2008) to handle unrestricted ordi-
nal preference data. Experiments show our algorithms
can effectively learn Mallows mixtures, with very rea-
sonable running time, on datasets (e.g., Movielens)
with hundreds of items and thousands of users.

2. Preliminaries

We assume a set of items A = {a1,...,amn} and n
agents, or users, N = {1,...,n}. Each agent ¢ has
preferences over the set of items represented by a total
ordering or ranking =y over A. We write z >, y to
mean ¢ prefers x to y. Rankings can be represented
as permutations of A. For any positive integer b, let
[b] = {1,...,b}. A bijection o : A — [m] represents
a ranking by mapping each item into its rank. Thus,
for i € [m], o~1(i) is the item with rank i. We write
0 = 0102 - - 0, for a ranking with i-th ranked item o;,
and >, for the induced preference relation. For any
X C A, let o|x denote the restriction of o to items in
X. Let 1[] be the indicator function.

Generally, we do not have access to the complete pref-
erences of agents, but only partial information about
their rankings (e.g., based on choice behavior, query
responses, etc.). We assume this data has a very
general form: for each agent ¢ we have a set of re-
vealed pairwise preference comparisons over A, or sim-
ply preferences: vy = {f =, yf,. .. ,xf;z =0 yﬁz}. Let
tc(vg) denote the transitive closure of vy. Since pref-
erences are strict, tc(vy) is a strict partial order on A.
We assume each vy is consistent, i.e., tc(vy) contains
no cycles.! Preferences v, are complete iff tc(v) is a

!Many of the concepts developed in this paper can be

total order on A. Let (v) be the linear extensions of
v, i.e., the set of rankings consistent with v; Q = Q(0)
is the set of all m! complete preferences. A collection
V = (v1,...,0,) I8 a (partial) preference profile: this
comprises our observed data.

Given 0 = 0109 - - - 0, and preference v, define:

d(v,0) = Z 1[o; = o; € tc(v)]. (1)
i<j
This measures dissimilarity between a preference set
and a ranking using number of pairwise disagreements
(i.e., those pairs in v that are misordered relative to
o). If v is a complete ranking o', then d(o’,0) is the
classic Kendall-tau metric on rankings.

Arbitrary sets v of paired comparisons model a wide
range of realistic revealed preferences. Full rankings
(Murphy & Martin, 2003) require m — 1 paired com-
parisons (a > b > c...); top-t preferences (Busse et al.,
2007) need m — 1 pairs (¢ — 1 pairs to order the top
t items, m — t pairs to set the tth item above the re-
maining m — t); rankings of subsets X C A (Guiver
& Snelson, 2009; Cheng et al., 2010) are also repre-
sentable. We also consider the following rich class:

Definition 1 (Lebanon & Mao 2008). A preference
set v is a partitioned preference if A can be partitioned
into subsets Aq,...,Aq s.t.: (a) for alli < j < gq, if
r € Ay and y € Aj then & () y; and (b) for each
1 < g, items in A; are incomparable under tc(v).

Partitioned preferences are very general, subsuming
the special cases above. However, they cannot rep-
resent many naturally occurring revealed preferences,
including something as simple as a single paired com-
parison: v = {a > b}.

There are many distributional models of rankings—
Marden (1995) provides a good overview. The two
most popular in the learning community are the
Mallows (1957) model and the Plackett-Luce model
(Plackett, 1975; Luce, 1959). We focus on Mallows
in this work, though we believe our methods can be
extended to other models. The Mallows ¢-model is
parameterized by a modal or reference ranking o and
a dispersion parameter ¢ € (0,1]. Let r be a ranking,
then the Mallows model specifies:

P(r) = Pr|o,0) = 26", @)
where Z =3 /.o ¢*”"9) and can be shown to equal
1-(14¢)-(14+¢+¢%) - - (14 ~+¢™1). When ¢ = 1 we
obtain the uniform distribution, and as ¢ — 0 we get
a distribution that concentrates all mass on o. Some-
times the model is written as P(r|o, ) = Le *4(ro),

applied to models where revealed preferences are noisy; we
leave this to future research.
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where A = —In¢ > 0. To overcome the unimodal
nature of Mallows models, mixture models have been
proposed. A mixture with K components requires
reference rankings o = (o1,...,0k), dispersion pa-
rameters ¢ = (¢1,...,¢k), and mixing coefficients
7 = (71,...,7k). EM for mixtures have been stud-
ied (Murphy & Martin, 2003; Busse et al., 2007), as
well as inference in a Dirichlet process mixture context
(Meila & Chen, 2010) (both limited to top-t data).

