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Abstract. A variety of preference aggregation schemes and voting rules have
been developed in social choice to support group decision making. However, the
requirement that participants provide full preference information in the form of
a complete ranking of alternatives is a severe impediment to their practical de-
ployment. Only recently have incremental elicitation schemes been proposed that
allow winners to be determined with partial preferences; however, while minimiz-
ing the amount of information provided, these tend to require repeated rounds of
interaction from participants. We propose a probabilistic analysis of vote elicita-
tion that combines the advantages of incremental elicitation schemes—namely,
minimizing the amount of information revealed—with those of full information
schemes—single (or few) rounds of elicitation. We exploit distributional models
of preferences to derive the ideal ranking threshold k, or number of top candidates
each voter should provide, to ensure that either a winning or a high quality can-
didate (as measured by max regret) can be found with high probability. Our main
contribution is a general empirical methodology, which uses preference profile
samples to determine the ideal ranking threshold for many common voting rules.
We develop probably approximately correct (PAC) sample complexity results for
one-round protocols with any voting rule and demonstrate the efficacy of our
approach empirically on one-round protocols with Borda scoring.
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1 Introduction

Researchers in computer science have increasingly adopted preference aggregation meth-
ods from social choice, typically in the form of voting rules, for problems where a
consensus decision or recommendation must be made for a group of users. The avail-
ability of abundant preference data afforded by search engines, recommender systems,
and related artifacts, has accelerated the need for good computational approaches to
social choice. One problem that has received little attention, however, is that of effec-
tive preference elicitation in social choice. Many voting schemes require users or voters
to express their preferences over the entire space of options or alternatives, something
that is not only onerous, but often extracts more information than is strictly necessary
to determine a good consensus option, or winner. Reducing the amount of preference



information elicited is critical to easing cognitive and communication demands on users
and mitigating privacy concerns.

Winners can’t be determined in many voting schemes without a large amount of in-
formation in the worst case [2, 3]. Nonetheless, the development of elicitation schemes
that work well in practice has been addressed very recently. Lu and Boutilier [10] use
the notion of minimax regret for vote elicitation: this measure not only allows one to
compute worst-case bounds on the quality of a proposed winner given partial voter pref-
erences, it can also be used to drive incremental elicitation. Kalech et al. [6] develop
several heuristic strategies for vote elicitation, including one scheme that proceeds in
rounds in which voters provide larger “chunks” of information. This offers an advantage
over the Lu-Boutilier schemes, where each voter query is conditioned on all previous
responses of the other voters. Unfortunately, Kalech et. al’s approach does not admit
approximation (with quality guarantees), and no principles are provided to select an
appropriate chunk size.

In this work, we develop an approach to vote elicitation that exploits distributional
information over voter preferences to simultaneously reduce the amount of information
elicited from voters and the number of rounds (a notion defined formally below) of elic-
itation. Indeed, these factors can be explicitly traded off against one another. Our model
also supports approximation, using minimax regret, to further minimize the amount of
information elicited, the number of rounds, or both. In this way, we provide the first
framework that allows the design of vote elicitation schemes that address the compli-
cated three-way tradeoff between approximation quality, total information elicited, and
the number of rounds of elicitation.

Developing analytical bounds depends, of course, on the specific distributional as-
sumptions about the preferences and the voting rule in question. While we make some
suggestions regarding the types of results one might derive along these lines, our pri-
mary contribution is an empirical methodology that allows a designer to assess these
tradeoffs and design elicitation schemes for any preference distribution, and any voting
rule that can be interpreted using some form of scoring. To illustrate the use of both our
general elicitation framework and our empirical methodology, we analyze one-round
vote elicitation protocols. We develop general PAC sample complexity bounds for such
one-round protocols. We then analyze these protocols empirically using Mallows mod-
els of preferences distributions [11, 12] and Borda scoring as the voting protocol. Our
results suggest that good, even optimal, results can be obtained in one-round protocols
even when only a small portion of the preferences of the voters is elicited.

