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Image recognition, also known as computer vision, is one of the mogirominent applications of neural
networks. The image recognition methods presented in this thesisra based on the reverse process:
generating images. Generating images is easier than recognizing the for the computer systems that
we have today. This work leverages the ability to generate imagesof the purpose of recognizing other
images.

One part of this thesis introduces a thorough implementation of this\analysis by synthesis" idea in a
sophisticated autoencoder. Half of the image generation systermémely the structure of the system) is
hard-coded; the other half (the content inside that structure) is learned. At the same time as this image
generation system is being learned, an accompanying image recogoit system is learning to extract
descriptions from images. Learning together, these two compomgés develop an excellent understanding
of the provided data.

The second part of the thesis is an algorithm for training undirectedgenerative models, by making
use of a powerful interaction between training and a Markov Chain wose task is to produce samples
from the model. This algorithm is shown to work well on image data, butis equally applicable to

undirected generative models of other types of data.



Acknowledgements

The primary acknowledgement is, of course, to Geo Hinton. He tawght me neural networks, and he
inspired me by always taking very good care of his team and setting hig standards for himself. When
time comes that | lead a team, | will pass this on.

My additional thesis committee members, Radford Neal and Rich Zerel, have seen to it that this
thesis is accessible to a far larger circle of people. For work as spédizad as a PhD thesis, it is easy to
forget that one must communicate in a way that not only the very closest colleagues will understand.
Radford and Rich helped me achieve this.

My thanks also go to the three professors who volunteered to joithe committee for the nal exam-
ination: Yoshua Bengio, Raquel Urtasun, and Russ Salakhutdinov.Thank you for volunteering to read
through an extensive piece of work and providing your perspective.

Of course, there are others who were involved in the process ofeating this thesis. After all, it was a
long process, and such a thing is never done alone. My colleagues kawmade the group an environment
where | felt at home. | want to mention especially llya Sutskever.

Lastly, a project of this magnitude is not just something professimal, but also something personal:
it carries the signature of a whole person. Therefore, | wish to thak all those who taught me and
who supported me, and enabled me to get to the point where | could vite this thesis: from family
to internship supervisor, from my rst computer programming tea cher to my tango teacher, and from
friends to all those giants on whose shoulders | have the privilege tetand.



Contents

0.1 Introduction, contributions, and structure of thisthesis . . . . ... .. ... .. ..... 1
0.1.1 Contributions . . . . . . . . e 1

1 Literature review: deep neural networks 3
1.1 Introduction . . . . . . . . e e 3
1.1.1  SuCCESS SIOMNES . . . . o e e 4

1.2 Using multiple layers . . . . . . . . . e 4
1.2.1 Hierarchically structured data . . . . ... .. .. ... ... ... .. . ... ..., 4
1.2.2 Theoretical considerations on representational power . . . . . ... ... ... .. 4
1.2.3 Neuroscience evidence . . . . . . . . . . e 5
1.2.4 WhenDNN'sdonothelp ... ... ... . .. . ... . . ... 5

1.3 Training layer by layer, greedily . . . . . . . . .. 5
1.3.1 In favour of greedy, layer-wise training . . . . . . .. ... ... ... ... ... 6
1.3.2 Restricted Boltzmann Machines . . . . . . . . . . ... ... . ..o 6
1.3.3 Disadvantages. . . . . . . . .. e e 8
1.3.4 Greedy, but with more consideration for the higher layerstocme . . . . ... .. 8

1.4 Unsupervised (pre)training . . . . . . . . L e e 8
1.4.1 In favour of unsupervised pretraining . . . . . . . . . .. ... o0 9
1.4.2 Disadvantages. . . . . . . . .t e e e e e e e 9

1.5 Distribution modeling versus transformation sequence learning . . . . .. ... ... .. 10
1.5.1 Transformation sequence learning . . . . . . . . . .. ... ..o 10
1.5.2 Distribution modeling: directed versus undirected . . .. .. ... ......... 11
1.5.3 The dierence, illustrated by the random bit experiment . . . . . . . ... ... .. 13
1.5.4 In favour of distribution modeling . . . . .. ... ... L oL 13
1.5.5 In favour of transformation sequence learning . . . . . . . ... ... ... ... 14

1.6 Preprocessingdata . . . . . . . . . . e 15
1.7 Numerical Optimization . . . . . . . . . . . . . e 15
1.7.1 Solutions found (or not found) by gradientdescent . . . . ... ... ... ..... 16
1.7.2 Monte Carlo gradient estimates . . . . . . . . . . . .. .. ... 16
1.7.3 Getting better hardware instead of software . . . . . ... ... .. ... .. ..., 16

1.8 Desirable unit properties . . . . . . . ... e 17
1.8.1 Sparsity . . . . . . e e e 17
1.8.2 InvarianCes . . . . . . . . e 18
1.8.3 Local connectivity . . . . . . . . . . e 20



2

1.8.4 Robustness and independence . . . . . . . .. .. e 21

1.9 Meta-parameters in DNNS . . . . . . . . . . . e 21
1.9.1 Model architecture parameters . . . . . . . . .. .. 22
1.9.2 Meta-parameter optimization . . . . . . . . . ... .. ... e 22

1.10 ConcCluSION . . . . . o e 24

Autoencoders with domain-speci ¢ decoders 25

2.1 Introduction . . . . . . . . L e 25
2.1.1 Generalidea . . .. . . . . . . .. 25
2.1.2 Purposeofthiswork . . . . . . . . . .. . . e 28

2.2 Theencoder . . . . . . . . . 29
2.2.1 Number of layers and connectivity . . . . . . .. .. ... oL 30
2.2.2 Layersizeandtype. . . . . . . . e 30