The repeated insertion model (RIM), introduced by
Doignon et al. (2004), is a generative process that
gives rise to a family of distributions over rankings
and provides a practical way to sample rankings from
a Mallows model. Assume a reference ranking o =
0102+ 0m, and insertion probabilities p;; for each
i < m,j < i. RIM generates a new output ranking
using the following process, proceeding in m steps. At
Step 1, o1 is added to the output ranking. At Step
2, o9 is inserted above oy with probability ps; and
inserted below with probability p2 2 =1 — ps 1. More
generally, at the ith step, the output ranking will be
an ordering of o1,...,0,_1 and o; will be inserted at
rank j < ¢ with probability p;;. Critically, the inser-
tion probabilities are independent of the ordering of
the previously inserted items.

We can sample from a Mallows distribution using RIM
with appropriate insertion probabilities.

Definition 2. Let 0 = o1 ---0,, be a reference rank-
ing. Let an insertion vector be any positive integer
vector (ji,...,Jm) satisfying j; < i,Vi < m; and let
1 be the set of such insertion vectors. A repeated in-
sertion function ®, : I — Q maps an insertion vector
(J1y- -, Jm) tnto a ranking ®,(j1,...,Jm) by placing
each o;, in turn, into rank j;, for all i < m.

The definition is best illustrated with example. Con-
sider insertion vector (1,1,2,3) and ¢ = abed. Then
®,(1,1,2,3) = beda because: we first insert a into
rank 1; we then insert b into rank 1, shifting a down
to get partial ranking ba; we then insert c¢ into rank
2, leaving b but moving a down, giving bca; finally,
we insert d at rank 3, giving beda. Given reference
ranking o, there is a one-to-one correspondence be-
tween rankings and insertion vectors. Hence, sam-
pling by RIM can be described as: draw an inser-
tion vector (j1,...,J5m) € I at random, where each
Ji < i is drawn independently with probability p;;,—
note that 3%, pij, = 1, for all i—and return ranking
Dot ).

Theorem 3 (Doignon et al. 2004). By setting p;; =
&'/ (14¢+--+¢' 1) forj < i < m, RIM induces the
same distribution over rankings as the Mallows model.

Thus RIM offers a simple, useful way to sample rank-
ings from the Mallows distribution.?

3. Generalized Repeated Insertion

While RIM provides a powerful tool for sampling from
Mallows models (and by extension, Mallows mixtures),
it samples unconditionally, without (direct) condition-
ing on evidence. We now proceed to generalize RIM
by permitting conditioning at each insertion step. Our
generalized repeated insertion model (GRIM) can sam-
ple from arbitrary rank distributions.

3.1. Sampling from Arbitrary Distributions

Rather than focus on conditional Mallows distribution
given evidence about agent preferences, we present
GRIM abstractly as a means of sampling from any
distribution over rankings. We rely on the simple in-
sight that the chain rule allows us to represent any
distribution over rankings in a concise way, as long as
we admit dependencies in our insertion probabilities:
specifically, the insertion probabilities for any item o;
in the reference ranking must be conditioned on the or-
dering of the previously inserted items (o1, ...,0;_1).