2 Background

We begin with a brief overview of relevant background on social choice, vote elicitation,
and preference distributions.

2.1 Voting Rules

We first define our basic social choice setting (see [5, 1] for further background). We
assume a set of agents (or voters) N = {1, . . . , n} and a set of alternatives A =



{a1, . . . , am}. Alternatives can represent any outcome space over which the voters have
preferences (e.g., product configurations, restaurant dishes, candidates for office, public
projects, etc.) and for which a single collective choice must be made. Let ΓA be the
set of rankings (or votes) over A (i.e., permutations over A). Voter `’s preferences are
represented by a ranking v` ∈ ΓA. Let v`(a) denote the rank of a in v`. Then ` prefers
ai to aj , denoted ai �v` aj , if v`(ai) < v`(aj). We refer to a collection of votes
v = 〈v1, . . . , vn〉 ∈ ΓnA as a preference profile. Let V be the set of all such profiles.

Given a preference profile, we consider the problem of selecting a consensus al-
ternative, requiring the design of a social choice function or voting rule r : V → A
which selects a “winner” given voter rankings/votes. Plurality is one of the most com-
mon rules: the alternative with the greatest number of “first place votes” wins (vari-
ous tie-breaking schemes can be adopted). Plurality does not require that voters pro-
vide rankings; however, this “elicitation advantage” means that it fails to account for
relative voter preferences for any alternative other than its top choice. Other schemes
produce winners that are more sensitive to relative preferences, among them, the Borda
rule, Copeland, single-transferable vote (STV), the Kemeny consensus, maximin, Buck-
lin, and many others. We outline the Borda rule since we use it extensively below: let
B(i) = m− i be the Borda score for each rank position i; the Borda count or score of
alternative a given profile v, is sB(a,v) =

∑
`B(v`(a)). The winner is the a with the

greatest Borda score.
Notice that both the Borda and plurality schemes explicitly scores all alternatives

given voter preferences, implicitly defining “societal utility” for each alternative. In-
deed, many (though not all) voting rules r can be interpreted as maximizing a “natural”
scoring function s(a,v) that defines some measure of the quality of an alternative a
given a profile v. We assume in what follows that our voting rules are score-consistent
in this sense: r(v) ∈ argmaxa∈A s(a,v). some “natural” scoring function s(a,v).1

2.2 Vote Elicitation

One obstacle to the widespread use of voting schemes that require full rankings is the
informational and cognitive burden imposed on voters, and concomitant ballot com-
plexity. Elicitation of sufficient, but still partial information about voter rankings could
alleviate some of these concerns. We will assume in what follows that the partial infor-
mation about any voter’s ranking can be represented as a collection of pairwise com-
parisons. Specifically, let the partial vote p` of voter ` be a partial order over A, or
equivalently (the transitive closure of) a collection of pairwise comparisons of the form
ai � aj . Let p denote a partial profile, and C(p) the set of consistent extensions of p
to full ranking profiles. Let P denote the set of partial profiles.

If our aim is to determine the winner given a partial profile, theoretical worst-case
results are generally discouraging, with the communication complexity of several com-
mon voting protocols (e.g., Borda) beingΘ(nm logm), essentially requiring communi-
cation of full voter preferences in the worst-case [3]. Despite its theoretical complexity,
practical schemes for elicitation have been developed recently.

1 We emphasize that natural measures of quality are the norm; trivially, any rule can be defined
as score consistent using a simple indicator function.