2.3 The code language and the decoder . . . . . . . . .. .. ... . .. ... a.. . 30
2.3.1 Capsules in transforming autoencoders . . . . . . . . . .. ..o 32
2.3.2 More powerful capsules: enabling full a ne transformations .. . . . ... ... .. 32
2.3.3 Outputmodels . . . . . . . . .. . e 39
2.3.4 Representing composite objects: composite capsules . . . . .. .. ... L. 41
2.3.5 Multiple CCs . . . . . . . . e e 4

2.4 Regularization . . . . . . . e 49
2.4.1 Three reasons to regularize ingeneral . . . . .. ... .. ... ... ... ... 49
2.4.2 Regularizing qualities of the capsules concept . . . . . . ... ... ... ... .. 50
2.4.3 Additional regularization . . .. .. ... . ... e 51
2.4.4 Avoiding undesirable solutions in the capsules-based autoenced. . . . . . . . .. 52
2.4.5 Gradient maintenance in the capsules-based autoencoder . .... . ... ... .. 53
2.4.6 Regularizingthe encoder. . . . . . . . .. ... ... 55

2.5 Other implementation notes . . . . . . . . . . .. e 56
2.5.1 Computer-assisted model handling . . . . . .. ... ... ... ... ..., 56
2.5.2 Using GPU's . . . . . . . . e 5]
2.5.3 The numerical optimizer . . . . . . . . . ... 57

2.6 Experiments on MNIST . . . . . . . .. 59
2.6.1 Detailsofthemodel . . ... ... ... . . ... 60
2.6.2 Reconstructions, and ACs' contributions . . . . . .. ... ... . oL 60
2.6.3 Modeling the MNIST distribution with a simple generative model . . .. ... .. 63
2.6.4 The e ect of individual distortion parameters . . . . . . .. .. ... ... ... .. 63
2.6.5 The mixture: all components try to reconstruct . . . . . . .. ... ... ...... 64
2.6.6 Clustering as semi-supervised learning . . . . . ... ... .. ... .. ... .. 64

2.7 Experimentsonthe TFD . . . . . . . . . . . 67
2.7.1 Multi-channel ACs . . . . . . . e 68
2.7.2 Another output model: explicit depth modelling . . . ... ... ... .. ... .. 71

2.8 Comparison to similar models . . . . . . . . ... 72
2.8.1 Active Appearance Models . . . . . ... ... . 72
2.8.2 Recursive Compositional Models . . . . .. ... .. ... ... ... ... ..., 73
2.8.3 Breederlearning . . . . . . ... . 74



2.9 Directions of further exploration . . . . . ... ... ... ... ... ... . . .. . ..., 74

2.9.1 More decoder layers: applying CCs recursively . . . ... ... ... ....... 74
2.9.2 Lesslearning, for ACs . . . . . . . . e 75
2.9.3 More sophisticated computer graphics . . . . . .. ..o e L 75
2.9.4 Greedy layer-wisetraining . . . . . . . . . ... e 75
2.9.5 Improvingtheencoder . . . . . . . . . . . ... 76
2.9.6 Modelselection . . . . . . . . 77
2.10 Conclusion . . . . . 78
2.10.1 Applicability . . . . . . e 78
2.10.2 Take-home messages . . . . . . v v v i i i e e e e e e 78
Training undirected generative models 80
3.1 Introduction . . . . .. e e 80
3.1.1 Focus ondatalog probability . . . ... . ... 80
3.1.2 Likelihood gradient: two parts . . . . . . . . ... 80
3.1.3 Globalunlearning . . . . . . . . . . ... . 81
3.1.4 Localunlearning . . . . . . . . . . e 81
3.1.5 Outline ofthechapter . . . . . . . . . . . .. 81
3.2 Global unlearning algorithms . . . . . . . . . .. 81
3.2.1 Persistent Contrastive Divergence . . . . . . . . . . . . e 81
3.22 Why PCDWOIKS . . . . . . e e e e 82
3.23 FastPCD:the mainidea . . ... ... . . ... ... . . ... 84
3.24 Fast PCD:pseudocode . . . . . . . . . . e 85
3.25 Related algorithms . . . . . . . . .. 86
3.3 Experiments: global unlearning vs. local unlearning . . . ... ... .. .......... 89
3.3.1 General set-up of the experiments . . . . . ... ... .. ... ... c...... 89
3.3.2 Evaluating data likelihood exactly . . .. ... ... ... ... ... ........ 90
3.3.3 Usingan RBM for classication. . . .. ... ... .. ... ... ... ... . ... 91
3.34 Afullyvisible model . . . .. .. . 91
3.3.5 Evaluating data likelihood under a full-size model . . .. ... ........... 93
3.4 Experiments: FPCD vs. PCD . . . . . . . . .. 95
3.4.1 Comparisons with xed model architecture . . . .. ... ... ... ........ 95
3.4.2 Comparison with di erent architectures . . . . . ... . ... .. ... ... ... 95
3.5 Survey of modelsthatuse FPCD . . . . . . . . . . . . 96
3.6 CoNnCIUSION . . . . . 96
Appendix: detailed derivations 98
4.1 Rewriting the RBM training objective function . . . . . ... .. ... .. ... ...... 98
4.1.1 Informal derivation . . . . . . . .. 98
4.1.2 More formal derivation. . . . . . . ... L 98
4.2 The positive gradient for RBMs . . . . . . . . . . . . e 99
4.2.1 For general energy-based models . . . . ... .. ... ... .. ... ... 100
4.2.2 Forbinary RBMS . . . . . . . . . 101
4.3 The negative gradient for RBMs . . . . . . . . ... 101

