UNIVERSITY OF '\7\ VECTOR INSTITUT

INSTITUTE | VECTEUR
¥ TORONTO

NerveNet: Towards Universal Deep RL
Controllers for Robotics

Tingwu Wang

University Of Toronto, Vector Institute

Contents

Introduction
a. Reinforcement Learning with Neural Network
b. Graph Neural Networks
2. Nervenet
a. Basicldea
b. Model
i Input Model
ii. Propagation Model
iii. ~ Output Model
3. Experiments
a. Transfer Learning
i. Zeroshot-Performance
ii. Fine-tuning Policy
b. Robustness
c. Multi-task Learning

Reinforcement Learning with Neural
Network

1. One of the most exciting area recently
a. AlphaGo[1]
b. Complex humanoid control [2, 3] and mdustry robot[4 5]
c. Video games [6, 7] :

2. Problems do exist [8], for example:
a. Transferability
Policy learnt on one agent could not be transferred to agent with different
dynamics.
b. Robustness
Perturbing the parameters of robot results in catastrophic performance drop.

Reinforcement Learning with Neural
Network

3. We constrain the focus to be locomotion control of simulated robot [9]
a. Input: observations from the sensors of the robot.
i. Joint angles & velocity, body’s Cartesian positions, feedback forces
i .
b. Output: the torques applied respectively on each joint.
4. A typical neural network used in these tasks:
a. Multi-Layer Perceptron Network (MLP)
b. Ignoring structural information and performing black-box optimization.
i. PPO [3], TRPO [10], A3C [11], DPG[12], DDPG [13]

[QQ OO0 OO0 OO OO] Output Controller

(00 00 0O []OO 00 00}

(00 00 00)00 00 00)

(00 @@ @@ @@ @@ Input Features

Graph Neural Networks

1. Many types of the input data is a vector or tensor, for example
a. Observations of the robot (vector, MLP)
b. Images (tensor, CNN)
2. Many important real-world data could be formulated as graphs:
a. Social networks, knowledge graphs, the World Wide Web, etc. [14].
b. A more natural idea is to use graph neural networks to process the data
c. Example: How likely are you a Warrior supporter or Cavalier supporter?

Input

Hidden layer

Hidden layer
°
.

-

uuuuu

Contents

Introduction
a. Reinforcement Learning with Neural Network
b. Graph Neural Networks
2. Nervenet
a. Basicldea
b. Model
i. Input Model
ii. Propagation Model
iii. ~ Output Model
3. Experiments
a. Transfer Learning
i. Zeroshot-Performance
ii. Fine-tuning Policy
b. Robustness
c. Multi-task Learning

Basic Idea

1. Use Graph Neural Networks instead of MLPs
a. MLP Potentially causing the problem on transferability and robustness.
i. A perhaps similar story: Image classification with MLP or CNN?
ii. Empirically MLP doesn’t scale with data and is easy to overfit
iii. CNN applies strong structure prior and uses shared weights

‘ . Convolution

. Layer Pooling <
® o 0 ® | 4 — =
/ AV // Layer
. . | : |
X/ " : 3
2 o o o ¥
. S » 2 ' 3 ‘
Wa! S : a 3
o ,.',i.. Pad - = S P
" X 7} - * ‘
.‘ / '. uuuuuuuuuuuuuu / 10 * ™
(5x5 kernel) > - ling Convolution
. ‘. 10filters M Feoine (5x5 kernel) @x2)

b. Make use of structural information with GNN
c. Intuition: to determine the torques applied to one joint
i. neighbour’s absolute position, joint’s position & velocity, inertia info, ...

Input Model

1. For each node (0, 1, 2, 3, 4) of the agent, we fetch the corresponding observation

from the input features.
2. Map it into the initial node states using a function F: Y = F,(z,)

a. amatrix, identity function, or MLP.

@9 --- Output Controller
/B'; T
| \ \ \\ .

." -?- -T-;é%

D Input Model Weights

&; D Propagation Model Weights

. Output Model Weights

aj L
1 / 1
K \ .’ 4 ." CTJ / DUpdate Model Weights

m m m m m Input Features

Propagation Model

1. Let each node communicate with the neighbours by propagating messages.
a. Message is calculated by passing the current states through a function M.
t _ t

m(u,v) - Mc(u,v) (hu)

b. Node aggregate the messages and update its current node states.
My, = A({y|v € Nin(u)})

c. Ideally we should propagate the messages until the node states converge

i. In practice we propagate the message for 4 timesteps.

hfj_l = Upu (hf“ mZ) ! ! @@ Output Controller
Y

(Or===0)] ,\" [tmput Model Weights
.% Qt_] EE '4 [:] Propagation Model Weights
CT] ; Y O . Output Model Weights

I ’ Cb D Update Model Weights

Il 1 7 II
[©9)([©0)([©0)©0)@Q)] Input Features

Output Model

1. For each node with a controller, we output the control signal.
a. The control signal is a function of the node last states.

