
Learning Reinforcement
Learning by Learning
REINFORCE

TINGWU WANG,

MACHINE LEARNING GROUP,

UNIVERSITY OF TORONTO

Contents
1. Introduction

1. A Sketch of REINFORCE Algorithm

2. Optimizing Policy Based Objective Function
1. Objective Function
2. Policy Gradient
3. REINFORCE
4. Toy Example of Rock-Paper-Scissors

3. Misc:
1. Other Methods
2. Discrete Domain vs. Continuous Domain
3. Policy Based vs. Value Based
4. On-policy vs. Off-policy
5. NerveNet: Learning Stuctured Policy in RL

4. References

A Sketch of REINFORCE
Algorithm

1. Today's focus: Policy Gradient [1] and REINFORCE [2] algorithm.
1. REINFORCE algorithm is an algorithm that is {

 discrete domain + continuous domain,
 policy-based,
 on-policy + off-policy,
 model-free,
 shown up in last year's final

 }.
No need to understand the colored part.

2. By the end of this course, you should be able to:
1. Write down the algorithm box for REINFORCE algorithm.
2. Calculate the objective function at each time step.
3. Calculate the correct gradient for each parameter (small model).
4. (Maybe) Have a rough idea of how solve a new RL problem.

Contents
1. Introduction

1. A Sketch of REINFORCE Algorithm

2. Optimizing Policy Based Objective Function
1. Objective Function
2. Policy Gradient
3. REINFORCE
4. Toy Example of Rock-Paper-Scissors

3. Misc:
1. Other Methods
2. Discrete Domain vs. Continuous Domain
3. Policy Based vs. Value Based
4. On-policy vs. Off-policy
5. NerveNet: Learning Stuctured Policy in RL

4. References

1. Objective function for all policy-based algorithms
1. In episodic environments we can use the start value:

2. In continuing environments we can use the average value:

3. Or the average reward per time-step

4. After all, training RL agents is just optimizing the objective function.
1. All the optimization algorithms you learnt could be applied.

1. Zero-order (gradient free)

2. First-order (taking the gradient)

3. Second-order (using the hessian ...)

Objective Function

1. How do we optimize the objective function?
1. Zero-order: Gradient-Free methods:

1. Evolution algorithm [11]
2. Grid-search (of course, and local-minima-proof if Lipschitz constraints met)

2. First-order: Estimate the Gradient:
1. Finite Difference Estimation

1. Estimate kth partial derivative of objective function by perturbing
small amount in kth dimension

2. Policy Gradient Theorem
1. If we have differentiable policy function

Policy Gradient

1. Policy Gradient in analytical form!
1. Intuitively, consider a simple class of one-step MDPs. (black-

board example, Rs,a is r for short in the following equations.)

1. Why not ?
The expectation is on top of the sampled actions and states.

2. Luckily, we have similar results on all MDPs (skipping proof).

Policy Gradient Theorem

1. REINFORCE algorithm:
1. If use the actual return value as an unbiased sample for Q(s, a)

1. vt is the Gt in the course slides!

REINFORCE

1. Question:

1. Question: Write pseudocode to learn the parameters using REINFORCE.
2. Reward: +1 for wining, -1 for losing, 0 for draw.
3. Our policy: softmax policy, based on what computer did in the last timestep.
4. Parameters: 9 of them.
5. Game length: T (we assume)
6. discount factor = 1.

Toy Example of Rock-Paper-
Scissors

1. Basic ideas:
1. Initialization

1. Good initialization will boost the training
Of course we could use uniform policy.

2. At each iteration
1. Generate the training data D of length T
2. Train the policy using the data D
3. Usually, the more iterations you use, the better performance you have.

Toy Example of Rock-Paper-
Scissors

1. Generate the trajectories (length T)
1. For t = 1 to T (record all the data):

1. Calculate the softmax probability based on ct-1.
How to calculate a softmax probability?

2. Randomly sample at from the softmax probability.
3. Interact with the environment and get feed-back reward rt & observation ct

(computer's action).

Toy Example of Rock-Paper-
Scissors

1. Calculate the total returned reward vt or Gt

1. vt or Gt= sum(rt to rT)
2. Example:

1. v0 or G0 = r0 + r1 + r2 + r3 + r4 + ... rT-1 + rT

2. v1 or G1 = r1 + r2 + r3 + r4 + ... rT-1 + rT

3. v2 or G2 = r2 + r3 + r4 + ... rT-1 + rT

4. ...