Vi



4.3.1 For general energy-based models . . . . ... ... ... ... ... ... ...

4.3.2 For binary RBMs

Bibliography

vii



List of Figures

2.1
2.2

2.3

2.4

2.5

2.6

2.7

The computer graphics-based autoencoder . . . . . . . . ... .. ... oL
Component: a general-purpose neural network with dropout GPNN). It's a fairly stan-
dard DNN, with dropout, skip-connections, and two types of units. All connections are
global: there are no restricted receptive elds, and there is no weiht-sharing (of course
this could be added). The output layer simply adds up all input that it r eceives. When
this system serves as the encoder section of an autoencoderetbriginal data is the input,
and the \code" will be the output. In our case, the \code" consists of the pose of all
capsulesinthe model. . . . . . . . . ...
Component: Atomic capsule rendering (ACR). \iGeo pose" meansa pose Speci cation
that includes both the intensity transformation multiplier and the ge ometric transforma-
tion matrix. The little circles on some lines, and their attached square gures, illustrate
an example of the type of message that's passed through that line ithe system. . . . . .
Component: \nice" to matrix (NTM) representation conversion for geometric transfor-
mations. This component allows other components to describe geagitric transformations
in a natural or \nice" format. This component produces a matrix, using as input that
natural representation. Error derivatives of the matrix are backpropagated through this
component, and come out at the bottom as error derivatives for he 6 numbers in the
natural representation. . . . . . . .. L
Component: iGeoNice to iGeo(matrix) (INTM) representation conversion for geometric
transformations. \iGeoNice" means a speci cation of both an intensity scalar and the
\nice" (i.e. learner-friendly) representation of a geometric transformation. In contrast,
\iGeo" or means an intensity scalar and the matrix representation o a geometric transfor-
mation. Notice that this component doesn't describe any new comptations; its purpose
is notational only. NTM: Figure 2.4. . . . . . . . . . .
A relatively simple autoencoder, where the decoder consists ofutiiple simple (atomic)
capsules. Each capsule gets its pose from the partly shared enard(which has shared
hidden units), and the capsules' outputs are combined to make thanodel's nal output.
Each capsule has its own learned template. \iGeoNice" means a spedaation of both an
intensity scalar and the \nice" (i.e. learner-friendly) representation of a geometric trans-
formation. In contrast, \iGeo" means an intensity scalar and the matrix representation
of a geometric transformation. GPNN: Figure 2.2. INTM: Figure 2.5. ACR: Figure 2.3.
Component: composite capsule rendering (CCR). Only two of theACs of this CC are
shown, but there can be any number of them. INTM: Figure 2.5. MIGP: Figure 2.8.
ACR: Figure 2.3. OM: Section 2.3.3. . . . . . . . e

40



2.8

2.9
2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

Component: Multiplying iGeo poses (MIGP). \iGeo pose" means a pge speci cation that
includes both the intensity transformation multiplier and the geometric transformation
MAtriX. . . . . o e e e e

Component: traditional mixture manager (TMM). It's just a mat hematical function. . . .

Component: regularized mixture manager (RMM). The sizable radom in uence encour-
ages the model to make thd x;g represent very strong preferences. . . . . ... ... ..

A mixture-of-CCs autoencoder, set up to mimic a conventionahmixture of experts model.
Only two CCs are shown for brevity. CCs have learned componentsso each CCR is
di erent. GPNN: Figure 2.2. CCR: Figure 2.7. TMM: Figure 2.9. . . .. .. .. ... ..

The optimized mixture implementation. The section in the large boxis almost the same
as Figure 2.7: only thedistortion ! AC-in-CC poses function is di erent (see the bottom
of the box). GPNN: Figure 2.2. RMM: Figure 2.10. INTM: Figure 2.5. MI GP: Figure
2.8. ACR: Figure 2.3. OM: Section 2.3.3. . . . . . . . . . .

The change, over time, in the fraction of learned parametersfowhich the update size
is determined by rule #3, and by rule #4. The other two rules didn't dom inate for a
signi cant fraction of the parameters. . . . . . . . . ... . Lo

The model's reconstructions of twenty images. Columns: originaimage; reconstructed
image; mismatch; rst AC's contribution; second AC's contribution; etc. The squared

w
reconstruction error per pixel Ni (xi %h)? whereN is the number of pixels andX is

the model's reconstruction of pixeli, is 0.0095 (15% of data variance) on training data
with dropout (i.e. the training objective function), is 0.0057 (9% of data variance) on
training data when dropout is disabled, is 0.0104 (15% of data variane) on held-out data
with dropout, and is 0.0069 (10% of data variance) on held-out datawithout dropout.
Notice how for two images of the same digit class, a capsule usually tak on the same
role in both of the images. For example, even though the two imagesfdhe digit 5 look
quite di erent, the rst capsule represents the upper bar of the digit in both cases. This
indicates that the model has learned to understand that the two inages aren't all that
di erent, even though their Euclidian distance in pixel space is large. This insight is

acquired entirely unsupervised, but can be used for classi cationas shown in Section 2.6.6. 61

The model's learned templates. Each is 11x11 pixels, but in the mad these pixels rep-
resent points instead of little squares. Between those 11x11 poist bilinear interpolation

is used. The result of that interpolation is shown here. One clearly ses pieces of pen
stroke. Figure 2.14 shows how those are combined to form digits. . .. . . ... ... ..

The places where each capsule is applied. This shows the centrek gravity for the
capsules' contributions. The rst of the 9 squares shows wherehe centre of gravity for
the rst capsule's contribution is, for 100 MNIST images: usually somewhere in the upper
half of the image. The order of the 9 capsules is the same as in the ath gures. Compare
thisto Figure 2.14. . . . . . . . e

Top: the means of a mixture of 10 factor analyzers, trained orthe raw pixel values of

the MNIST dataset. Bottom: the means of a mixture of 10 factor analyzers, trained on
the AC iGeo pose values of the MNIST dataset, as interpreted by tle encoder of the

capsule-based autoencoder. Visualization is done by the decodef the autoencoder. . . .