Let @ be any distribution over rankings and o an (arbi-
trary) reference ranking. Recall that we can (uniquely)
represent any ranking r € ) using o and an inser-
tion vector j” = (47,...,j5,) € I, where r = ®,(j").
Thus @ can be represented by a distribution @’ over
I: Q'(j7) = Q(r). Similarly, for & < m, any partial
ranking r[k] = (r1,...,7) of the items {o1,...,0%},
can be represented by a partial insertion vector j[k] =
(41, -5 d%)- Letting Q(r[k]) = > {Q(r) : r1 > 1o =
e b, and Q'(Gk) = YAQG) : Ik = jlK}, we
have Q'(j[k]) = Q(r[k]). Define conditional insertion
probabilities

=Q'(ji = jljli —1]). 3)

This denotes the probability with which the ith item
o; in the reference ranking is inserted at position j < i,
conditioned on the specific insertions (r1,...,7;—1) of
all previous items. By the chain rule, we have

Pij|jli-1)

Q'(4) = Q' (mlilm — 1)Q" (Jm—1ljlm — 2]) - -- Q"(G[1]).

Suppose we run RIM with conditional insertion prob-
abilities p;;|;1,—1) defined above; that is, we draw ran-
dom insertion vectors j by sampling j; through j,,,
in turn, but each conditioned on the previously sam-

pled components. The chain rule ensures that the re-

2RIM can also be used to sample from variants of the
Mallows model, e.g., those using weighted Kendall-tau dis-
tance; we give details in a longer version of the paper.
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sulting insertion vector is sampled from the distribu-
tion @’. Hence the induced distribution over rankings
r = ®,(j) is Q. We call the aforementioned proce-
dure the generalized repeated insertion model (GRIM).
Based on the arguments above, we have:

Theorem 4. Let Q be a ranking distribution and o
a reference ranking. For any r € ), with insertion
vector j" (i.e., r = ®,(j")), GRIM, using the insertion
probabilities in Fq. 3, generates insertion vector j~ with
probability Q' (") = Q(r).

Example 1. We illustrate GRIM using a simple ex-
ample, sampling from a (conditional) Mallows model
over A = {a,b,c}, with dispersion ¢, given evidence
v = {a > ¢}. The table illustrates the process:

Insert a, b Insert ¢ given ab | Insert c given ba
T Insrt. Prob. T Insrt. Prob. T Insrt. Prob.
a P(jao=1)=1 cab P(je=1)=0 cba P(jo=1)=0
ab | PUp=1)=1i5 | acb | PUe=2)=1l5 | bea | P(je=2)=0
ba | PGjp=2)=15 | abe | P(je=3)=135 | bac | Pc=38)=1

The resulting ranking distribution @ is given by the
product of the conditional insertion probabilities:
Qlabe) = 1/(1+ )% Q(ach) = ¢/(1 + 6)% and
Q(bac) = ¢/(1 + ¢). As required, Q(r) = 0 iff r is

inconsistent with evidence v.

3.2. Sampling a Mallows Posterior

While GRIM allows sampling from arbitrary distribu-
tions over rankings, as presented above it is largely a
theoretical device, since it requires inference to com-
pute the required conditional probabilities. To sam-
ple from a Mallows posterior, given arbitrary pairwise
comparisons v, we show how to compute the required
terms. The Mallows posterior is given by:

(bd('r,o)
ZT’GQ(U) qu(T" )

which requires summing over an intractable number
of rankings to compute the normalization constant.

P,(r)y=P(r|v) = 1[r € Q(v)], (4)

We could use RIM for rejection sampling: sample un-
conditional insertion ranks, and reject a ranking at any
stage if it is inconsistent with v. However, this is im-
practical because of the high probability of rejection.
Instead we use GRIM. The main obstacle is comput-
ing the insertion probability of a specific item given
the insertion positions of previous items in Eq. 3 when
Q' (more precisely, the corresponding Q) is the Mal-
lows posterior. Indeed, this is #P-hard even with a
uniform distribution over Q(v):

Proposition 5. Given v, a reference ordering o, a
partial ranking ry---r;_1 over {o1,...0,_1}, and j €
{1,...,i}, computing the probability of inserting o; at
rank j w.r.t. the uniform Mallows posterior P (i.e.,
computing P(r) < 1[r € Q(v)]) is #P-hard.

