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Introduction
1. Recently, Reinforcement Learning is making numerous successes.

1. Complex Humanoid Control (PPO[2, 4] & TRPO[1] & DDPG [3]).
2. AlphaGo (Deepmind) [5].
3. DOTA (OpenAI).

2. "Model-Free methods almost have no place in the future" 
-- said by an anonymous Prof. Joshua

1. Data inefficiency
2. Transferability
3. Safety
4. Interprebility
5. Uncertainty
6. Hierarchical RL?
7. ...



Keywords in Model-Based 
RL and Control

1. Closed-Loop (MPC) vs. Open-Loop
1. MPC uses feedback loops, namely observes resulting state and 

update the control signal.
1. Open-loop: Control signal as a function of time.
2. Closed-loop: Control signal as a function of state.

1. MPC (Model Predictive Control): closed-loop algorithm with online 
state update

2. Some of the algorithms are Open-loop.
1. Off-line calculated trajectories.



Keywords in Model-Based 
RL and Control

1. Model-Based RL vs. Optimal Control vs. Trajectory Optimization 
vs. Motion Planning
1. Model-Based RL:

1. The term "RL" describes the data / environment.
2. Supervised Learning & Unsupervised Learning & RL.

2. Optimal Control: 
1. The problem of finding a control law for a given system.
2. Essentially RL is one type of optimal control problem.

3. Trajectory Optimization:
1. One type of optimal control problem, where a sequence of states 

(trajectory) are optimized.
2. Most of the robotics tasks.

4. Motion Planning:
1. More related to navigation.
2. Sometimes interchangeably used with trajectory optimization.



Multi-Joint Dynamics and 
Contacts Modelling

1. For years, the robotics community is more concerned with 
dynamics than policy.
1. Given the ground-truth dynamics, you might theoretically solve any 

trajectory optimization problem.
2. Example:

1. MPC control on humanoid [7].

2. Motion planning [6].

3. If ground-truth dynamics is not given, none of the methods have been proven to work.
1. Learn the dynamics? Much more difficult than you imagine.

1. Provide a very good initial dynamics.

2. GPS [8], PILCO [9] work respectively on graphics enginine and cart-pole (real-life).



Multi-Joint Dynamics and 
Contacts Modelling

1. Dynamics is not always easy to model
1. In the physical world contact happens on very short time-scales.

1. Trajectory optimizer will fail mathematically (gradient needed).

2. Contacts could not be modelled perfectly.
1. Hertz-Hunt-Crossley spring-dampers. 

1. Prohibitively expensive.

2. Time stepping integrators (relatively low fidelity, used in MuJoCo)
3. Treat contact as a variable to optimize (used in CIO)

1. If fidelity is not your first concern (e.g. motion synthesis [10])

Real-life Level            Robotic-simulation Level    Computer Graphics Level



Multi-Joint Dynamics and 
Contacts Modelling

1. Dynamics is not always easy to model
1. High-fidelity simulator? Dynamics is never perfectly modelled.

1. Currently established model: Multi-Joint Dynamics with Contacts estimation

2. MuJoCo Could model:

1. Hinge joint, slide joint, tendon, between-body contact & friction

3. The gradient? Finite difference.

2. Both model based and model free methods perform poorly in sim-to-
real transfer. (Perhaps the simulator is too bad?)
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Classic Cases
1. LQR and iLQR with MPC [7]

1. Problem formulation (dynamic function and cost function):

Equivalently, at every timestep:

(From i=N to i=0) Given the current state and potentially changes on the current state, 
what's the best actions u?

2. Solution: Second order optimization recursively (dynamic programming).



Classic Cases
1. LQR and iLQR with MPC

1. Optimization using Gauss-Newton Hessian Method.

2. Define a function of perturbations Q to figure out
1. What's the optimal control signal u, if we know how much the current state x 

will change?
2. Directly optimizing control signal u fails (why? The states is changing)



Classic Cases
1. LQR and iLQR with MPC

1. Given the perturbation on x (caused by pervious change of u), the 
optimal perturbation of u will be

2. Update the control signals and states as:



1. Contact Invariant Optimization (CIO) and CIO with Policy 
Network [6, 11].
1. Direct Collocation method

2. Instead of optimize a contrained problem, optimize a uncontrained 
objective

3. Shooting method (MPC) seems to be not capable of solving task where 
reward signal is not consistent and dense.
1. Hindsight Experience Replay [12]

Classic Cases



Classic Cases
1. Contact Invariant Optimization (CIO) and CIO with Policy 

Network.

1. No computational speed-up reported.
2. Open-loop, unstable and unrobust

1. Only works with low-fidelity graphics engine

2. No proof of ability of working on robotics simulator nor complex real-life system.

3. Could train a neural network to distill the policy [11].



Classic Cases
1. Probabilistic Inference for Learning Control (PILCO) [9]

1. Unknow dynamics!
2. Consider the uncertainty in dynamics with Gaussian Process

1. Input: current state x_{t-1} and u_{t-1}
2. Target: the difference of the state \Delta_t = x_{t} - x_{t-1}



Classic Cases
1. Probabilistic Inference for Learning Control (PILCO)

1. Evaluate the value function under current policy

All the intermediant results are analytic (play with gaussians)

2. Update policy

standard gradient based optimization



Classic Cases
1. Probabilistic Inference for Learning Control (PILCO)

1. Extremely data-efficient

2. Extremely slow and cannot be scaled to complex problems.
1. In the newest follow-up paper of PILCO [13] (AISTATS 2018), PILCO is 

still contrained on cart-pole (compared to other complex benchmarks).



Classic Cases
1. Guided Policy Search (GPS) [8] and GPS with unknown 

dynamics [4]
1. Find the optimal control with MPC (talked about in previous 

slides)
2. Train the policy network in a supervised-learning fashion.

3. It is essentially imitation learning (if we assume that MPC 
solution is perfect) --> Guided Cost Learning [15]

2. With unknown dynamics
1. Fitted dynamics are only valid in a local region around the 

samples
2. Limiting the change in the trajectory distribution in each 

dynamic programming 
1. Add KL contraints to the cost.
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