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Problem Domain:
L.ocomotion

1. The two action domains in reinforcement learning:
1. Discrete action space

1. Only several actions are available (up, down, left, right)
2. Q-value based methods (DQN [1], or DQN + MCTS [2])

a Value network b Tree evaluation from value net € Tree evaluation from rollouts
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Problem Domain:
L.ocomotion

1. The two action domains in reinforcement learning:
1. Discrete action space

2. Continuous action space
1. One of the most interesting problems: locomotion
2. MuJuCo: A physics engine for model-based control [3]
3. TRPO [4] (today's focus)

1. One of the most important baselines in model-free continuous control
problem [5]

2. It works for discrete action space too

Walker2d-v1 Ant-v1 Humanoid-v1 HalfCheetah-v1

i Hopper-v1
Make a 2D robot walk. Make a 3D four-legged Make a 3D two-legged Make a 2D cheetah Make a 2D robot swim. Make a 2D robot hop.
robot walk. robot walk. robot run.



Problem Domain:
Locomotion

1. The two action domains in reinforcement learning:
1. Discrete action space

2. Continuous action space

3. Difference between Discrete & Continuous
1. Raw-pixel Input
1. Control versus perception
2. Dynamical Model

1. Game dynamics versus physical models

3. Reward Shaping

1. Zero-one reward versus continous reward at evert time step



Related Work

1. REINFORCE algorithm [6]

N T
S 1 i i i i
Vorn(me) = NT ZZVH log m(a3|s;: 0)(R; — b})

i=1 t=0

2. Deep Deterministic Policy Gradient [7]

Von(pe Zv Qo (8,0 4—puy () Vorto(s:)

3. TNPG method [8]
1. Very similar to the TRPO

2. TRPO uses a fixed KL divergence rather than a fixed penalty
coefficient

3. Similar performance according to Duan [9]
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'The Preliminaries

1. The objective function to optimize

77('” - Sl‘] ag, [Z’T g St ] ’ where

t=0

so ~ po(so), ar ~ m(ai|st), Si41 ~ P(si11]st, ar)

2. Can we expresses the expected return of another policy in
terms of the advantage over the original policy?

Yes, orginally proven in [8] (see whiteboard 1). It shows
that a guaranteed increase in the performance is possible.

n(7) = n(r) + Esq,a0,-~7 [Z ’TtATT(St: a’f)] =n(m) + Z pz(s) Z (als)A

i=0



'The Preliminaries

3. Can we remove the dependency of discounted visitation
frequencies under the new policy?

1. The local approximation
Lo(%) = n(m) + ) px(s) Y 7(als)Ar(s, a).

L'rren (7790) = (e, ),
VoL, ("'7‘5')||9=<90 - me(”@)b:eo'
2. The lower bound from conservative policy iteration [8]
Thew(als) = (1 — a)moa(als) + an'(als).
2ey 2
M(Tuew) = Ly (Tnew) — a2

where € = maX‘EaNﬂr(MS) [AW(S, a)]]



Find the Lower-Bound in
General Stochastic policies

1. Can we move the be extended to general stochastic policies,
rather than just mixture polices? (see whiteboard)

Tnew(als) = (1 — a)maia(als) + an’(als). Theorem 1. Let o = D (Told, Tnew)- Then the follow-
ey ing bound holds:
N(Tnew) 2 L yyq (Trew) — 5 o?
(1—1) dey o
U(Wnew) > L'rrold (7Tnew) - ﬁa
where € = ma,x|]EaN7r,(a|S) [Ax (s, a)H. (1—7)
’ where ¢ = max |A, (s, a) (8)

2. Maybe even make the equation simpler?

n(7) = Lx(7) — CDEL(m, ),
dey
(1=

where C' =

(later we make it even easier by approximate the maximum of KL
using the average of KL)



Find the Lower-Bound in
General Stochastic policies

3. Now what's the objective function we are trying to

maximize?
let M;(7) = L, (m) — CDR(m;, ). Then (%) > Lx(7) — CDgr(w, @),
: here ¢ = — 2
77(7Ti+1) = Mi(ﬂiﬂ) by Equation @ where U = W

n(m;) = M;(r;), therefore,
N(mip1) —n(ms) = My(miq1) — M(m;).

Lo(®) = n(m) + 3 pa() S #(als) An(s, ).

Lz, (m9,) = n(me,),
VoL, (79 |.9 —6, = Van(mg) |9 fo

Guaranteed Improvement! (minorization-maximization
algorithm)



Optimization of the
Parameterized Policies

1. In practice, if we used the penalty coefficient C
recommended by the theory above, the step sizes would be
very small.

max%)mize (Lo, (0) — CDRE (0014, 0)]

2. One way to take larger steps in a robust way is to use a
constraint on the KL divergence between the new policy
and the old policy, i.e., a trust region constraint

1. Use the average KL instead of the maximum of the KL
(heuristic approximation)

maxgmize Ly, (0) maxiﬂmize Ly, (0)

subject to D[ (0o1a,0) < 0. subject to DK 2 (01g,0) < 0.