5. vT or GT = rT

Toy Example of Rock-Paper-
Scissors

1. For t = 1 to T - 1 (every collected game sample), do
1. Calculate the for each parameter based on at, vt,

ct-1

1. How to get this results? (see blackboard)

2. Update the parameters using gradient descent.

Toy Example of Rock-Paper-
Scissors

1. Putting everything together:
1. Initialization
2. for each iteration

1. Generate the training data D of length T
1. for t = 1 to T-1

1. Calculate the action probabilty based on current parameters
2. Sampled the actions at

3. Record the data (at, rt, ct)
2. Train the policy using the data D:

1. Calculate the returns Gt (or call it vt)
2. for t = 1 to T-1

1. Calculate the gradients.
2. Do one step of gradient descent.

3. Return the trained model

Toy Example of Rock-Paper-
Scissors

Contents
1. Introduction

1. A Sketch of REINFORCE Algorithm

2. Optimizing Policy Based Objective Function
1. Objective Function
2. Policy Gradient
3. REINFORCE
4. Toy Example of Rock-Paper-Scissors

3. Misc:
1. Other Methods
2. Discrete Domain vs. Continuous Domain
3. Policy Based vs. Value Based
4. On-policy vs. Off-policy
5. NerveNet: Learning Stuctured Policy in RL

4. References

Other Method
1. Trust Region Methods:

1. State-of-the-art on continuous domian
1. PPO / TRPO

2. DDPG [12, 13]:
1. Variants of Policy Gradient
2. Could achieve state-of-the-art, high variance
3. Recent Update: D4PG [14]

3. A2C / A3C:
1. Using critic to reduce variance
2. Not as good on continuous control as discrete control.

1. Action-Space
1. Discrete action space [3, 4, 5, 6, 10].

1. Only several actions are available (e.g. up, down, left, right).

2. Continuous action space [7].
1. Action is a value from a continous interval.

Discrete Domain vs.
Continuous Domain

1. Policy Gradient:
1. Objective function:

2. Takeing the gradient (Policy Gradient Theorem)

2. Value based methods are more interested in "Value"
1. Estimate the expected reward for different actions given the initial states (table

from Silver's slides [9]).

Policy Based vs. Value Based

On-policy vs. Off-policy
1. Behavior policy & target policy.

1. Behavior policy is the policy used to generate training data.
1. Could be generated by other agents (learning by watching)
2. Could be that the agent just want to do something new to explore the

world.
3. Re-use generated data.

2. Target policy is the policy the agent want to use if the agent
is put into testing.

3. Behavior policy == target policy: On-policy, otherwise Off-
policy

NerveNet: Learning Stuctured
Policy in RL

1. NerveNet ICLR'18:
1. In traditional reinforcement learning, policies of agents are learned by MLPs which

take the concatenation of all observations from the environment as input for predicting
actions.

2. We propose NerveNet to explicitly model the structure of an agent, which naturally
takes the form of a graph.

NerveNet: Learning Stuctured
Policy in RL

1. NerveNet:
1. Using graph neural network to encode structure information.

Contents
1. Introduction

1. A Sketch of REINFORCE Algorithm

2. Optimizing Policy Based Objective Function
1. Objective Function
2. Policy Gradient
3. REINFORCE
4. Toy Example of Rock-Paper-Scissors

3. Misc:
1. Other Methods
2. Discrete Domain vs. Continuous Domain
3. Policy Based vs. Value Based
4. On-policy vs. Off-policy
5. NerveNet: Learning Stuctured Policy in RL

4. References

Reference
[1] Sutton, Richard S., et al. "Policy gradient methods for reinforcement learning with function approximation."
Advances in neural information processing systems. 2000.
[2] Williams, Ronald J. "Simple statistical gradient-following algorithms for connectionist reinforcement learning."
Reinforcement Learning. Springer, Boston, MA, 1992. 5-32.
[3] Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).
[4] Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587
(2016): 484-489.
[5] Schulman, John, et al. "Trust region policy optimization." Proceedings of the 32nd International Conference on
Machine Learning (ICML-15). 2015.
[6] Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).
[7] Todorov, Emanuel, Tom Erez, and Yuval Tassa. "MuJoCo: A physics engine for model-based control." Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012.
[8] Tamar, Aviv, et al. "Value iteration networks." Advances in Neural Information Processing Systems. 2016.
[9] Silver, David, UCL Course on RL, http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
[10] Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." International Conference on
Machine Learning. 2016.
[11] Salimans, Tim, et al. "Evolution strategies as a scalable alternative to reinforcement learning." arXiv preprint
arXiv:1703.03864 (2017).
[12] Silver, David, et al. "Deterministic policy gradient algorithms." Proceedings of the 31st International Conference
on Machine Learning (ICML-14). 2014.
[13] Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint
arXiv:1509.02971 (2015).
[14] Tassa, Yuval, et al. "DeepMind Control Suite." arXiv preprint arXiv:1801.00690 (2018).