Lu and Boutilier [10] use minimax regret (MMR) to determine winners given partial
profiles, and also to guide elicitation. Intuitively, one measures the quality of a proposed
winner a given p by considering how far from optimal a could be in the worst case,
given any completion of p; this is a’s maximum regret MR(a,p). The minimax optimal
solution is any alternative that is nearest to optimal in the worst case, i.e., with minimum
max (minimax) regret. More formally:

Regret(a,v) = max
a′∈A

s(a′,v)− s(a,v) = s(r(v),v)− s(a,v) (1)

MR(a,p) = max
v∈C(p)

Regret(a,v) (2)

MMR(p) = min
a∈A

MR(a,p) ; a∗p ∈ argmin
a∈A

MR(a,p) . (3)

This gives us a form of robustness in the face of vote uncertainty: every alternative has
worst-case error at least as great as that of a∗p. Notice that if MMR(p) = 0, then the
minimax winner a∗p is optimal in any completion v ∈ C(p). MMR can be computed in
polytime for several common voting rules, including Borda [10].

MMR can also be used to determine (pairwise or top-k) queries that quickly reduce
minimax regret; indeed, in a variety of domains, regret-based elicitation finds (optimal)
winners with small amounts of voter preference information, and can find near-optimal
candidates (with bounded maximum regret) with even less. However, these elicitation
methods implicitly condition the choice of a voter-query pair on all past responses.
Specifically, the choice any query is determined by first solving the minimax regret
optimization (Eq. (3)) w.r.t. the responses to all prior queries. Hence each query must
be posed in a separate round, making it impossible to “batch” multiple queries for a
specific user.

Kalech et al. [6] develop two elicitation algorithms for winner determination with
score-based rules (e.g., Borda, range voting) in which voters are asked for kth-ranked
candidates in decreasing order of k. Their first method proceeds in fine-grained rounds
much like the MMR-approach above, until a necessary winner [8, 16] is discovered.
Their second method proceeds for a predetermined number of rounds, asking each voter
at each stage for fixed number of positional rankings (e.g., the top k candidates, or the
next k′ candidates, etc.). Since termination is predetermined, necessary winners may not
be discovered; instead possible winners are returned. Tradeoffs between the number of
rounds and amount of information per round are explored empirically. One especially
attractive feature of this approach is the explicit batching of queries: voters are only
queried a fixed (ideally small) number of times (though each query may request a lot
of information), thus minimizing interruption, waiting time, etc. However, no quality
guarantees are provided, nor is a theoretical basis provided for selecting the amount of
information requested at any round.

2.3 Probabilistic Models of Population Preferences

Probabilistic analysis in social choice has often focused on the impartial culture model,
which asserts that all preference orderings are equally likely. However, the plausibil-
ity of this assumption, and the relevance of theoretical results based on it, have been
seriously called into question by behavioral social choice theorists [14]. More realis-
tic probabilistic models of preferences, or parameterized families of distributions over



rankings, have been proposed in statistics, econometrics and psychometrics. These
models typically reflect some process by which people rank, judge or compare alter-
natives. Many models are unimodal, based on a “reference ranking” from which user
rankings are seen as noisy perturbations. A commonly used model, adopted widely in
machine learning—and one we exploit below—is the Mallows φ-model [11]. It is pa-
rameterized by a modal or reference ranking σ and a dispersion parameter φ ∈ (0, 1];
and for any ranking r we define: P (r;σ, φ) = 1

Zφ
d(r,σ), where d is the Kendall-tau dis-

tance andZ is a normalization constant. When φ = 1 we obtain the uniform distribution
over rankings, and as φ→ 0 we approach the distribution that concentrates all mass on
σ. A variety of other models have been proposed that reflect different interpretations of
the ranking process (e.g., Plackett-Luce, Bradley-Terry, Thurstonian, etc.); we refer to
[12] for a comprehensive treatment. Mixtures of such models, which offer additional
modeling flexibility (e.g., by admitting multimodal preference distributions), have also
been investigated (e.g., [13, 9]).

Sampling rankings from specific families of distributions is an important task that
we also rely on below. The repeated insertion model (RIM), introduced by Doignon et
al. [4], is a generative process that can be used to sample from certain distributions over
rankings and provides a practical way to sample from a Mallows model. A variant of
this model, known as the generalized repeated inseartion model (GRIM), offers more
flexibility, including the ability to sample from conditional Mallows models [9].