€

L=12
v={b>ee>d}

Fig. 1: Valid insertion ranks for e are {Is,..
{2,3} given previous insertions and constraints v.

hs} =

This suggests it is hard to sample exactly, and that
computing the normalization constant in a Mallows
posterior is difficult. Nevertheless we develop an ap-
proximate sampler AMP that is very efficient to com-
pute. While it can perform poorly in the worst-case,
we will see that, empirically, it produces excellent pos-
terior approximations.?

AMP uses the same intuitions as illustrated in Ex-
ample 1, where we use the (unconditional) insertion
probabilities used by RIM, but subject to constraints
imposed by v. At each step, the item being inserted
can only be placed in positions that do not contradict
tc(v). We can show that the valid insertion positions
for any item, given v, form a contiguous “region” of
the ranking (see Fig. 1 for an illustration).

Proposition 6. Let insertion of o1,...,0,_1 give a
ranking 1 ---r;—1 consistent with tc(v). Let L; =
{i/ < i|7"y >tc('u) O’i} and H; = {i, < i|7"y <tc(v) O'i}.
Then inserting o; at rank j is consistent with tc(v)
area iff j € {l;;l; +1,...,h; — 1, h;}, where

L — 1 if L =0 (5)
v argmax L; +1 otherwise
i H =
hoodio o UHi=0 (6)
argmin H; otherwise

Prop. 6 immediately suggests a modification of the
GRIM algorithm, AMP, for approximate sampling of
the Mallows posterior: First initialize ranking r with
o1 at rank 1. Then for ¢ = 2...m, compute l;, h;
and insert o; at rank j € {l;,..., h;} with probability
proportional to ¢*~7.

AMP induces a sampling distribution P, that does
not match the posterior P, exactly: indeed the KL-
divergence between the two can be severe, as the fol-
lowing example shows. Let A = {ai1,...a,} and
v =ag > ag > -+ = ay,. Let P be the uniform Mal-
lows prior (¢ = 1) with ¢ = a1 -+ a,,. There are m
rankings in Q(v), one 7; for each placement of a;. The
true Mallows posterior P, is uniform over Q(v). But
AMP induces an approximation with P, (r;) = 27 for
i <m—1and P,(rp,) = 2™ !, The KL-divergence of

P, and P, is (m—1)/24 (1—2/m)log, m— (1+1/m).

3We can also bound approximation quality theoreti-
cally. Further results, and proofs of all results, can be
found in a longer version of the paper.
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While AMP can perform poorly in the worst-case,
it does very well in practice (see Sec. 5). We can
also prove interesting properties, and provide theoret-
ical guarantees of exact sampling in important spe-
cial cases. First, it isn’t hard to show that AMP will
always produce a ranking (insertion positions always
exist given any consistent v). Furthermore:

Proposition 7. The support of distribution P, in-
duced by AMP is Q(v) (i.e., identical to that of the
Mallows posterior, Eq. 4).

Proposition 8. For any r € Q(v), AMP outputs r
with probability:
R ¢d(r ,0)
P,(r) = ==
( ) Hi=1(¢l i 4 @imhitl 4

ey 0

Using this result we can show that if v lies in the class
of partitioned preferences, AMP’s induced distribution
is exactly the Mallows posterior:

Proposition 9. Ifv is partitioned, the distribution P,
induced by AMP is the Mallows posterior P,.

While AMP may have (theoretically) poor worst-case
performance, we can develop a statistically sound sam-
pler MMP by using AMP to propose new rankings for
the Metropolis algorithm. With Eq. 7, we can derive
the acceptance ratio for Metropolis. At step ¢t + 1 of
Metropolis, let #(!) be the previous sampled ranking.
Ranking 7, proposed by AMP independently of r(*)
will be accepted as r(**1) with probability

hi—li+1
. S RO
min 1,H oM =hi (1_phi—lit1)

i— [
i=1 1— thl—l +1

if¢g=1
s (®
otherwise

where the [;’s and h;’s are as in Eq. 5 and 6, re-
spectively (defined w.r.t. r; and If and h! are defined
similarly, but w.r.t *)). Prop. 7 helps show:

Theorem 10. The Markov chain as defined in MMP
is ergodic on the class of states Q(v).

