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Review of Back 
Propagation



Artificial Neural Nets (ANN): review

Forwards Pass



Gradient Descent

General method for optimizing a function with respect to some weights.



How to efficiently use GD train an ANN?

Way to compute              in an 
efficient way:

… backwards!



Back-Propagation

Backwards Pass



Back-Propagation

Backwards Pass



The issue with back propagation

Backwards Pass



The issue with back propagation

Backwards Pass

Backwards pass uses 
weights from the 
forward pass!
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Bioplausible ideas

● Back-propagation is a relatively new player
○ No real evidence that “error” is propagated in the brain

● Contrastive Hebbian Learning
○ clamp output neurons at desired values; spread effects backwards

● Contrastive Divergence (in Restricted Boltzmann Machines)
○ make data more probable while making non-data less probable

● Target Propagation
○ Compute targets rather than gradients, at each layer
○ Propagate targets backwards
○ Target propagation relies on auto-encoders at each layer
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Focus in today’s 
paper.
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1. Networks in the brain compute via many layers of interconnected neurons
2. BP assigns blame to a neuron by exactly how it contributed to an error

a. Requires neurons send each other precise information about large numbers of synaptic weights
b. This implies that feedback is computed using knowledge of all the synaptic weights W

3. Other  difficulties regarding the biological plausibility (not the focus of this paper)
a. Gradient?
b. Spike?
c. etc.

From Backprop to Bio-plausible Feedback Learning



1. A new deep-learning algorithm that is
a. Remove the assumption that upstream neuron knows matrix “W” 
b. Might be fast and accurate
c. But much simpler, avoiding all transport of synaptic weight information.

2. Feedback Alignment’s basic idea:
a. Use some random matrix B to replace transpose of synaptic weights W

Random Feedback Weights Support



1. Insight behind Random feedback weights support learning
a. We only need to get the direction roughly right during update
b. Even if the network doesn’t have this property initially, it can acquire it through learning.

i. The obvious option is to adjust B to make the equation true
ii. During training, matrix W might gradually change to make the equation true

1. can be done very simply, even with a fixed, random B

Random Feedback Weights Support



1. Feedback alignment learning also solves nonlinear benchmark classification 
problem (MNIST)

Results



1. Why does feedback alignment work: a toy 2d example
a. 1D Network with two neurons W0 and W1 (1 * 1 matrix) 
b. The feedback weight B is set to 1
c. Model the mapping: y = x

A Taste of Math



1. The guaranteed convergence
a. Simple network with one hidden layer (no activation function)

b. Normalized input

c. Could get a matrix relationship by integration (by setting W0, A0 = 0, we have C = 0)

d. Use Barbalat’s lemma

A Taste of Math



1. Let’s continue
a. Both of the addends will be zero

b. Many more properties follow by doing simple linear algebra (note that we assume B has 
Moore-Penrose pseudo-inverse)

A Taste of Math



1. When the weights begin near 0, feedback alignment encourages W to act like a 
local pseudoinverse of B around the error manifold. 

2. This fact is important because if B were exactly the Moore-Penrose pseudoinverse 
of W, then the network would be performing Gauss-Newton optimization

3. Mathematically very complicated and need strong assumption about the network, 
see the supplementary materials of the paper.

Analytic result suggests more



Code Reproduction

● Available at: https://github.com/xuexue/randombp
● MNIST
● 3-layer (1-hidden-layer) network; 100 hidden units

○ Smaller model than in the paper

https://github.com/xuexue/randombp


Reproducing the results

● Sensitive to:
○ Architecture (small-ish)
○ Starting weights (can’t be too small, can’t be too large, zeros DON’T work!)
○ Learning rate (need high-ish learning rate)
○ Weight decay (for direct feedback)

● Lots of configurations refuses to train
● There were times when network began getting better accuracy, then loses (!!) 

accuracy



Demo 
Code.

Only 
difference 
between 
standard 
backprop.



Results (Validation Accuracy)
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Direct Feedback 
Alignment 
Provides 

Learning in Deep 
Neural Networks

Arild Nøkland
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Direct Feedback Alignment

A comparison between Back Propagation (BP), Feedback Alignment (FA), Direct 
Feedback Alignment (DFA), and Indirect Feedback Alignment (IFA)



Original Feedback Alignment
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Theoretical Results

● In the FA paper, the authors proved that we can achieve zero training error with FA 
under the following assumption: 
○ Network is linear with one hidden layer.
○ Input data have zero mean and unit variance.
○ The feedback weight matrix has Moore-Penrose pseudo-inverse.
○ The forward weights are initialized to zero.
○ The output layer weights are adapted.

● However, it is unclear how the training error can approach zero with several 
non-linear layers.

● This paper gives new theoretical insight with less assumption of the network 
topology, under the assumption of constant update direction.



Theoretical Results

● This paper generalizes previous FA results by considering two consecutive layers.
● For any layer k and k+1, ᶖhk  will end up within 90 degrees of cosine angle with 

the back-propagated gradient ck, and ᶖhk+1 with ck+1.
● Although we assume

●
● | ᶖhk is constant for all data points, it can still a function of the parameters. The 

theorem does not provide convergence guarantee (provided in the original FA 
paper).



Experiments

Training curve of a two layer network on MNIST, with fixed first hidden layer (left), and 
full network (right).



Experiments

Upper: Hidden activation of BP network. Lower: Hidden activation of DFA network



Experiments

MNIST performance of BP, FA, and DFA



Reproducing the Results

● Smaller model than in the paper
● MNIST
● 4-layer (2-hidden-layer networK)

○ 784 → 200 → 100 → 10

● Weight decay essential
● There were times when network began getting better accuracy, then loses (!!) 

accuracy



Demo Code: Direct Feedback



Results (Validation Accuracy)
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Opinions



Positives

● FA is a thorough exploration using asymmetric connections.
● FA guaranteed convergence under some assumption of the network.
● Shown in experiments that we can train very deep 100-layer network with DFA, 

whereas BP and FA suffers from gradient vanishing.
● DFA replaces the reciprocal feedback assumption with a single feedback layer.
● The relaxed version of DFA, IFA, can be viewed as skip connections on the 

feedback path, which opens up more freedom on the actual form of feedback 
connections, compared to the original FA.

● One of the first exploration of error-driven learning using directly connected 
feedback path.

● Can be used to send error signals skipping non-differentiable layers.



Critiques

● DFA assumes that there is a global feedback path, which may be biologically 
implausible since the single feedback layer need to travel long physical distance.

● Both FA and DFA leverages the principle of feedback alignment to drive the error 
signal. Due to the alignment stage, a layer cannot learn before its upper layers 
are roughly “aligned.” This could also be biologically implausible.

● FA and DFA are presented as less powerful optimization methods. A more 
impactful yet biologically plausible direction could be replace BP with a learning 
algorithm with better generalization performance.

● FA and DFA rely on synchronous updates: to update the weights at a layer, we 
need to fix the activation of the layer below.

● Theoretical results on the negative descending direction is weak.





Our reproduction


