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1 Introduction
The abundance of inexpensive preference data facilitated by
online commerce, search, recommender systems, and social
networks has the potential to stretch the boundaries of social
choice. Specifically, concepts and models usually applied to
high stakes domains such as political elections, public or cor-
porate policy decisions, and the like, will increasingly find
themselves used in the lower stakes, high-frequency domains
addressed by online systems.

Here are just two of many examples that are not typically
interpreted as social choice problems, but which in fact, can
profitably viewed as such. First, consider the (first page of)
results returned by your favorite search engine to a specific
query. While pure personalization, taking into account your
specific preferences for results, would be ideal, this is gen-
erally not possible because of data scarcity. Hence the small
amount of information known about your preferences is ag-
gregated with the (equally scarce) data about users similar to
you to determine the best results. This is a consensus de-
cision making problem, since a single set of results is con-
structed for a collection of users, each of whom may have
somewhat different preferences. Indeed, within the subfield
of rank learning within machine learning, the label ranking
paradigm [4] makes this assumption explicit. As a second ex-
ample, consider the problem of an online retailer determining
which subset of size k of potential products to offer to its tar-
get market. Ideally, the retailer would segment its audience
into k groups such that a single product would be desirable to
each member of the group [6]. Again, since a single choice is
being proposed for all members of the group, this is a social
choice problem [7].

Several factors make these and related problems both inter-
esting and rather novel from a social choice perspective. First,
the expression of complete preferences is wildly impractical:
users will simply not tolerate much in the way of elicitation;
and typically preferences will be estimated from choice be-
havior, partial ratings data, etc. Second, massive amounts
of such data will in fact make it feasible to learn quite com-
pelling probabilistic models of user preferences. Third, ap-
proximation will be an absolute necessity for several rea-
sons: the need for “nearly instantaneous” recommendations
will demand computational approximation; the incomplete-
ness of preference data will demand informational approxi-
mation; and finally, very clear (usually economic) tradeoffs

can be made that greatly facilitate the design of approxima-
tion methods (unlike, say, in political elections, where an “ap-
proximate winner” is unlikely to be viewed as satisfactory).

Issues of computational approximation have been stud-
ied extensively in social choice; informational approximation
(dealing with incomplete preferences) has been too (though
to a lesser extent); and probabilistic models have been used
in analysis.1 However, we feel the new demands of online
systems call for a different style of analysis of social choice
models and algorithms. Two key components lie at the heart
of our proposal for such analyses: (a) utility-theoretic approx-
imation, be it informational or computational; and (b) learn-
ing and exploiting probabilistic models of user preferences.
We outline four broad categories of research challenges based
on these components.

In what follows, we useA to denote a set of alternatives; U ,
a set of users or voters; v, a ranking, permutation, or vote over
A; V , the set of permutations; v, a profile with one (ranked)
vote per voter; and r a voting rule, with r(v) denoting the
selected alternative given v.

2 Learning Preferences
By a probabilistic model, we simply mean some distribution
P over the set of rankings (or preferences) V . We’ll discuss
below various ways to exploit probabilistic models of user
preferences when tackling various problems in social choice.
However, one first needs realistic models of user preferences
that support tractable inference and can be effectively learned
from readily available data. Analysis of voting schemes in so-
cial choice tends to focus on models such as impartial culture
which have little connection to reality in the settings men-
tioned above (or even in electoral data [11]).2

A number of models have been developed in economet-
rics, statistics and psychometrics that explicitly try to reflect
the processes by which human comparison judgements are
made, and are used to model population preferences. It is
impossible to do justice to this literature here [10], but sev-
eral of these models—especially the Mallows and Plackett-
Luce models—have been appropriated by the machine learn-

1In this short position paper, we unfortunately must exclude ref-
erences, even representative ones, on these topics.

2And even then, the questions addressed using such models tend
to be very different than those we outline below.



ing community under the guise of “learning to rank” (LeToR).
This has precipitated the development of many interesting
methods for tractable learning and probabilistic inference
with such models. This work is vitally important for the
application of computational social choice, and we believe
a rapprochement between the two disciplines is in order.