63



2.18 The e ect of changing individual distortion variables, for two CCs. Notice how most
distortion variables control only one or two aspects of the appeaance: they're fairly
speci c. This is encouraged by applying dropout to the distortion variables (see Section
24.4). 65

2.19 Reconstructions by di erent mixture components. First column: the original image. Sec-
ond column: the reconstruction by the chosen mixture component Third column: the
reconstruction by the rst mixture component. Fourth column: t he reconstruction by
the second mixture component; etc. The mixture component thatthe manager chooses
is indicated by a blue reconstruction. Notice that each mixture compnent is, of course,
specialized to one type of images, but has quite some exibility by usingdi erent poses
(distortion, geometric, and intensity). This allows for some creative attempts to still
somewhat reasonably reconstruct images that the component isednitely not specialized

] 66
2.20 The model's reconstructions of twenty images. Columns: originamage; reconstructed

image; mismatch; rst AC's contribution; second AC's contribution; etc. The squared

reconstruction error per pixel is 0.0061 (34% of data variance) wh dropout and 0.0053

(29% of data variance) without. . . . . . . . . .. 68
2.21 The model's learned templates. Some of the templates are usualfgtated, and are there-

fore hard to recognize as parts of faces. Compare this gure to igure 2.20. . . .. .. .. 69
2.22 The e ect of changing individual distortion variables, for the one and only CC. . . . . .. 70
2.23 Theintensity gradient toy experiment that con rmed that a three-channel AC can learn

simple intensity variations with three degrees of freedom. Left: 1Zamples of the dataset.

If you squint, they change from abstract art to faces. Right: the three channels of the

learned template. . . . . . . ... e e 71
3.1 Modeling MNIST data with 25 hidden units (exact log likelihood) . . ... .. ... ... 90
3.2 Samples from an RBM that was trained using PCD (left) and an RB M that was trained using

CD-1 (right). Clearly, CD-1 did not produce an accurate mode | of the MNIST digits. Notice,

however, that some of the CD-1 samples vaguely resemble athee. . . . . . . . .. .. ... .. 91
3.3 Classication of MNIST data . . . . . . . . . . . . e 92
3.4 Training a fully visible MRF . . . . . . . .. .. 93
3.5 Modeling arti cial data. Shown on the y axis is approximate test data log likelihood. . . . 94
3.6 Classifying MNIST data (the number of hidden units is chosen usingvalidation data). . . 95



0.1 Introduction, contributions, and structure of this the SIS

Neural networks are among the most successful methods for eguter vision (Krizhevsky et al., 2012),
and are well-suited to take full advantage of the steadily increasingamounts of data and compute power
at our disposal. There are di erent approaches to creating neuranetworks for image recognition. One
method is creating a neural network with as much muscle as possibl@nd then training it with labeled
data (Ciresan et al., 2010; Krizhevsky et al., 2012). Another apprach starts by learning to generate
images, before trying to recognize them. That second approach ite subject of this thesis.

Neural networks can generate images in various ways. The most wally used method is that of
(probabilistic) generative models These, again, come in a variety of avours (see Section 1.5.2 in the
literature review). One contribution of this thesis is an algorithm for training probabilistic generative
models of the undirected avour. The algorithm capitalizes on a poweful interaction between learning
and exploration in such models, and is described in Section 3.

A somewhat less popular type of neural network that generates irages is (the decoder component
of) autoencoders. Unlike probabilistic generative models, vanilla autencoders are deterministic, but the
decoder component of an autoencoder can still generate di erdimages because it takes input. Usually,
that input, known as the code and produced from the input by the encoder component, is smallertan
the image that is being generated, and is intended to be in a higher le¥emore meaningful representation
or \language". All of this sounds terribly imprecise, and that's because we typically let the learning
algorithm \choose" what the representation should be. This is the @irit of machine learning and it's
good, but one can also try to combine the power of machine learning ith the power of engineering.
Section 2 describes an autoencoder where part of the represation language is engineered and part is
learned.

Section 1 is a literature review of deep neural networks.

All three chapters have their own introduction & conclusion, and can be read independently, although
more knowledge is assumed in chapters 2 and 3 than in the literatureewview.

The unifying theme in this thesis is the aim of learning good internal repesentations of images,
by learning to generate images from those internal representatizs. This is an increasingly widely
pursued area of research, which now has its own conference (thmeternational Conference on Learning
Representations). Section 3 does it with a probabilistic generative radel, and Section 2 does it with an
autoencoder.

0.1.1 Contributions

I would like to highlight three research contributions in this thesis:

The \Fast Persistent Contrastive Divergence" (FPCD) algorithm f or training undirected generative
models. This algorithm works by running an exploration alongside the taining, and uses an
interaction between learning and exploration to ensure that the exyloration component keeps
moving rapidly, without requiring the learning component to use a large learning rate. The e cient

exploration is created by developing temporary aversion to wheresr the explorer nds itself, thus

forcing it to move on.

A demonstration of a domain-speci ¢ data generation system guidiig the learning of a data recog-
nition system. This is done with an autoencoder, of which the decodes built with domain-speci ¢



knowledge, and the encoder is an o -the-shelf neural network. B training these together, the en-

coder absorbs much of the domain-speci ¢ knowledge that has beeput into the decoder. This is

useful because domain-speci c knowledge is often easier to ded as a data generation system
than in a data recognition system.

A demonstration that the power of componential systems engineéng can be combined with the
power of machine learning. The previously mentioned autoencoderamsists of about a thousand

small components that together form an elaborately engineeredystem of the kind that is usually

associated with physical or software engineering, but not with mahine learning. Many of these
thousand are learning components, which end up working togethewith the non-learning ones.
This shows that machine learning and sophisticated componential egineering can be combined
e ectively.

1Depending on how one counts, the number could come out anywhe re between a few hundred and well over a thousand.



Chapter 1

Literature review: deep neural
networks

1.1 Introduction

In recent years, the machine learning community has shown a growminterest in deep neural networks,
DNNs: systems composed of multiple groups (layers) of units, with lhe \lower" layers being connected
to the input data and the \higher" layers being for internal data pr ocessing, connected only indirectly to
the input data. Many researchers have found such systems to pform better, in practice, than \shallow"
networks, which have no such division of tasks among the di erent mits. Many of us have hypothesized
about why such networks often work better, and have performd empirical or theoretical analyses of the
nature of this advantage and how to maximize it.