3 A Regret-based Model of Probabilistic Vote Elicitation

We begin by developing a general model of vote elicitation that allows one to make
explicit tradeoffs between the number of rounds of elicitation, the amount of informa-
tion provided by each voter, and approximation quality. Let a query refer to a “single”
request for information from a voter. Types of queries include simple pairwise compar-
isons (e.g., “Do you prefer a to b?”); sets of such comparisons; more involved partial
requests (e.g., “Who are your top k candidates?”); or requests for entire rankings. Dif-
ferent queries have different “costs”—both in terms of voter cognitive effort and com-
munication costs (which range from 1 to roughly m logm bits)—and provide varying
degrees of information.

Given a particular class of queries Q, informally, a multi-round voting protocol
selects, at each round, a subset of voters, and one query per selected voter. The voter-
query (VQ) pairs selected at round t can be conditioned on the responses to all previous
queries. More formally, let It−1 be the information set available at round t (i.e., re-
sponses to queries at rounds 1, . . . , t− 1). We represent this information set as a partial
profile pt−1, or a set of pairwise comparisons for each voter.2 A protocol then consists
of: (a) a querying function π, i.e., a sequence of mappings πt : P 7→ (N 7→ Q ∪ {0}),
selecting for each voter a single query at stage t given the current information set; and
(b) a winner selection function ω : P 7→ A ∪ {0}, where ω(p) denotes the winner

2 Most natural constraints, including responses to many natural queries (e.g., pairwise compar-
ison, top-k, etc.), can be represented in this way. One exception: arbitrary positional queries
of the form “what candidate is in rank position k?” induce disjunctive constraints, unless po-
sitions k are queried in (ascending or descending) order.



given partial profile p. If ω(pt) = 0, no winner is declared and the protocol proceeds
to round t + 1; otherwise the protocol terminates with the chosen winner at round t. If
πt(pt−1)(`) = 0, then no query is posed to voter ` at round t.

Suppose we have a distribution P over complete voter profiles. Given a protocol
Π = (π, ω), we have an induced distribution over runs of Π , which in turn gives us a
distribution over various properties reflecting the cost and performance of Π . There are
three general properties of interest to us:

(a) Quality of the winner: if Π terminates with information set p and winner a, we can
measure quality using either expected regret,

∑
v Regret(a,v)P (v|p), or maxi-

mum regret, MR(a,p). If Π is an exact protocol (always determining a true win-
ner), both measures will be zero. We focus here on max regret, which provides
worst-case guarantees on winner quality. In some settings, expected regret might
be more suitable.

(b) Amount of information elicited: this can be measured in various ways (e.g., equiv-
alent number of pairwise comparisons or bits).

(c) Number of rounds of elicitation.

There is a clear tradeoff between these factors. A greater degree of approximation in
winner selection can be used to reduce informational requirements, rounds, or both [10].
For any fixed quality threshold, the number of rounds and the amount of information
elicited can also be traded off against one another. At one extreme, optimal outcomes
can clearly be found in one round if we ask each voter for full rankings. At the other
extreme, optimal policies minimizing expected elicited information can always be con-
structed (though this will likely come at great computational expense) by selecting a
single VQ-pair at each round, where each query carries very little information (e.g., a
simple pairwise comparison), at a dramatic cost in terms of number of rounds. How one
addresses these tradeoffs depends on the costs associated with each of these factors. For
example, the cost of elicited information might reflect the number and type of queries
asked of voters, while the cost associated with rounds might reflect interruption and
delay experienced by voters as they “wait” for other voters to answer queries before
receiving their own next query.3

Computing optimal protocols for specific voting rules, query classes, distributions
over preferences, and cost models is a very important problem that can be addressed
explicitly using our framework. The framework supports both Bayesian and PAC-style
(probably approximately correct) analysis. We illustrate its use by considering a specific
type of protocol using a PAC-style analysis in the next section.