Of course, the flow works in both directions: the problems
that arise in social choice must influence the development of
new models and algorithms for learning and probabilistic in-
ference. As one example, most work in LeToR assumes that
observed rankings are noisy estimates of some underlying ob-
jective ranking (rather than representing genuinely distinct
preferences). Because of the types of data sets considered,
several important problems have gone unaddressed. For ex-
ample, learning Mallows models is widely considered to be
intractable with choice data consisting of pairwise compar-
isons of form ai � aj , obviously an important form of evi-
dence in any social choice problem. We’ve developed a new
model that allows Mallows models (and mixtures thereof) to
be effectively learned from such data [8]. At its heart is the
generalized repeated insertion model (GRIM), that that al-
lows approximate sampling of rankings conditioned on pair-
wise evidence.3 With several real-world data sets, we’ve
learned interesting population models with this technique.

Of course, this is just a start. More general models that
support effective inference and tractable learning are needed,
especially models that are tuned to the types of preference
distributions we expect to find in consensus decision making
domains. For example, realistic, tractable models for distri-
butions over single-peaked preferences seem largely to have
been unaddressed (and the “riffle independence” concept de-
veloped in ML may prove useful [3]).

3 Optimization
A second key issue is critical in the design of social choice
methods for online settings, centered on the notion of utility-
theoretic approximation of recommendations or “winners,”
especially when we have partial information about user pref-
erences. While incomplete preferences are studied in a vari-
ety of guises, little attention is paid to the question of how to
select a winner in such a situation.4 In recent work, we’ve
proposed using the notion of minimax regret (MMR) for just
this purpose [9].

Most voting rules can be defined using a natural scoring
function s(a,v) that measures the quality or utility of alterna-
tive a given profile v, i.e., r(v) ∈ argmaxa∈A s(a,v). Now
suppose we have access only to partial votes of some of the
voters; i.e., replace each vote v with a (possibly empty) par-
tial order p, or a collection of pairwise comparisons. Let p
denote this partial profile. How should one select a winner?
Intuitively, we measure the quality of a given p by consider-
ing how far from optimal a could be in the worst case (i.e.,
given any completion or extension v ∈ C(p) of p). The
minimax optimal solution is any alternative that is nearest to

3This generalizes the repeated insertion model [2] for uncondi-
tional Mallows sampling.

4Necessary and possible winners don’t actually prescribe general
methods for selection.

optimal in the worst case. More formally:

Regret(a,v) = maxa′∈As(a
′,v)− s(a,v)

MR(a,p) = maxv∈C(p)Regret(a,v)

MMR(p) = mina∈AMR(a,p)

a∗p ∈ argmin
a∈A

MR(a,p)

This is a natural robustness criterion: the minimax winner a∗p
provides us with the tightest possible bound on loss of “soci-
etal utility.” MMR can be computed in polytime for a variety
of voting rules, and can offer quite distinct recommendations
compared to selecting among possible winners [9].

One might consider minimax regret to be too pessimistic,
though we argue below that it is, in fact, a very effective
driver of vote elicitation/active learning. MMR also fails
to exploit distributional information P about voter prefer-
ences. With such a probabilistic model, one can instead se-
lect a winner by maximizing expected utility (MEU): a∗p =
argmax

∑
v P (v|p)s(a,v). The investigation of algorithms

for solving this computationally challenging problem for var-
ious combinations of voting rules and preference distributions
is, in our opinion, a vital direction.

Notice that MEU ensures (Bayesian) optimality in the pres-
ence of a partial profile, but provides no guidance w.r.t. po-
tential loss relative to choosing a winner with a complete pro-
file v. This stands in contrast to MMR, which tells us the
potential value of adding new evidence to complete the vote
profile. In the probabilistic case, expected regret is the most
natural measure of loss regarding a proposed alternative a:
ER(a,p) =

∑
v P (v|p)Regret(a,v).5 Notice, of course,

that the same alternative a∗p maximizes expected utility and
minimizes expected regret; but ER is much more informative
and useful for elicitation purposes.

4 Elicitation
Preference/vote elicitation is another critical process that has
received insufficient attention in social choice. By explic-
itly articulating a notion of “societal” utility, and developing
suitable probabilistic models, natural approaches to elicita-
tion emerge that exploit the optimization criteria discussed
above. Connections to active learning also become much
clearer when adopting this perspective.

Without a probabilistic model P , MMR is probably the
most natural criterion for robust selection of alternatives. But
if MMR is too great, the potential error associated with any
winner will be unacceptable. MMR can be reduced by ask-
ing some voter(s) some query(ies) about their preferences.
In [9] we developed elicitation schemes that exploit the cur-
rent solution to the minimax problem to determine appropri-
ate voter-query pairs: on both synthetic and real-world vot-
ing and preference data, these methods performed extremely
well, asking only a fraction of the queries that would be re-
quire to fully elicit voter rankings.6 This is true despite the
rather pessimistic worst-case results on the communication
complexity of many voting rules. MMR also provides strong,
distribution-free quality guarantees.