Some clear and convincing conclusions have been drawn, but many gstions remain unanswered.
As in many elds of science, some groups believe rmly in the value of oa type of system, while others
believe those systems to have no future, and always deal with anber type of system. Part of the
problem, in the analysis of DNNSs, is that there are many di erent phenomena at play, all interacting.
Together with the fact that neural networks are largely black boxes, dicult to inspect, this makes
it easy to misinterpret experimental outcomes. It also makes the @cussion di cult: there are some
popular buzzwords, but exactly what phenomenon they denote is at always well agreed.

This chapter is an attempt to separate some of those phenomenat least on paper. Each chapter
deals with another component of the strategy that can be used in daling with DNNs. The value of each
of these strategies is a debated issue: they all have advantagesdhdisadvantages, and, therefore, great
fans and erce opponents. In this chapter, | do not attempt to take a stance in those debates. Instead,
| hope to get a grip on what exactly the discussions are about, andd separate questions wherever
possible. Which questions belong in the debate about unsuperviseddining, and which are instead
about generative training? Which advantages and disadvantagesame from having multilayer systems,
and which come from greedy training? Such questions are the onekadt | seek to answer, by listing, as
separately as possible, the various issues that are known to be atgy in DNNs.
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1.1.1 Success stories

Deep neural networks (DNNs) have been used with some success many di erent tasks, with many
di erent types of data. Many applications are on pixel image data, including scans of handwritten digits
(Hinton et al., 2006), photographs of toy objects (LeCun et al., 2@4), and real life photographs (Fei-Fei
et al., 2004; Torralba et al., 2007). However, many models have pr@an quite adaptable to work on data
with a time dimension, such as speech (Mohamed et al., 2009; Mohamest al., 2012), highly processed
real-valued data (Taylor et al., 2007), and video (Sutskever & Hintan, 2007). They have also been
applied to data with less easily visualizable structure, such as bag-efords descriptions of documents
(Salakhutdinov & Hinton, 2009b).

In general, DNNs seem to be most useful on high-dimensional dataith strong and complicated
statistical dependencies.

1.2 Using multiple layers

Before going into how best to use DNNs, we must consider why and when to use them.

1.2.1 Hierarchically structured data

Many types of data have a hierarchical structure. Images are, o the lowest level, pixels, but those pixels
together form edges and colour gradients. Those edges and giadts are the building blocks for simple
shapes, which in turn are the elements of more complex shapes. Tée shapes are the parts of objects,
and the objects form larger and larger groups, which eventually beome a visual scene.

For speech data, the most basic measurements are sequencesadf pressure readings. These are
typically converted to spectrograms, which, for speech, form pbnemes, words, phrases, sentences, and
eventually coherent messages.

The reason why data is often structured this way is that the world, of which this data is a fairly
direct observation, is similarly structured. Objects have parts, and the way they translate to sensory
data re ects that.

This hierarchical structure is what inspires many researchers to hild hierarchical networks to deal
with these types of data. The rst layer of units gets to interpret the pixels (or spectrograms) as lines
and colour gradients (or frequency gradients). The next layer t&es that processed version of the data,
and processes it some more, in ways that would be di cult to do on theraw data. The next layer up goes
to an even higher-level representation, etc. Or, more generallypeaking, there are high level constructs
to observe in data, that are best seen as combinations of slightly loer level constructs, which again say
how even lower level patterns relate to each other. If the data inded has such structure, then the hope
is that DNNs will be able to take advantage of it.

Seen this way, DNNs are an attempt to analyse data in the form & stucture of its underlying causes:
the structured world. DNNs represent the assumption (or \prior") that there is such a structured
underlying reality.

1.2.2 Theoretical considerations on representational pow er

Any smooth function can be well approximated by very shallow netwaks of exponential width, or very
narrow networks of exponential depth (Sutskever & Hinton, 20@). When we consider networks of less
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than exponential size, there are no \universal approximator" results, but small network depth is known
to be a limiting factor on the family of functions that can be expressel e ciently by a network of simple
units (e.g. threshold units) (Minsky & Papert, 1969; Allender, 1996, Bengio & LeCun, 2007; Bengio,
2009). Intuitively, this means that deep networks are more compliated and therefore potentially more
di cult to train, but have more potential than shallow networks.

1.2.3 Neuroscience evidence

Another motivation, for some researchers, is the evidence fromeuroscience suggesting that human and
animal brains have exactly such deep, multilayer structure. The fat that this was developed by evolution
suggests that it is a sensible approach.

1.2.4 When DNN's do not help

On other tasks, DNNs are not the best technique to use. On datahat has little structure, trying to
extract deeply hidden concepts from the data is simply not the rightway to go. On data that needs no
processing in stages, DNNs can't do much good, and the task shoulik left to more specialized methods,
such as Support Vector Machines (SVM's) (Cortes & Vapnik, 1995)for classi cation, or Gaussian Pro-
cesses (GP's) (Rasmussen, 2006) for regression. However, oomndi cult tasks with high-dimensional
input with strong dependencies, DNNs can hope to make supervisethsks easier by transforming the
input to a high-level representation, which may be easier to handledr SVM's, GP's, or other specialized
methods.

(Salakhutdinov & Murray, 2008) produced some evidence suggeisig that the task of building a
data distribution model of the MNIST handwritten digits (LeCun & Co rtes, 1998) may be one where
DNNs cannot help much: Deep Belief Networks (DBN's) (Hinton et al., 2006) no longer outperformed
Restricted Boltzmann Machines (RBM's) (Smolensky, 1986), if pleny of compute time was available
and a good training algorithm was used for the RBM. However, this nding has not been duplicated for
the supervised discrimination task.

On that same dataset, with the task of distribution modeling, | notic ed' that the representation in
the third layer of units of a DBN was very similar to that of the rst lay er, i.e. the raw data. This,
again, suggests that using multiple layers does not help much on thatask.