3.3. Sampling a Mallows Mixture Posterior

Extending the GRIM, AMP and MMP algorithms to
sampling from a mixture of Mallows models is straight-
forward. There is relatively little work on probabilis-
tic models of partial rankings, and to the best of our
knowledge, no proposed generative models for arbi-
trary sets of consistent paired comparisons. We first
describe such a model before extending our algorithms
to sample from a mixture of Mallows models.

We assume each agent has a latent preference rank-
ing r, drawn from a Mallows mixture with parame-
ters ® = (m1,...,7k), 0 = (01,...,0K), and ¢ =
(¢1,...,0K). We use a component indicator vector

z = (21,...,25) € {0,1}X, drawn from a multino-
mial with proportions 7, which specifies the mixture
component from which an agent’s ranking is drawn:
if zx = 1, r is sampled from the Mallows model with
parameters oy, ¢r. Our observed data is a preference
profile V. = (vy,...,v,). Let Z = (2z1,...,2,) de-
note the latent indicators for each agent. To generate
{’s preferences vy, we use a simple distribution, pa-
rameterized by a € [0, 1], that reflects a missing com-
pletely at random assumption.* We define P(v|r, o) =
alvl(1 - a)( )=lvlify e Q(v); and P(v|r, o) = 0 other-
wise. One can view this as a process in which an a-coin
is flipped for each pair of items to decide whether that
pairwise comparison in r is revealed by v. Taken to-
gether, we have the joint distribution:
P(v,r,z|m,o,¢,a) = P(v|r,a)P(r|z, o, ¢)P(z|w).

Now consider sampling from the mixture posterior,
P(r,zlv,w, o,¢) x P(vlr,a)P(r|z,o,¢)P(z|r). We
use Gibbs sampling to alternate between r and z, since
the posterior does not factor in a way that permits us
to draw samples exactly by sampling one variable, then
conditionally sampling another. We initialize with
some z(® and (9, then repeatedly sample the condi-
tionals of z given r and 7 given z. For the ¢-th sample,
z® is drawn from a mult1n9m1al with K outcomes:
P(z : z, = 1|r1) d) ’U")wk Then sample
r®) given z!, P(r|z®,v) o« P(v|r)P(r|z®)P(z"))

QSZ(T’U’“)I[T € Qv)), if z,(:) = 1. This is, of course,
Mallows posterior sampling, so we use AMP or MMP.

4. EM for Learning Mallows Mixtures

Armed with the sampling algorithms derived from
GRIM, we now turn to maximum likelihood learning
of the parameters m, o, and ¢ of a Mallows mixture
using EM. Before detailing our EM algorithm, we first
consider the evaluation of log likelihood, which is used
to select K or test convergence.

Evaluating Log Likelihood. Log likelihood

Lo(m,0,¢|V) in our model can be written:

Wk(bd(r/ﬁk) lvel (1 _ (%) —lvel
Zln Z Z +Ina™'(1-a) ,

teN k=1r,eQ(vy)

where Z;, is the Mallows normalization constant. It

is easy to derive the maximum likelihood estimate for
@ o =3, 5 2|vel/(nm(m —1)). So we ignore this
additive constant, and focus on the first term in the
sum, denoted L(m, o, ¢|V). Unfortunately, evaluating
this term is provably hard:

4This won’t be realistic in all settings, but serves as a

useful starting point.
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Theorem 11. Given profile V.= (v1,...,v,), com-
puting the log likelihood L(m, o, ¢|V) is #P-hard.