4 Probably Approximately Correct One-round Protocols

Imagine we require a one-round protocol, where each voter can be asked, exactly once,
to list their top-k candidates. A natural question is: what is the minimum value k∗ for

3 We’re being somewhat informal, since some voters may only be queried at subset of the rounds.
If a (conditional) sequence of queries is asked of a single voter ` without any interleaving
queries to another voter j, we might count this as a single “session” or round for `. These
distinctions won’t be important in what follows.



which such top-k queries ensure that the resulting profile p has low minimax regret,
MMR(p) ≤ ε, with high probability, at least 1 − δ? We call ε and δ the minimax
regret accuracy and confidence parameters, respectively. Obviously, such a k∗ exists:
with k = m − 1, we elicit each voter’s full ranking, always ensuring MMR(p) = 0.
This question is of interest when, for example, more than one round of elicitation is
infeasible or very costly, an approximate solution (with tolerance ε) is suitable, and
some small probability δ of a poor solution is acceptable.

Let p[k] denote the restriction of profile v = (v1, . . . , vn) to the subrankings con-
sisting of each voter’s top k candidates. For any distribution P over voter preferences
v, MMR(p[k]) is a random variable. Let qk = P (MMR(p[k]) ≤ ε). We would like to
find k∗ = min{k : qk ≥ 1 − δ}. Even if we assume P has a particular form, comput-
ing k∗ might be analytically intractable; or the analytically derived upper bounds may
too loose to be of practical use. If one can instead sample vote profiles from the true
distribution—without necessarily knowing what P is—a simple empirical methodology
can be used to determine a small k̂ that, with high probability, has the desired MMR
accuracy with near the desired MMR confidence (see Theorem 1 below). Specifically,
we take the following steps:

(a) Specify the following parameters: MMR accuracy ε > 0, MMR confidence δ > 0,
sampling accuracy ξ > 0, and sampling confidence η > 0.

(b) Obtain t i.i.d. samples of vote profiles S = (v1, . . . ,vt) where

t ≥ 1

2ξ2
ln

2(m− 2)

η
. (4)

(c) Output k̂, the smallest k for which

q̂k ≡
|{i ≤ t : MMR(pi[k]) ≤ ε}|

t
> 1− δ − ξ .

The parameters ξ and η are required to account for sampling randomness, and are incor-
porated as part of the statistical guarantee on the algorithm’s success (see Theorem 1).
In summary, the approach is to estimate qk (which is usually intractable to derive ana-
lytically) using q̂k, and take the smallest k̂ that, accounting for sampling error, is highly
likely to have the true probability, qk̂, lie close to the desired MMR confidence threshold
1− δ. The larger the sample size t, the better the estimates, resulting in smaller ξ and η.
Using a sample set specified as in the algorithm, one can obtain a PAC-style guarantee
[15] on the quality of one-round, top-k̂ elicitation:

Theorem 1. Let ε, δ, η, ξ > 0. If the sample size t satisfies Eq. (4), then for any pref-
erence profile distribution P , with probability 1 − η over i.i.d. samples v1, . . . ,vt, we
have: (a) k̂ ≤ k∗; and (b) P [MMR(p[k̂]) ≤ ε] > 1− δ − 2ξ .

Proof. For any k ≤ m − 2 (for k = 0, minimax regret is n(m − 1) and for k ≥
m−1 minimax regret is 0, so we are not interested in these cases), the indicator random
variables 1[MMR(pi[k]) ≤ ε] for i ≤ t are i.i.d. By the Hoeffding bound, we have

Pr
S∼P t

[|q̂k − qk| ≥ ξ] ≤ 2 exp(−2ξ2t).



