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A Sketch of REINFORCE 
Algorithm

1. Today's focus: Policy Gradient [1] and REINFORCE [2] algorithm.
1. REINFORCE algorithm is an algorithm that is {

    discrete domain + continuous domain, 
    policy-based, 
    on-policy + off-policy,
    model-free,
    shown up in last year's final

      }.
No need to understand the colored part.

2. By the end of this course, you should be able to:
1. Write down the algorithm box for REINFORCE algorithm.
2. Calculate the objective function at each time step.
3. Calculate the correct gradient for each parameter (small model).
4. (Maybe) Have a rough idea of how solve a new RL problem.
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1. Objective function for all policy-based algorithms
1. In episodic environments we can use the start value:

2. In continuing environments we can use the average value:

3. Or the average reward per time-step

4. After all, training RL agents is just optimizing the objective function.
1. All the optimization algorithms you learnt could be applied.

1. Zero-order (gradient free)

2. First-order (taking the gradient)

3. Second-order (using the hessian ...)

Objective Function



1. How do we optimize the objective function?
1. Zero-order: Gradient-Free methods:

1. Evolution algorithm [11]
2. Grid-search (of course, and local-minima-proof if Lipschitz constraints met)

2. First-order: Estimate the Gradient:
1. Finite Difference Estimation

1. Estimate kth partial derivative of objective function by perturbing 
small amount in kth dimension

2. Policy Gradient Theorem
1. If we have differentiable policy function

Policy Gradient



1. Policy Gradient in analytical form!
1. Intuitively, consider a simple class of one-step MDPs. (black-

board example, Rs,a is r for short in the following equations.)

1. Why not               ?
The expectation is on top of the sampled actions and states.

2. Luckily, we have similar results on all MDPs (skipping proof).

Policy Gradient Theorem



1. REINFORCE algorithm:
1. If use the actual return value as an unbiased sample for Q(s, a)

1.  vt is the Gt in the course slides!

REINFORCE



1. Question:

1. Question: Write pseudocode to learn the parameters using REINFORCE.
2. Reward: +1 for wining, -1 for losing, 0 for draw.
3. Our policy: softmax policy, based on what computer did in the last timestep.
4. Parameters: 9 of them.
5. Game length: T (we assume)
6. discount factor = 1.

Toy Example of Rock-Paper-
Scissors 



1. Basic ideas:
1. Initialization

1. Good initialization will boost the training
Of course we could use uniform policy.

2. At each iteration
1. Generate the training data D of length T
2. Train the policy using the data D
3. Usually, the more iterations you use, the better performance you have.

Toy Example of Rock-Paper-
Scissors 



1. Generate the trajectories (length T)
1. For t = 1 to T (record all the data):

1. Calculate the softmax probability based on ct-1.
How to calculate a softmax probability?

2. Randomly sample at from the softmax probability.
3. Interact with the environment and get feed-back reward rt & observation ct 

(computer's action).

Toy Example of Rock-Paper-
Scissors 



1. Calculate the total returned reward vt or Gt

1. vt or Gt= sum(rt to rT)
2. Example:

1. v0 or G0  = r0 + r1 + r2 + r3 + r4 + ... rT-1 + rT

2. v1 or G1  =       r1 + r2 + r3 + r4 + ... rT-1 + rT

3. v2 or G2  =             r2 + r3 + r4 + ... rT-1 + rT

4. ...

5. vT or GT =                                          rT

Toy Example of Rock-Paper-
Scissors 



1. For t = 1 to T - 1 (every collected game sample), do
1. Calculate the    for each parameter based on at, vt, 

ct-1

1. How to get this results? (see blackboard)

2. Update the parameters using gradient descent.

Toy Example of Rock-Paper-
Scissors 



1. Putting everything together:
1. Initialization
2. for each iteration

1. Generate the training data D of length T
1. for t = 1 to T-1

1. Calculate the action probabilty based on current parameters
2. Sampled the actions at

3. Record the data (at, rt, ct)
2. Train the policy using the data D:

1. Calculate the returns Gt (or call it vt)
2. for t = 1 to T-1

1. Calculate the gradients.
2. Do one step of gradient descent.

3. Return the trained model

Toy Example of Rock-Paper-
Scissors 
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Other Method
1. Trust Region Methods:

1. State-of-the-art on continuous domian
1. PPO / TRPO

2. DDPG [12, 13]:
1. Variants of Policy Gradient
2. Could achieve state-of-the-art, high variance
3. Recent Update: D4PG [14]

3. A2C / A3C:
1. Using critic to reduce variance
2. Not as good on continuous control as discrete control.



1. Action-Space
1. Discrete action space [3, 4, 5, 6, 10].

1. Only several actions are available (e.g. up, down, left, right).

2. Continuous action space [7].
1. Action is a value from a continous interval.

Discrete Domain vs. 
Continuous Domain



1. Policy Gradient:
1. Objective function:

2. Takeing the gradient (Policy Gradient Theorem)

2. Value based methods are more interested in "Value"
1. Estimate the expected reward for different actions given the initial states (table 

from Silver's slides [9]).

Policy Based vs. Value Based



On-policy vs. Off-policy
1. Behavior policy & target policy.

1. Behavior policy is the policy used to generate training data.
1. Could be generated by other agents (learning by watching)
2. Could be that the agent just want to do something new to explore the 

world.
3. Re-use generated data.

2. Target policy is the policy the agent want to use if the agent 
is put into testing.

3. Behavior policy == target policy: On-policy, otherwise Off-
policy



NerveNet: Learning Stuctured 
Policy in RL

1. NerveNet ICLR'18:
1. In traditional reinforcement learning, policies of agents are learned by MLPs which 

take the concatenation of all observations from the environment as input for predicting 
actions.

2. We propose NerveNet to explicitly model the structure of an agent, which naturally 
takes the form of a graph. 



NerveNet: Learning Stuctured 
Policy in RL

1. NerveNet:
1. Using graph neural network to encode structure information.
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