As a result we consider approxima-

tions. We might rewrite L(m,0,¢|V) as
K

Z@GN In [Zk:l Tk ]EP(HUk»d)k) 1[T € Q(”)]} ) and

estimate the inner expectations by sampling from the
Mallows model P(r|og, ¢x). However, this can require
exponential sample complexity in the worst case (e.g.,
if K = 1 and v is far from o, i.e., d(v, o) is large, then a
sample of exponential size is expected to ensure v is in
the sample). But we can rewrite the summation inside

K d(r,ox
the log as ) ,.yIn [Zkzl Z—’;ZTGQ(W) ¢k( ’“)] , and

evaluate Ereﬂ(w) ¢z(r’gk) via importance sampling:
we generate samples using AMP, then empirically
approximate

d(r,or)
D R ] ©)
reQ(ve) b, Pvl(r|gk7¢k)
We generate samples r@k), e ,rg) with

AMP(vg,Aak,cZ)k) for ¥ < n and k < K, then sub-
stitute P, from Eq. 7 into Eq. 9. With some algebraic
manipulation we obtain the estimate:

Zlnl iim

LEN t=1
Bkt _ (k) . _
m' Hl (b — 1 +1) if ¢ =1,
N (00 }(em) l(ikt)+1
ity i—h; 1-¢;° . otherwise
k i=1 1—¢L ’

where hl(-em) and Zykt) are defined in Egs. 5 and 6 (de-

fined w.r.t. ré?, Oky Vg).

EM for Mallows Mixtures Learning a Mallows
mixture is challenging, since even evaluating log like-
lihood is #P-hard. But we exploit our posterior sam-
pling methods to render EM tractable. We apply the
EM approach of Neal & Hinton (1999) as follows (re-
call we needn’t consider «): We initialize our param-
eters with values w°d, o°d and ¢°ld. For the E-
step, instead of working directly with the intractable
posterior P(zg, 7¢|vg, 79, 0014, ¢°'), we use GRIM-
based Gibbs sampling (see Sec. 3.3), to obtain sam-
ples (zét),r?))t 1, £ € N. In the M-step, we find a

(local) maximum, w"% g™V @"" of the empirical
expectation:

argmaxz ZlnP vg,réﬂ,zlt)hr o, P). (10)
T,0,p ZGN t—1

If we were to fully maximize each parameter in the
order (m,0,¢) we would obtain a global maximum.

Of course, exact optimization is intractable, so we
approximate the components of the M-step. Abusing

notation, let indicator vector zét) denote the mixture

component to which the t-th sample of ¢ belongs.
We partition all agents’ samples into such classes:

let Sy = (pk1,---,pPrj,) be the sub-sample of rank-
ings T§) that belong in the k-th component, i.e.,
where zgt) = k. Note that j; + -+ + jxg = nT.
We can rewrite the M-step objective as:

K ,
%Zk:l Sty W P(vegr,y | pri) Pprilok, ox) P(kmy),
where ((k,4) is the agent for sample py ;. We ignore
In P(vg(k,iy|pri), which only impacts a; and we know
Pri € Qvg(,i)). Thus, we rewrite the objective as:

ZZlnﬂ'k—i—d (pri,on) lnqﬁk—Zl ¢k. (11)

k=11i=1

Optimizing 7. Applying Lagrange multipliers yields:
e = ji/(nT), Vk < K. (12)

Optimizing o. The only term involving o in Eq. 11 is

Zk 1 d(pri,or) In ¢. Since ln @y is a negative
scaling factor and we can optimize the o} indepen-
dently, we obtain:

o) = argmin Z d(pri,ok). (13)
Tk =1

Optimizing o) requires computing Kemeny consensus
of the rankings in S, an NP-hard problem. Draw-
ing on the notion of local Kemenization (Dwork et al.,
2001), we instead compute a locally optimal oy, where
swapping two adjacent items in oy cannot reduce the
sum of distances in the Kemeny objective (details are
included in a longer version of the paper).

Optimizing ¢. When optimizing ¢ in Eq. 11, the ob-
jective decomposes into a sum that permits indepen-
dent optimization of each ¢;. Exact optimization of
¢y is difficult; however, we can use gradient ascent

1 9 (Eq. 11 d(Sk. [(i—1)¢n—ilgy "+1
with (ng ) — A« k ‘7’~) — e o BT

(1-¢;)(1=dr) ’
where d(Sk, ox) = j L d(pri, o).