If we choose t such that η
m−2 ≤ 2 exp(−2ξ2t) we obtain Inequality (4) and

Pr
S∼P t

(
(|q̂1 − q1| ≤ ξ) ∧ (|q̂2 − q2| ≤ ξ) ∧ . . . ∧ (|q̂m−2 − qm−2| ≤ ξ)

)
= 1− Pr

S∼P t

[
m−2⋃
k=1

|q̂k − qk| > ξ

]
≥ 1− (m− 2) · η

m− 2
(5)

= 1− η,

where Inequality (5) follows from the union bound. Thus with probability at least 1−η,
uniform convergence holds, and we have q̂k∗ > qk∗ − ξ > 1 − δ − ξ. Since k̂ is
the smallest k with q̂k > 1 − δ − ξ we have k̂ ≤ k∗. Furthermore, qk̂ > q̂k̂ − ξ >
(1− δ − ξ)− ξ = 1− δ − 2ξ, which shows part (2). �

We note several significant features of this result. First, it is distribution-independent—
we need t i.i.d. samples from P , where t depends only on ξ, η and m, and not on any
property of P . Of course, depending on the nature of the distribution, the required sam-
ple size may be larger than necessary (e.g., if P is highly concentrated). Second, note
that an algorithm that outputs k = m − 1 guarantees MMR = 0, but is effectively
useless to the elicitor; hence we desire an algorithm that proposes a k that is not much
larger than the optimal k∗. Our scheme guarantees k̂ ≤ k∗. Third, while the true prob-
ability qk̂ of the estimated k̂ satisfying the regret accuracy requirement may not meet
the confidence threshold, it lies within some small tolerance of that threshold. This is
unavoidable in general. For instance, if we have qk∗ = 1 − δ, there is potentially a
significant probability that q̂k∗ < 1− δ for any finite sample; but our result ensures that
there is only a small probability that q̂k∗ < 1 − δ − ξ. Fourth, part (b) of Theorem 1
remains valid if the sum δ + ξ is fixed (and in some sense, this sum can be interpreted
as our ultimate confidence); but variation in δ and ξ does impact sample size (and part
(a)). One can reduce the required sample size by making ξ larger and reducing δ cor-
respondingly, maintaining the same “total” degree of confidence, but the guarantee in
part (a) becomes weaker since k∗ generally increases as δ decreases. This is a subtle
tradeoff that should be accounted for in the design of an elicitation protocol.

We can provide no a priori guarantees on how small k∗ might be, since this depends
crucially on properties of the distribution; in fact, it might be quite large (relative to m)
for, say, the impartial culture model (as we see below). But our theorem provides a
guarantee on the size of k̂ w.r.t. the optimal k∗.

An analogous result can easily be obtained if one is interested in determining the
smallest k for a one-round protocol that has small expected MMR. However, using ex-
pectation does not preclude MMR from being greater than a desired threshold with
significant probability. Hence, expected MMR may be ill-suited to choosing k in many
voting settings. The techniques above can also be used in a Bayesian fashion, where
instead of using minimax regret to determine robust winners, one uses expected regret
(i.e., expected loss relative to the optimal candidate given uncertainty over completions
the partial profile). We defer treatment of expected regret to another article.

Our empirical methodology can also be used in a more heuristic fashion, without
derivation of precise confidence bounds. One can simply generate random profiles, use



the empirical distribution over MMR(p[k]) as an estimate of the true distribution, and
select the desired k based directly on properties of the empirical distribution (e.g., rep-
resented as histograms, as we illustrate in the next section).

Finally, we note that samples can be obtained in a variety of ways, e.g., drawn from
a learned preference model, such as a Mallows model or Mallows mixture (e.g., using
RIM), or simply obtained from historical problem instances. In multiround protocols,
the GRIM model can be used to realize conditional sampling if needed. Our empiri-
cal methodology is especially attractive when k∗ cannot easily be derived analytically
(which may well be the case for Mallows, Plackett-Luce, and other common models).