From Math to Practical
Algorithm

1. Sample-Based Estimation of the Objective and Constraint

o (als)

Q(GlS) an]d (S! a’)

subject to Eﬁwﬂeom [DxL(T., (+]8) || mo(+|s))] < 0.

maxbmlze ES”P%M A [

trajectories sampllng .
trajectories,s
........ two rollouts
Sy Ap using CRN
all state-action
pairs used in

objective

.0
.........

rollout set




‘T'ricks and Efficiency

1. Search for the next parameter
maximize L(0) subject to Dy (0o14,0) < 6.

1. Compute a search direction, using a linear approximation to objective
and quadratic approximation to the constraint

Az = g
Dy1(661d,0) = 1(0—001a)TAB — Ooia)  Aij = 5 3‘3,,. D1, (0614,0)

2.  Use conjugate gradient algorithm to solve Axr =1b

Get the maximal step length and decay exponentially
§ = Dy, = 5(Bs)TA(Bs) = 38%sT As

B = /26/sT As,

L901d (9) - X[EKL(Qolda 9) = 5]



Summary

1. The original objective

Blr) =B i, [Z"r (st ] , where

so ~ po(so), ar ~ ﬂ'tlst): St41 ™ P(St+1|8t=@t)

2. The objective of another policy in terms of the advantage
over the original policy

(@) = n(7) + Esq a0~z [Z’Y St:at] :n(fr)+Zpﬁ(s)Z%(a|s)A S,a
3. Remove the dependency on the trajectories of new policy.

Lo(®) = n(m) + Y pal(s) Y #(als) Ar(s, ).

-l:’i"r@0 (ﬂ-GD) = 77(7'-90)?
VGL’}TQD (ﬂ-ﬂ)|9:30 & VQT](?TB) |6=90 '



Summary

4. Find the lower-bound that guarantees the improvement

let M;(m) = L, (w) — CDR&*(m;, w). Then
n(miy1) > M;(mi11) by Equation (9)
n(m;) = M;(m;), therefore,
n(miv1) = nm) = Mi(migr) — M(m;).

5. Sample-based estimation

ﬂg(a!S)Qe (5,)

max%mize Esmpeo]d Larg [ 4(als)
subject to ES”P%M [DKL (Moo (:]8) || ma(:]s))] < 9.

6. Using line-search (Approximation, Fisher matrix, Conjugate gradient)
0 = Dyw, ~ 3(Bs)TA(fs) = 36%5" As

= /20/sT As,

Lg 1d (9) - X[EKL(Qolda 9) < 5]

(=]
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Results and Problems of
TRPO

1. Results
1. One of the most successful baselines in locomotion

2. Problems
1. Sample inefficiency

2. Unable to scale to big network

Task Randam REINFORCE THPG RWR REFS TRPO CEM CMA-ES DIRG
Can-Polk Balancing TT1+00 46037+ 14.0 Misd £ 7489 4H6l5 + 123 SE56 L 13T6 48608 + X6 dBISd =+ 45 BA0ALHGEI 46MA L ETH
Imve e Pendulim® —153.4 4202 134+ 18O 2087 + 555 BT+ 138 -11334+ 448 MI2 3 Wi 3Erx 5T —401+ 5T 400 4G
Monmizin Car —4154 300 —6T1+ 1.0 665 + 45 -4+ 1.1 —-27Th641663 -6L.7 + 09 —-66.0%f 24 —BibDx T.7 —2BEAL1TD.IF
Actobot —1804.5 210 -50E1+ 010 —305E+131.2 3527+ 350 —1001.5+ 1065 3260+ 244 —d43EL 147 -TELGE: 131 -22d6 =+ 54
Touble Inverted Penclulum * 1497401 411654+ 65,2 448554 4 Th I614.54 3681 346. 7+ 1148 44124 4 S04 2566241789 1576 14+ 51.3 28634 4 154.0
Swimmer* - 170l 923+ 0.1 S0 £ 03 0.7+ 5B 3E+ 33 WO £ 02 G688+ 2.4 649+ 1.4 EhE: 1B
k 4400 Tl4.04+ 203 11551 + 579 5h3.24+ TLO T4 176 11833 4 1500 @ll+ 7.8 0.3+ 143 2T.1+ 43.5
D Walker -1L.7x00 MGS5+ TEE 1M1e £ 1081 1360+ 150 —3704 351 13508 + 850 El5x 102 Tr.ix 243 JBA L1816
Half-Cheetah 008403 11831+ 60,2 17295 1846 3761+ 282 HMEL B0 19140 £ 1201 3042748 441321076 214846 = LT
Ant* 13407 HEZ+ 555 Toeal0 + 1277 Tex 3.1 Wo+ 9E T2 4 6ld 9.2t 5.9 17.6% 15.5 H36.21 M8
Simple Humsanoid 11.5+0.2 1281+ 30 2550 + MS 3.3+ 174 B3 E F W07 + M3 6+ 129 287+ 39 i+ 281
Taull Humamerid 13.240.1 6224 105 I2ER4 4 B3 4#6.7+ 56 4174+ 61 HMTO 4+ 234 e+ 2.9 Nid 4+ NiA 11904+ 31.2
Can-Polk: Balancing (LS)* 7100 4206+ 2655 WAL £+ I GO+ 1.5 B0s1+ 221 %02 + 460 02230 GO+ 1.6

Trve rieel Penclulum (L5} -122.1 £10.1 -13.4 4 3.2 LT 4l -107.44+ 02 —-87.24 &0Q 45 4 41 -81.24 3.2 -62.44+ 3.4

Mountin Car {L5) —B30+00 -—-E124+ 06 657 + B0 -—EL.TE 01 —HEGEL 04 642 £ 95 A48 £+ L3 -T2 + e

Acroba (L5)* —393.2+00 1289+ 116 H446 = 18 169+ 53 —3THE: 14 H33 £ 99 1405+ 15Z 1809 TS
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Q&A

Thanks for listening ;P