HueO = O(hzz;)
b. Control signal could be the mean and variance of the gaussian policy.

([©9e9eg)eoJ]] Output Controller

| |
\ \

RN
1' \ VN ©)
B

4_ ®

. . Output Model Weights

:Q:. [put Model Weights
; E] Propagation Model Weights
\ 01:] l‘ //I II j
\ .’ £ ,.’ '113 DUpdabe Model Weights
Q0 Q0 ..] l Input Features

Contents

1. Introduction
a. Reinforcement Learning with Neural Network
b. Graph Neural Networks
2. Nervenet
a. BasicIdea
b. Model
i Input Model
ii. Propagation Model
iii. ~ Output Model
3. Experiments
a. Transfer Learning
i. Zeroshot-Performance
ii. Fine-tuning Policy
b. Robustness
c. Multi-task Learning

Transfer Learning

1. As we mentioned before, in old methods, policy learnt on one agent could not be
transferred to agent with different dynamics. (full result in [15])
a. Transfer learning benchmarks: snake and centipedes.

. Input Model Weights ‘ .
Propagation Model Weights %
Output Model Weights
+ % <_B_ Update Model Weights 4_._ % 4_8_
805 Mutation with 808
@ %& Policy Inheritance
&4 08 &40

Transfer Learning

1. As we mentioned before, in old methods, policy learnt on one agent could not be
transferred to agent with different dynamics. (full result in [15])
a. Transfer learning benchmarks: snake and centipedes.

o -3L6 (32%) | 1004 (34%) | E1267 (% 2%) 165 (3%) |139.6 (96%) 6 5453 (92%) [EEAGD - A1 577.3 (96%) B s i
sols 458 (41%) | 182 (76%) Bl 02 02%) 443 (1%) | O 620 (67%) 1469 (98%) g e -
tol0 443 (12%) | 114 (73%) 1015 (10%) 39.8 (88%) 210 (52%) - %) 128.4 (92%)
rolz -AST (39%) 9.9 (12%) 176 (T6%) 38.6 (88%) 13.1 (49%) -632(21%) 126.3 (91%) s
ot 520 (37%) 80(N%) |8 9.6 (22%) 39.0 (88%) 0.0 (44%) 125.7 (90%)

aoCpl6 -17.0 (26%) -5.0(20%) -113.9 (1%) 249.5 (94%) 47.6 (42%) 73 (1 225 (40%) 91.1 (87%)

doCpus 255 (52%) 5.1 (69%) | -1322 (6%) 333 (85%) 40.0 (88%) - 179 -26.9 (44%) -66.9 (25%) 80.1 (ss%}

4toCpio =282 (51%) -12.8(59%) | <1387 (-74) 282 (82%) 40.2 (88%) .9 (-36.6 (39%) : 8 06
ooos | SE(%) 2L1() 914 (%) 308 (u%) 16749 (99%) (S % 87.8 (1%) g

Zoeen -H3(W) A24(M) B2(0%) 47(5%) 9405 (98%) 3 170 (1%)

Gol2 | -40.1 (13%) -14.4 (20%) 105 (27%) | 367.7 (95%) 2 (1% 14 (4%)
ot | 520 (17%) -100 (28%) 1263 (63%) 247.8 (94%) - 04
o020 | 724 (14! %) 10.0 (30%) 1 198.5 (96%)
6030 -67.1 (22% 285 (38%) |8 { 176 (57%) |114.9 (97%)
Brot0 | 727 (19%) 13(51%) B 211 (58%) | 97.8 (90%)
GroCpls 254 (14%) 365 (23%) | -1419(3%) 3989 (78%) & 02
GoCplo 282 (14%) 128 (21%) | 1652 (5%) 2778 (63%) |
GoCpl2 320 (22%) 121 (33%) 1149 (1%) 255.9 (96%)
GoCptd 410 (21%) 118 (36%) 677 (14%) 224.8 (95%) "
1. Random 2. MLPAA 3. MLPP 4. TreeNet 5. NerveNet 1. Random 2. MLPAA 3. MLPP 4. TreeNet 5. NerveNet

Models

Models

(a) Zero-shot average reward. (b) Zero-shot average running-length.