1.3 Training layer by layer, greedily

Once we choose to use a multilayer network, and decide on unit typeand network architecture, there
is the question of how to train it.

One could choose an objective function and try to optimize that with a numerical optimizer (such
as gradient descent). Alternatively, one could train the layers oneat a time, bottom-up, greedily (i.e.
without changing the layer parameters after training the layer). After such greedy training, full-model
training can be used to ne-tune the model parameters, e ectivdy turning the greedy training into a
heuristic initialization phase, which is why it is often called \pretraining" .

Pretraining is done using an objective function that is thought (or proven) to be related to the
objective function for the full model, but generally not the same.

1Unpublished work.
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Greedy layer-wise training can be done for feature extraction puyposes (Bengio et al., 2007), be it
unsupervised (training the layer as an autoencoder) or supervigk(training the layer as a hidden layer
in a classi cation model), or for distribution modeling purposes, be it in a directed model (Hinton et al.,
2006) or an undirected model (Salakhutdinov & Hinton, 2009a).

Many papers have used this strategy: (Hinton et al., 2006; Salakhglinov & Hinton, 2009a; Lee et al.,
2009; Nair & Hinton, 2010a; Salakhutdinov & Hinton, 2009b; Hinton & Salakhutdinov, 2006; Deselaers
et al., 2009; Mohamed et al., 2012), to name just a few.

1.3.1 In favour of greedy, layer-wise training

The main inspiration for greedy layer-wise training of DNNs is the di cu Ity of training the entire model
from scratch. The popular optimization technique of gradient desent runs into two problems. First,
if the model parameters are initialized to small values, then many traning objective functions have
small gradients w.r.t. the parameters of the lowest layers, for reaons explained in (Bengio et al., 1994).
Second, many believe that the optimization lacks the ability to changethe parameters enough to nd a
truly good parameter setting if the optimization is not started close to a good solution. Although these
two observations have been called into question recently by (Martas, 2010), they form the cornerstone
of the case for greedy layer-wise training.

A way to mitigate these problems is to use heuristics to nd paramete settings that are, hopefully,
somewhat sensible and therefore close to a good parameter setjin Greedy layer-wise training is an
attempt to do that. Not only can it yield somewhat sensible paramete settings; it will also reduce the
problem of the small gradients by eliminating the need for initialization with small parameter values.

1.3.2 Restricted Boltzmann Machines
RBM basics

One of the commonly used methods for pretraining a model layer by ger is the Restricted Boltzmann
Machine (RBM). An RBM is an energy-based model for unsupervisedearning (Hinton, 2002; Smolensky,
1986). It consists of two layers of units: onevisible, to represent the data, and onehidden. RBM's are
typically used for unsupervised learning, i.e. for modelling a probabilitydistribution over visible vectors?.
If the visible units are divided into two groups, they can also be used ® model the joint distribution of,
for example, images composed of binary pixels and their class labels.

The simplest RBM is one where all units are binary, and we focus on thiacase. However, this special
case can easily be generalized to othdrarmoniums (Smolensky, 1986; Welling et al., 2005) in which the
units have Gaussian, Poisson, multinomial, or other distributions in the exponential family. Most of the
analysis and algorithms mentioned here are equally applicable to thosether cases.

A binary RBM has three sets of parameters: a bias to each visible unjta bias to each hidden unit,
and a connection weight between each pair of a visible unit and a hiddennit.

Standard notation is to usei for indices of visible units andj for indices of hidden units. w; denotes
the strength of the connection between thei®™ visible unit and the j hidden unit. b denotes the bias
to the i™ visible unit, and g is the bias to the j hidden unit. v; denotes the state of thei™ visible
unit, and similarly h; denotes the state of thej ' hidden unit.  denotes the collection of learnable

2However, (Hinton et al., 2006; Larochelle & Bengio, 2008; Sc hmah et al., 2010) illustrate how RBMs can be used for
classi cation.
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parameters, i.e. the combination of the biases to the visible layer, th biases to the hidden layer, and
the weights between the two layers. b b P
An energy function is de ned on states: E (v;h) = vi hj wj vib h; a;. This is replaced
iij i i
by a di erent function for RBMs that have units that aren't binary.
Through these energies, probabilities are de ned a$ (v;h) = exp( E (v;h))=Z whereZ is the

normalizing constant Z = exp( E (V%R9).
vO; 10
The probability of a data point (represented by the state v of the visible layer) is de ned as the
marginal: P (v) = P (v;h)= exp( E (v;h))=Z
f f
Given a training data distribution D, the training data log likelihood objective function is ) =
ED [logP (%)]. This can be conveniently rewrittenas ( )= * () (), where *()= ED[Iog exp( E (w;h))],
k4 ¥
p i
and ()=logZ =log exp( E (v;n)). Notice that ( ) does not depend on the training data.
v;h

Gradients
The positive gradient r * is simple: r * = E [r ( E (w;n))]. For wy in a binary RBM,
v D;h P (jv)
this is: % = ED[vi P (h; = 1j¥)]. See Section 4.2 for details. It corresponds to reducing the engy
k4
of the training cases, and it can easily be computed exactly.

The negative gradient for energy-based models is = E [r( E (w;n)). For w; in a binary
vh P
RBM, this is g—w = P (vi =1;h; =1). See Section 4.3 for details. It corresponds to increasing

the energy of those con gurations to which the model assigns higlprobability; sometimes this is called
\unlearning" the model distribution. It is expensive to compute exactly; in general, not even an unbiased
estimate can be obtained in less than exponential time. Such an unbged estimate would require
samples from the model, and getting those samples is intractable. Bause it is the intractable part, this
\unlearning" is the most interesting part of the gradient.

To get an e cient approximation of r , one uses some algorithm taapproximately sample from
the model.