Complezity of EM. One iteration of the E-step takes
O(nTpTgivps(Trretrom?® + Kmlogm)) time where
T'vetro is number of Metropolis steps, Tgipps the num-
ber of Gibbs steps, and Tp is the posterior sample size
for each vy. The M-step takes time O(Km?). Space
complexity is O(Km?), dominated by the K tourna-
ment graphs used to compute Kemeny consensus.

Application to Non-Parametric Estimation
Lebanon & Mao (2008) propose non-parametric esti-
mators for Mallows models when observations form



Learning Mallows Models with Pairwise Preferences

partitioned preferences. Indeed, they offer closed-
form solutions by exploiting the existence of a closed-
form for Mallows normalization with partitioned pref-
erences. Unfortunately, with general pairwise com-
parisons, this normalization is intractable unless #P=
P. But we can use AMP for approximate marginaliza-
tion to support non-parametric estimation with gen-
eral preference data. Define a joint distribution over
Qve) x Q by q(s,r) = %, where Z, is the
Mallows normalization constant. This corresponds
to drawing a ranking s uniformly from Q(v,), then
drawing r from a Mallows distribution with refer-
ence ranking s and dispersion ¢. We extend the
non-parametric estimator to paired comparisons us-
ing p(v) = %ZZGN a(s € Quo),r € Q) =

1 d(r,s) .

n Z@eN,seQ(w),reQ(v) Q@)Zs We can approximate
p using importance sampling: choose o € Q(vy) and
sample rankings sél), e ng) from AMP(vp, 0,6 = 1),
obtaining (see a longer version of the paper for deriva-

(t)
d(r,s
ﬁ(v) _ 1 Z S, wee > rea) ® (rog )
nZy 2uteN ST we )

(t)

where wyy = 1/ Pw (s;7) is computed using Eq. 7. Eval-

tions):

. d(r S(t)) . .
uating ZTEQ(U) o™\ "5¢ ") is also intractable, but can be
approximated using Eq. 9.

5. Experiments

We conducted experiments to measure the quality of
the AMP algorithm both in isolation and in the context
of log likelihood evaluation and EM. Full details of
any experiments summarized below can be found in a
longer version of the paper.

Sampling Quality. We first assess how well AMP
approximates the true Mallows posterior P,. We vary
parameters m, ¢ and «, and fix a canonical reference
ranking o = (1,2,--m). For each parameter setting,
we generate 20 preferences v using our mixture model,
and evaluated the KL-divergence of PU and P, (nor-
malized by the entropy of P,). In summary, our results
show that AMP approximates the posterior very well,
with average normalized KL error ranging from 1-5%,
across the parameter ranges tested.

Log Likelihood and EM on Synthetic Data. We
defer details to a longer version of the paper, but we
note that our sampling methods provide excellent ap-
proximations of the log likelihood, and EM success-
fully reconstructs artificially generated mixtures, using
pairwise preferences as data.

Sushi. The Sushi dataset consists of 5000 full rankings
over 10 varieties of sushi indicating sushi preferences
(Kamishima et al., 2005). We used 3500 preferences

for training and 1500 for validation. We ran EM ex-
periments by generating revealed paired comparisons
for training with various probabilities . To mitigate
issues with local maxima, we ran EM ten times (more
than is necessary) for each instance. Fig. 2 shows
that that, even without full preferences, EM learns
well even with only 30-50% of all paired comparisons,
though it degrades significantly at 20%, in part be-
cause only 10 items are ranked (still performance at
20% is good when K = 1,2). With K = 6 components,
a good fit is found when training on full preferences:
Fig. 2 shows the learned clusters (all with reason-
ably low dispersion), illustrating interesting patterns
(e.g., fatty tuna is strongly preferred by all but one
group; a strong correlation exists across groups in pref-
erence/dispreference for salmon roe and sea urchin,
which are “atypical fish”; and cucumber roll is con-
sistently dispreferred).

