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A. MODEL OF RANDOM DISCOUNT MATCHING INSTANCES
This appendix describes the model of random discount matching instances generated for the
experiments in Sec. 7. While this model may not be realistic in some ways, it represents what
the authors believe to be plausible.

Product (Vendor) Model
The key idea here is that different vendors will offer goods of varying “quality”, where quality
can vary on several different attributes (including the special case of one quality measure). We
use two attributes.

• For each vendor j, draw random quality Qa ∼ Beta(4, 4) for each attribute a.
• Let overall quality Qj for vendor j be f(Qa1 , Qa2 , ...) = 20

�
a Qa.

• Set the initial price p0j = Qj + ε, where ε ∼ N (0, 0.05Qj) is a small noise parameter

Discount Model
We keep the discount level to be fixed at 4 (including the default base threshold) for the exper-
iments, although a straightforward extension of the description below can allow for arbitrary
discount levels.

• Draw first discount percentage d1 from the multinomial [5% 0.2; 10% 0.6; 15% 0.2] then set the
discounted price p1j = (100− d1)% of p0j .

• Draw discount percentage d2 from multinomial [5% 0.25; 10% 0.5; 15% 0.25] then set the dis-
count price p2j = (100− d1 − d2)% of p0j .

• Draw discount percentage d3 from multinomial [5% 0.15; 10% 0.5; 15% 0.35] then set the dis-
count price p3j = (100− d1 − d2 − d3)% of p0j

To set the discount threshold, we note that each vendor would expect roughly |M |/|N | buyers
(ignoring variation in preferences, product quality, etc.) So we set thresholds according to the
fraction of this expectation. First let ε ∼ N (0, 0.02|M |/|N |).

• Set first threshold τ1
j = 0.75|M |/|N |+ ε.

• Set second threshold τ2
j = τ1

j + 0.5|M |/|N |+ ε.
• Set third threshold τ3

j = τ2
j + 0.75|M |/|N |+ ε.

User Preference Models
The basic intuition here is that different users care about different quality attributes, and that
they may also care about the “brand” (vendor identity) independent of attributes, and that they
may be more or less be price sensitive. So we might have some consumers that care mostly about
price (care very little for quality); some who care mostly for specific attributes (possibly including
brand), so are more price insensitive; and users who lie somewhere in between. Note: some
consumers are clearly “discount” sensitive, and are inherently attracted to the discount level
itself, but we do not model this. We will ignore price sensitivity, and instead focus on inherent
preference.
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Suppose that there are k quality attributes. Each user i has an inherent utility for a vendor j
on a [0, 1] scale generated by an additive utility function (leaving out i superscripts):

�
k�

�=1

w�a�j

�
+ wb · BrandValueij

where attribute/quality levels are normalized on a [0, 1] scale (best value set to one, worst value
set to zero), weights w1, w2, ...wk plus brand weight wb sum to one, and BrandValueij represents
a component of a local value function over brands specific to buyer i.

We draw weights (including brand values) uniformly at random from [0, 1] and normalize their
sum to one. Users who are more brand sensitive (with high wb) are likely skewed toward specific
brands, hence the local value function should reflect this. Generally speaking such users will
have more brand loyalty to higher quality products. However, we will ignore this for now.

We now have a utility for each vendor j on a [0, 1] scale. We translate this to the willingness-
to-pay as follows:

• Let j∗ be most preferred product for buyer i: set willingness-to-pay for j∗ to be vij∗ = p0j∗ + εj∗ ,
where εj∗ ∼ N (0.5p0j∗/2, 0.1p

0
j∗). The intuition here is that i is willing to pay roughly 50% more

than j∗’s undiscounted base price, but with some (high) variance.
• Let j� be least preferred product for buyer i: set willingness-to-pay for j̃ to be vij� = p0j� + εj� ,

where εj� ∼ N (0.15p0j� , 0.1p
0
j�). Again the intuition is that i is willing to pay roughly 15% less

than j�’s undiscounted base price, but with some high variance.
• Then set the willingness-to-pay for all other products to be proportional to their utility in the

range [vij� , vij∗ ].