5 Empirical Results

To explore the effectiveness of our methodology, we ran a suite of experiments, sam-
pling voter preferences from Mallows models using a range of parameters, computing
minimax regret for each sampled profile for various k, and estimating both the expected
minimax regret and the MMR-distribution empirically. We also discuss experiments
with two real-world data sets. Borda scoring is used in all experiments.

For the Mallows experiments, a preference profile is constructed by drawing n i.i.d.
rankings, one per voter, from a fixed Mallows model. Each experiment varies the num-
ber of voters n, number of alternatives m, and dispersion φ, and uses 100 preference
profiles. We simulate the elicitation of top-k preferences and measure both MMR and
true regret (w.r.t. the true preferences and true winner) for k = 1, . . . ,m − 1; results
are “normalized” by reporting max regret and true regret per voter. Fig. 1 shows his-
tograms reflecting the empirical distribution of both MMR and true regret for various k,
φ, n, andm. That is, in each collection of histograms, as defined by particular (m,n, φ)
parameter values, we generated 100 instances of random preference profiles. For each
instance of a profile, and each k, we compute MMR of the partial votes when top-k
preferences are revealed in the profile—this represents one data point along the hori-
zontal axis, in the histogram corresponding to that particular k, and to parameters values
(m,n, φ). Note that (normalized) MMR per voter can range from 0 to 9 since we use
Borda scoring.

Clearly MMR is always zero when k = m − 1 = 9. For small φ (e.g., 0.1–0.4),
preferences across voters are reasonably similar, and values of k = 1–3 are usually
sufficient to find the true winner, or one with small max regret. But even with m = 10,
n = 100 and φ = 0.6, k = 4 results in a very good approximate winner: MMR ≤ 0.6
in 90/100 instances. Even the most difficult case for partial elicitation—the uniform
distribution with φ = 1—gives reasonable MMR guarantees with high probability with
less than full elicitation (k = 5–7, depending on one’s tolerance). The heuristic use
of the empirical distribution in this fashion is likely to suffice in practice in a variety
of settings; but we can apply the theoretical bounds above as well. Since we have a
t = 100 (admittedly a small sample), by Eq. (4), we can set η = 0.05 and ξ = 0.17,
and with δ = 0.9, ε = 0.5, we obtain k̂ = 4. By Theorem 1, we are guaranteed with
probability 0.95 that k̂ ≤ k∗ and qk̂ > 0.56. If we wanted qk̂ to be closer to 0.9, then
requiring t ≥ 28842 gives ξ = 0.01 and qk̂ > 0.88.
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Fig. 1: MMR plots for various φ, n and m: for m = 10, n = 100 with φ ∈ {0.1, 0.4, 0.6, 1.0}
and fixed φ = 0.6 with n ∈ {10, 1000}; m = 5, φ = 0.6; and m = 20, φ = 0.6. Each
histogram shows the distribution of MMR, normalized by n, after eliciting top-k.
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Fig. 2: The corresponding true regrets of experiments shown in Fig. 1.
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Fig. 3: Each plot corresponds to a summary of the experiments in Fig. 1, and shows the reduction
in regret (avg. normalized (per voter) MMR and true regret over all instances) as k increases.
Percentiles (.025, 0.05, 0.95, 0.975) for MMR are shown.
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Fig. 4: Results on sushi rankings and Irish voting data.

True regret (see Fig. 2) is even more illuminating: with φ = 0.6, the MMR so-
lution after only top-1 queries to each voter is nearly always the true winner; and
true regret never exceeds 2. Even for the uniform distribution with φ = 1, true re-
gret is surprisingly small: after top-2 queries, regret is less than 0.5 in 97/100 cases.
As we increase the number of voters n, the MMR distribution becomes more concen-
trated around the mean (e.g., n = 1000), and often resembles a Gaussian. Roughly,
this is because with Borda scoring, (normalized) MMR can be expressed as the av-
erage of independent functions of pi through pairwise max regret PMRi(a

∗
p, a
′) =

maxvi∈C(pi)B(vi(a
′))−B(vi(a

∗
p)), where a′ is the adversarial witness (see Eq. (1)).