Contrastive Divergence

The Contrastive Divergence algorithm with 1 step (CD-1) (Hinton, 2002; Bengio & Delalleau, 2007;
Sutskever & Tieleman, 2010) is a widely used method for e ciently appoximating r . It attempts
to at least estimate the direction of the gradient somewhat accurately, even if the estimate of theige
is likely to be far from accurate. To get an approximate sample from he model, the algorithm starts a
Markov Chain at one of the training data points used to estimater *, performs some number of full
Gibbs updates (e.g. 10), and treats the resulting con guration asa sample from the model.

The algorithm has a parameter: the number of Gibbs updates that ae performed. For example,
CD-10 is where we perform 10 Gibbs updates in going from training dat to the approximate sample.

Mean eld CD (Welling & Hinton, 2002), abbreviated MF CD, is a variation on CD whe re we never
make any stochastic choices, and just substitute (conditional) pobabilities for the binary states that
CD usually works with. This has the advantage of being a deterministicgradient estimate, which means
that larger learning rates can be used safely.
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1.3.3 Disadvantages

The main disadvantage of greedy training, assuming that it is used tanitialize an optimization proce-
dure that optimizes all parameters jointly, is that it introduces mor e meta-parameters. Instead of one
optimization task, there are two - each with their own meta-parameers. If those meta-parameters of
the pretraining phase are not chosen well, the pretraining might do nere harm than good.

Another problem is that typically, the pretraining objective functio n is not the same as the nal
objective function. Sometimes, the pretraining optimizes a bound a the nal objective function, and
is therefore theoretically guaranteed to improve (a bound on) the nal objective function, though in
practice the conditions required for this guarantee are seldom metHinton et al., 2006; Salakhutdinov
& Hinton, 2009a). For supervised tasks there is no such guaranteeven in theory. This makes it all the
more di cult to choose the two sets of meta-parameters well, and nmeans that this method must be seen
as entirely heuristic, although it has consistently been found to wok well.

1.3.4 Greedy, but with more consideration for the higher lay ers to come

Usually, greedy layer-wise training means that each layer is trained i way that would be most appro-
priate if there were no other layers to be trained on top of it. For example, in (Hinton et al., 2006), each
layer is trained as an undirected top layer for a DBN, even though in he end the intermediate layers
are not used that way. An alternative is to acknowledge that most d those greedily trained layers are
going to be intermediate layers, and to try to prepare them for that task.

For lower layers in a DNN, it is important that much of the information t hat is in the data is pre-
served in the transformation that is applied by that layer. Encouraging good autoencoding is, therefore,
important in the lower layers (Tieleman, 2007; Le Roux & Bengio, 2008, while the higher layers should
focus more on modeling or transforming the data.

1.4 Unsupervised (pre)training

If the task at hand is an unsupervised task, then of course trainiig is unsupervised. However, even when
the task is a supervised one, some unsupervised training can be aapbidea. That is what this section
is about.

Training then happens in two stages: rst, the unsupervised initialization or \pre-training"”, and
second, the supervised training - much like greedy layer-wise trainig can be initialization for training
that considers all layers. Because this strategy is often combinewith the greedy pretraining strategy
and the generative training strategy, it is easy to confuse them. tldwever, greedy pretraining can well be
used without unsupervised training (Bengio et al., 2007), and unsuprvised pretraining often happens
with autoencoders as opposed to generative methods, so it can tamalyzed somewhat independently.

Unsupervised pretraining comes in two main avours: generative pretraining (see Section 1.5), and
feature extraction pretraining (e.g. using autoencoders). Some algorithms, such asOC(Hinton, 2002)
and some explicit gradient mixing strategies, have a bit of both avours.

Like greedy pretraining, unsupervised pretraining must be considesd a heuristic, because the pre-
training objective function is at best weakly related to the nal (su pervised) objective function. In
the case of generative pretraining, there is no clear theoreticalannection between the two, and it is
theoretically possible that the pretraining produces a model compleely useless for any supervised task
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(see Section 1.5.5). On the other hand, if the unsupervised pretiaing uses the autoencoder objective
function, there is some connection: both autoencoders and supésed classi cation or regression use the
intermediate layers as (typically deterministic) feature extraction layers whose task it is to re-encode the
input data in some form.

Greedy layer-wise pretraining is almost always unsupervised, so a mber of papers that claim to
have bene tted from unsupervised pretraining can be found in Setion 1.3.

1.4.1 In favour of unsupervised pretraining

The main motivation for unsupervised training is that there is much potentially useful information in the
inputs X that might be ignored by simple methods that try to learn P(YjX) immediately. For example,
in the case of image classi cation, the images themselves contain mhdnformation (images can rarely
be described by a few bits only), while the information content of thelabel is just logarithmic in the
number of classes. By taking a closer look at theX rst, one can often nd some important structure
in it, that can make P(YjX) easier to model. From looking at the X data alone, one can often produce
meaningful alternative encodings ofX . This is not an attempt to use more data, but rather an attempt
to use the available data di erently. Unsupervised pretraining is a way to emphasize structure in the X
data, in order to make better use of it.

Because there is typically much more information in unsupervised learing signals, one can use it to
train networks with many more parameters, before over tting becomes an issue. Of course this means
training with an objective function di erent from the nal one, but the hope is that a network produced
in such a way will be close, in parameter space, to a network that pdorms well on the nal task.

Unsupervised pretraining can make use of unlabeled data, and is tmefore an example of semi-
supervised learning (Zhu, 2005). An interesting example of using uabeled data from a slightly di erent
source is given in (Lee et al., 2009). For many datasets, however,insply making good use of the
information in the input data distribution has proven to be a big win over simple supervised-only
training.

Often, unsupervised pretraining is combined with other strategiessuch as greedy pretraining and gen-
erative training. This can make it di cult to isolate the merits of those individual strategies. However,
(Bengio et al., 2007) includes a comparison of greedy unsupervisedgtraining vs. greedy supervised
pretraining, and reports that the unsupervised version outperbrms the supervised version. Their hy-
pothesis is that supervised training fails to produce information-preserving feature detectors (see Section
Section 1.3.4), but of course the method may also su er from overtting.