B. PROOFS
PROOF OF THEOREM 4.2. We can reduce the optimal allocation problem given threshold val-

ues to an instance of the minimum-cost maximum-flow problem. Construct a network consisting
of a source node s and sink node t. Let nodes a1, . . . , an represent buyers and add arcs (s, ai)
with capacity 1 and zero cost. Include nodes r1, . . . , rm, and r�1, . . . , r

�
m and x. For all i, j, add arcs

(ai, rj) and (ai, r
�
j), each with capacity 1 and cost L − (vij − pj), where L is the largest buyer

valuation. Also add arcs (ai, x) with capacity 1 and cost L. Flow from ai to rj represents an as-
signment of buyer i to vendor j s.t. i is one of the buyers needed to meet threshold τj ; and flow
from ai to r�j represents the assignment of i to j, but where i’s demand is considered in excess of
τj . Flow on arcs to x represents unassigned buyers.

For each node rj , there must be at most τj buyers assigned to it. We enforce this by adding
arcs (rj , t) with capacity τj and zero cost. There must be, in total, n−τ1−· · ·−τm buyers assigned
to the “excess” nodes r�j and x. We add a node e with arcs (r�j , e) for j ∈ M , and arc (x, e), each
with infinite capacity and zero cost, and arc (e, t) with capacity n− τ1 − · · ·− τm and zero cost.

A maximum flow of n can be achieved by routing the first τ1+· · ·+τm buyers to the rj ’s subject
to capacity constraints, and remaining buyers to x. Recall the assignment of buyer i to vendor
j corresponds to (integer) flows from ai to either rj or r�j . In any max flow, there must be total
flow of τj to rj ; otherwise total flow to the rj ’s is less than τ1 + · · · + τm, hence total flow to t is
less than n given the capacity of arc (e, t). This also means a max flow must reach full capacity
at (e, t).

Because the cost of arcs (ai, rj), (ai, r
�
j), and (ai, x) is proportional to the negative surplus

of buyer i when assigned to vendor j at price pj(τj), the SWM matching (fixing threshold re-
quirements) corresponds to an integer optimal min-cost max-flow solution where flows on the
aforementioned arcs correspond to matchings. Standard results for the min-cost max-flow prob-
lem state that there is always an optimal integer flow, which can be found in polynomial time
using, e.g., a modification of the Ford-Fulkerson algorithm.

PROOF OF THEOREM 4.3. The problem is in NP, since computing SW (µ) for a given match-
ing µ is straightforward. For hardness, consider a reduction from the Knapsack problem where
given integer capacity C, integer item weights {w1, . . . , wT } and values {v1, . . . , vT }, and a num-
ber y ≥ 0, we wish to determine whether there exists a subset of items S ⊆ {1, . . . , T} such that�

i∈S vi ≥ y and
�

i∈S wi ≤ C. In the reduction, construct:



• T vendors each with one threshold level, i.e. D = 1. They have thresholds τ0
i = 0, τ1

i = wi with
corresponding prices p0i = vi, p1i = 0.

• n = C buyers z1, . . . , zn each of whom have zero valuation for all vendors, and
• T additional buyers s1, . . . , sT where vsi(i) = vi and vsi(j) = 0 for all i, j ∈ {1, . . . , T}, i �= j.
• Set x = y.
Suppose we have a “yes” instance of Knapsack, and that S is the set of feasible items such that
its total value exceeds y. In the corresponding segmentation problem, we can allocate τ2

i of the
z buyers, and an additional buyer si to each vendor i ∈ S. In such an allocation each vendor in
S will set prices to zero. User si, i ∈ S, will obtain a payoff of vi by being assigned to i. Thus the
allocation has a payoff of

�
i∈S vi which is at least x (= y).

Suppose we have a “no” instance of Knapsack. Consider any allocation µ of buyers to vendors.
For any vendor i in which the threshold τ1

i is not met, then the payoff of any buyer assigned
to i cannot be positive. Consider the set S of vendors with at least τ1

i assigned buyers. Then
the payoff at any vendor i ∈ S is at most vi because si has valuation vi and all other buyers
have zero valuation, while price of any vendor is zero. Thus the payoff of µ is at most

�
i∈S vi

which is strictly less than x, otherwise the corresponding item set S for Knapsack would be a
feasible “yes” solution (since the number of buyers allocated to vendors in S satisfies

�
i∈S τ1

i =�
i∈S wi ≤ n = C which is impossible by assumption).