Fig. 3 provides a summary of the above experiments, showing average MMR as a
function of k, along with average true regret and several percentile bounds. As above,
we see that a smaller φ requires a smaller k to guarantee low MMR. It also illustrates the
desirable anytime property of MMR: regret drops significantly with the “first few can-
didates” and levels off before reaching zero. For example, with m = 10, n = 100, φ =
0.6, top-3 queries reduce MMR to 0.8 per voter from the MMR of 9 obtained with no
queries; but an additional 3 candidates (i.e., top-6 queries) are needed to reduce regret
from 0.8 per voter to 0. If we fix φ = 0.6 and increase the number of candidates m, the
k required for small MMR decreases in relation to m: we see that for m = 5, 10, 20



we need top-k queries with k = 3, 6, 8, respectively, to reach MMR of zero. This is, of
course, specific to the Mallows model.

Fig. 4 show histograms on two real-world data sets: Sushi [7] (10 alternatives and
5000 rankings) and Dublin, voting data from the Dublin North constituency in 2002
(12 candidates and 3662 rankings).4 With Sushi, we divided the 5000 rankings into 50
voting profile instances, each with n = 100 rankings, and plotted MMR histograms
using the same protocol as in Fig. 1 and Fig. 2; similarly, Dublin was divided into
73 profiles each with n = 50. Sushi results suggest that with top-5 queries one can
usually find a necessary winner; but top-4 queries are usually enough to obtain low
MMR sufficient for such a low-stakes group decision (i.e., what sushi to order). True
regret histograms show the minimax solution is almost always the true winner. With
Dublin, top-5 queries virtually guarantee MMR of no more than 2 per voter; top-6,
MMR of 1 per voter; and top-7, MMR of 0.5 per voter. True regret plots show minimax
winner is either optimal or close to optimal in most profile instances.

6 Concluding Remarks

We have outlined a general framework for the design of multi-round elicitation proto-
cols that are sensitive to tradeoffs between number of rounds of elicitation imposed on
voters, the amount of information elicited per round, and the quality of the proposed
winner. Our framework is probabilistic, allowing one to account for realistic distribu-
tions of voter preferences and profiles. We have formulated a probabilistic method for
choosing the ideal threshold k for top-k elicitation in one-round protocols, and devel-
oped an empirical methodology that applies to any voting rule and any preference dis-
tribution. While the method can be used purely heuristically, our PAC-analysis provides
our methodology with statistical guarantees. Experiments on random Mallows models,
as well as real-world data sets (sushi preferences and Irish electoral data) demonstrate
the practical viability and advantages of our empirical approach.

There are numerous opportunities for future research. We have dealt mainly with
one-round elicitation of top-k candidates—developing algorithms for optimal multi-
round instantiations of our framework is an important next step. Critically, we must
deal with posterior distributions that are generally intractable, though GRIM-based
techniques [9] may help. We are also interested in more flexible query classes such
as batched pairwise comparisons. While the empirical framework is applicable to any
preference distribution, we still wish to analyze the performance on additional distribu-
tions, including more flexible mixture models. On the theoretical side, we expect our
PAC-analysis can be extended to different query classes and to multi-round protocols:
we expect that probabilistic bounds on the amount of information required (e.g., k∗

for top-k queries) will be significantly better than deterministic worst-case bounds [3]
assuming, for example, a Mallows model. Bayesian approaches that assess candidate
quality using expected regret rather than minimax regret are also of interest, especially
in lower-stakes settings. We expect that combining expected regret and minimax regret
might yield interesting solutions as well.

4 There are 43, 942 ballots; 3662 are complete. See www.dublincountyreturningofficer.com
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