5See Smith [12] who uses score-based regret.
6See Kalech et al. [5] for an alternative approach to elicitation.



In the probabilistic case, expected regret is the appropriate
measure of loss, and optimal queries are those with maximum
expected value of information (EVOI). EVOI can be very dif-
ficult to compute in general, so again, as with MEU and ER
computation, interesting challenges lay ahead in the effec-
tive (possibly approximate) computation of EVOI for various
families of distributions and voting rules.

Interestingly, there are very useful ways of combining the
probabilistic and regret-based perspectives. One difficulty
with vote elicitation is that it is unrealistic to expect a fully
interactive approach: no user u will want to answer a query,
then wait for other users to answer their queries before the
system returns with the next query for u. There is a funda-
mental tradeoff between amount of information elicited and
the number of “query rounds” [5]. Probabilistic models can
be used to help batch queries to assess this tradeoff. For in-
stance, given a voting rule and a distribution, we may ask
about the impact of asking m random users a small set of
queries, e.g., “what are your top t alternatives?” For any t we
can assess the posterior distribution over either MMR or ER
to determine the depth t that makes the right tradeoff. That is,
for given voting rules and families of distributions, we’d like
effective techniques to compute, say, EP [MMR(p)|m, t],
where expectation is taken over possible responses to the top-
t queries fromm users. Alternatively, one might favor a PAC-
style analysis, deriving appropriate values for m and t such
that P (MMR(p) < ε) ≥ 1 − δ: in other words, for the se-
lectedm and t, with high probability 1−δ, MMR will be less
than some small value ε if we askm voters for their top-t can-
didates. Analysis of this type (for various classes of queries)
can be used to drastically limit the number of rounds while
keeping the total amount of elicited information small.7

5 Manipulation
Finally, we close by suggesting that the utility-theoretic and
probabilistic perspectives can provide a much more nuanced
analysis of manipulation. Most manipulation analysis ad-
dresses the question of whether a small coalition of voters
can change the outcome of an election by misreporting their
preferences under some distribution of the preferences of the
electorate. Typically, this distribution is a point distribution in
which the coalition knows the exact preferences of other vot-
ers. Probabilistic information is sometimes used, but usually
only to analyze the odds that a manipulation exists assuming
complete knowledge on the part of the manipulators.

We suggest that two different styles of analysis would be
much more useful when considering the application of so-
cial choice in the domains described above. First, assuming
that manipulators know the full preference profile is unreal-
istic. Of course, it would be equally unrealistic to assume
no knowledge: instead we suggest that analyses should re-
strict the manipulators’ knowledge in reasonable ways. For
example, we may insist that the distribution over preferences
known to the manipulators has some minimum entropy; or
we could restrict knowledge of preferences to that obtainable

7Preliminary results suggest that reasonable bounds can be de-
rived for Borda scoring with Mallows models. Some relevant results
on sorting complexity for Mallows models are developed in [1].

using a small number of samples from the underlying distri-
bution. Such analysis of the potential for manipulation should
also be undertaken using realistic distributions of preferences
as opposed to impartial culture and related models.

The second change in analysis is suggested by the use of
societal utility measures. Intuitively, if a small coalition can
change the outcome from the true winner a to an alternative b,
then it is highly likely b had a reasonably high societal utility
to begin with. So rather than asking whether specific voting
rules are manipulable, we can instead ask how much “dam-
age” can a small coalition do: in other words, what is the
maximum regret MR(b,p) or expected regret ER(b,p) given
partial knowledge p obtained by the manipulators. The sus-
ceptibility of a voting rule to manipulation can then be charac-
terized by placing limits on the form of p, maximizing these
damage metrics over possible manipulations b, and maximiz-
ing or taking expectation w.r.t. p of some limited form. Here
is just one concrete question of this form: given distribution
P , what is Ep[m]∼P maxb ER(b,p), where p[m] ∼ P refers
to random sample of m votes from P . This type of analy-
sis may provide a very different view of the manipulability of
various voting rules.

Acknowledgements: Thanks to Yann Chevaleyre, J erôme
Lang, and Nicolas Maudet for very engaging discussions on
several of these broad topics (and some of the specific prob-
lems mentioned here).
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