Movielens. We applied our EM algorithm to a sub-
set of the Movielens dataset (see wuw.grouplens.org) to
find “preference types” across users. We used the 200
(out of roughly 3900) most frequently rated movies,
and used the ratings of the 5980 users (out of roughly
6000) who rated at least one of these. Integer ratings
from 1 to 5 were converted to pairwise preferences in
the obvious way (for ties, no preference was added to
v). 3986 preferences were used for training and 1994
for validation. We ran EM with number of compo-
nents K = 1,...,20; for each K we ran EM 20 times
to mitigate the impact of local maxima (a lot more
than necessary). For each K, we evaluated average
log likelihood of the best run on the validation set to
select K. Log likelihoods were approximated using our
Monte Carlo estimates (with K - T = 120). The C++
implementation of our algorithms gave EM wall clock
times of 15-20 minutes (Intel Xeon dual-core, 3GHz),
certainly practical for a data set of this size. Log like-
lihood results are shown in Fig. 2 as a function of the
number of mixture components. This suggests that
the best component sizes are K = 10 and K = 5 on
the validation set. (The longer version of the paper
details the top 20 movies in each component.)

6. Concluding Remarks

We have developed a set of algorithms to support the
efficient and effective learning of ranking or prefer-
ence distributions when observed data comprise a set
of unrestricted pairwise comparisons of items. Given
the fundamental nature of pairwise comparisons in re-
vealed preference, our methods extend the reach of
rank learning in a vital way. Our main technical con-
tribution, the GRIM algorithm, allows sampling of ar-
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7o = 0.17 71 = 0.15 7 = 0.17

$o = 0.66 ¢$1 = 0.74 ¢o = 0.61

fatty tuna shrimp sea urchin

salmon roe sea eel fatty tuna

tuna squid sea eel 136
sea eel egg salmon roe

tuna roll fatty tuna shrimp -18.7
shrimp tuna tuna 18
egg tuna roll squid

squid cucumber roll tuna roll L 139
cucumber roll salmon roe egg 8
sea urchin sea urchin cucumber roll g ™
m3 = 0.18 74 = 0.16 75 = 0.18 S
@3 = 0.64 $q = 0.61 ¢5 = 0.62 @
fatty tuna fatty tuna fatty tuna 1“2
tuna sea urchin sea urchin 143
shrimp tuna salmon roe

tuna roll salmon roe shrimp -144
squid sea eel tuna

sea eel tuna roll squid 0
egg shrimp tuna roll

cucumber roll squid sea eel

salmon roe egg egg

sea urchin cucumber roll cucumber roll

avg log likelihood

alpha=1.0 508
—+— alpha=0.5
—o— alpha=0.4 -51

= = —train

—— alpha=03 i

—»— alpha=0.2 =512 1 validation
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#components #oomponents

Fig. 2: The table shows the learned clusters for sushi with e = 1. Left plot shows sushi avg. validation log likelihoods
on various learned models (w.r.t. K) on various . Right plot is for Movielens showing log likelihoods of various learned

models (w.r.t. K).

bitrary distributions, including Mallows models condi-
tioned on pairwise data. It supports a tractable ap-
proximation to the #P-hard problem of log likelihood
evaluation of Mallows mixtures; and it forms the heart
of an EM algorithm that was shown to be quite effec-
tive in our experiments. GRIM can also be used for
non-parametric estimation.

We are pursuing a number of interesting directions,
including various extensions and applications of the
model developed here. Extensions include exploring
other probabilistic models of incomplete preferences
that employ different distributions over rankings such
as Plackett-Luce or weighted Mallows, or that account
for noisy comparison data from users. In another vein,
we are interested in exploiting learned preference mod-
els of the type developed here for decision-theoretic
tasks in social choice or personalized recommendation.
Learned preferences can be leveraged in both active
preference elicitation (e.g., in social choice or group
decision making (Lu & Boutilier, 2011)), or in passive
(purely observational) settings. It would also be inter-
esting to apply GRIM to other posterior distributions
such as energy models, and to compare it to different
MCMC techniques like chain flipping.
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