Robustness

1. We also test the robustness of the policy by perturbing the parameters of the

Model | HalfHumanoid | Hopper | Ostrich | Wolf | Horse | Average
Mmip | Reward 1775.75 1369.59 | 1198.88 | 1249.23 | 2084.07 /
Ratio 57.7% 62.0% | 482% | 545% | 697% | 58.6%
TreeNet | REWard 237.81 41727 | 22407 | 247.03 | 22334 /
ce Ratio 79.3% 98.0% | 574% | 1412% | 992% | 94.8%
NerveNet | Reward 2536.52 2113.56 | 1714.63 | 2054.54 | 2343.62 /
v Ratio 96.3% 101.8% | 98.8% | 105.9% | 106.4% | 101.8%

Multi-task Learning

1. We also test the robustness of the policy by perturbing the parameters of the
agent.

Walker-Hopper Walker-HalHumanoid

3000
- 3000
2300 25
VoS A
720 Model Type = 2000 Model Type = 2000 Model Type
£ —— Single-Task Baseline Z —— Single-Task Baseline £ —— Single-Task Baseline
& 10— MLP+Aggregation —— MLP+Aggregation 4 —— MLP+Aggregation
S —— MLP+Growing 1500 —— MLP+Growing ;;c"“” —— MLP+Growing
g —— TreeNet —— TreeNet £ —— TreeNet
< — NerveXe < — Nerve) < —— NerveNel
1000 NerveNet o NerveN i NerveNet
0 500 500
0 0 0
0 1000000 2000000 3000000 4000000 5000000 0 1000000 2000000 3000000 1000000 5000000 0 1000000 2000000 3000000 1000000 5000000
Number of Timesteps i

Number of Timesteps Number of Timesteps

Walker-Ostrich Walker-Wolf

2500
2500
|
2000
T Model Type z Model Type
£ 1500 —— SingleTask Bascline £ 150 — SingleTask Baseline
& —— MLP+Aggregation & —— MLP+Aggregation
% —— MLP+Growing o —— MLP+Growing.
g —— TrecNet g —— TreeNet
£ 1000 £
< —— NerveNet = 1000 erveNet
500 500
0 0
0 1000000 2000000 3000000 1000000 5000000 0 1000000 2000000 3000000 4000000 5000000

Number of Timesteps Number of Timesteps

Contents

1. Introduction
a. Reinforcement Learning with Neural Network
b. Graph Neural Networks
2. Nervenet
a. BasicIdea
b. Model
i Input Model
ii. Propagation Model
iii. ~ Output Model
3. Experiments
a. Transfer Learning
i Zeroshot-Performance
ii. Fine-tuning Policy
b. Robustness
c. Multi-task Learning

Reference

[1] Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search.” nature 529.7587 (2016): 484-489.

[2] Heess, Nicolas, et al. "Emergence of locomotion behaviours in rich environments." arXiv preprint arXiv:1707.02286 (2017).

[3] Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).

[4] Andrychowicz, Marcin, et al. "Hindsight experience replay." Advances in Neural Information Processing Systems. 2017.

[5] Gu, Shixiang, et al. "Q-prop: Sample-efficient policy gradient with an off-policy critic." arXiv preprint arXiv:1611.02247 (2016).

[6]1 Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).

[71 Fernandez, Jose Maria Font, and Tobias Mahlmann. "The Dota 2 Bot Competition." IEEE Transactions on Games (2018).

[8] Rajeswaran, Aravind, et al. "Towards generalization and simplicity in continuous control." Advances in Neural Information Processing
Systems. 2017.

[91 Todorov, Emanuel, Tom Erez, and Yuval Tassa. "Mujoco: A physics engine for model-based control." Intelligent Robots and [10] Systems
(IROS), 2012 IEEE/RS]J International Conference on. IEEE, 2012.

[10] Schulman, John, et al. "Trust region policy optimization." International Conference on Machine Learning. 2015.

[11] Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." International Conference on Machine Learning. 2016.
[12] Silver, David, et al. "Deterministic policy gradient algorithms." ICML. 2014.

[13] Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015).

[14] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907
(2016).

[15] Wang, Tingwu, et al. Nervenet: Learning structured policy with graph neural networks. Diss. University of Toronto, 2017.