1.4.2 Disadvantages

The same disadvantages as with greedy pretraining apply: this is heistic pretraining, with inherently
more meta-parameters, and the risk that the two training phaseswon't connect well because their
objective functions are quite di erent.

In the case of unsupervised pretraining for a nal supervised tak, the second problem shows up as
the fear that the feature extraction units created by the unsupervised pretraining will not contain the
information needed for the supervised task. In the case of a geragively pretrained multilayer network,
with the classi cation or regression using only the inferred states déthe top level units, some information
that was in the input data may simply be absent in that top layer representation (see the random bit
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experiment in Section 1.5.3).

This problem is less likely to show up if the unsupervised pretraining wasiot generative but done for
feature extraction, using autoencoders (again, see Section 1.5.3). However, even lwautoencoders, it is
quite possible that the extracted features focus mostly on partof the input that are entirely irrelevant to
the supervised task. For example, in image labelling tasks, the task igsually to label the foreground, but
unsupervised pretraining may well focus on the background (depeding on what distinguishes foreground
from background, and depending on the unsupervised pretrainingbjective function that is used).

One way to deal with that particular problem is to segment out the region of interest in the input
data. However, segmentation is another di cult task. Another me thod is to modify the input to make
the background less interesting for the unsupervised objectiveuhction, for example by eliminating big
di erences due to lighting (Nair, 2010).

However, this problem is not going to go away entirely, as long as pre&ining is done with a di erent
objective function than the nal training.

1.5 Distribution modeling versus transformation sequence learn-
ing

If one chooses to pretrain using an unsupervised objective funitin, there are two main classes of those:

generative (also known asdistribution modeling) objective functions, and transformation sequence learn-

ing objective functions, which learn a sequence of representation ansformations: each layer of units in

a DNN embodies a di erent representation of data, and the layers éweights between them embody the

transformations.

Although these are two separate classes of objective function#,should be noted that there are strong
connections between the two, and that a model trained with one ca do well on the other. A model
trained with a generative objective function does, typically, also dene a representation transformation.
Likewise, some models that are not explicitly trained as a probability digribution can still be thought of
as de ning a probability distribution (Bengio et al., 2013b; Bengio & Thib odeau-Laufer, 2013; Bengio,
2013).

If one chooses generative pretraining for a supervised task, th@ost commor? approach is to convert
the model of P(X) into a module that transforms X into another representation, and then to use that
other representation as the input to a supervised algorithm. This isdone by using a latent variable model
for the generative learning, and then using (possibly approximate)inference to go from raw input to a
factorial distribution over the latent variable states 4. That factorial distribution will specify a probability
of turning on, for each latent variable, and those probabilities are tien used as the transformed data.

1.5.1 Transformation sequence learning

Representation transformation learning is typically done with simple feedforward representation infer-
ence, and a simple noise model that de nes how to measure the di @nce between the intended output
and the actual last representation of the date.

3A common alternative is to train a generative model of inputs  and labels, and then use the posterior label probability,
given the input, for classi cation (Hinton et al., 2006; Lar  ochelle & Bengio, 2008).

4With generative DNNs, the most common approach is to use only  the latent variables in the top layer

5For general real-valued inputs, a common noise model is a sph erical Gaussian with xed variance. For binary inputs, it
makes sense to use the KL divergence between the intended out put and the Bernoulli distribution that's de ned by taking
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For pretraining with a transformation sequence objective function, we need a target output. This
can be the same as the input (an autoencoder), the same as thertget output that will be used after the
pretraining phase (Bengio et al., 2007), or simply the target outputss from a di erent but related dataset
(Sermanet et al., 2014). After training, we discard all but the rst representation transformation (or the
rst few), we use that rst transformation to re-represent ou r data, and we train a new model on the
data in this new representation.

Most such systems, in particular autoencoders, have been traimeentirely deterministically. Recently,
\denoising autoencoders" (Vincent et al., 2008) and \dropout" (see Section 1.8.4) have changed that.
These attempt to produce an encoder that is more robust to noiseby randomly setting some units'
states to O for the encoder, while still requiring that the original (now omitted) input be reconstructed.

1.5.2 Distribution modeling: directed versus undirected

Generative models can be further classi ed asindirected models anddirected models.

Undirected models

Single layer models A Restricted Boltzmann Machine (RBM, see Section 1.3.2), is a single lasr
undirected generative model.

Multilayer models The Deep Boltzmann Machine (DBM) (Salakhutdinov & Hinton, 2009a), also
used in (Lee et al., 2009) with convolutional connectivity, is an undirected multilayer © generative model.
Technically speaking, it is simply a Boltzmann Machine (Hinton & Sejnowski, 1986), but its units are
organized in layers, which enables a greedy pretraining scheme (S&flautdinov & Hinton, 2009a) similar

to the one for DBN's in (Hinton et al., 2006). The DBN pretraining scheme is not designed for training
DBMSs’, but remarkably still seems to have worked acceptably in (Lee et al.2009).

Training  The training data log likelihood gradient for undirected models is the di erence of the gradi-
ent of unnormalized data log likelihood (the \positive" component), and the gradient of the normalization
term (the \negative" component). For all but very restricted co nnectivity architectures, the negative
component is intractable and must be approximated, typically using gproximate sampling from the
model. For undirected single hidden layer models that do not include hiden-to-hidden connections, like
RBMs, the positive component can be calculated exactly with little conputation; for less restricted ar-
chitectures, the positive component can be approximated using siple \mean eld" variational inference
(Wainwright & Jordan, 2003; Salakhutdinov & Hinton, 2009a).

Mean eld variational approximation with factorial variational distr ibutions is not appropriate for
the negative component. Such a factorial distribution is unimodaf, and this is often acceptable for a
distribution that's conditional on the state of the visible units (that 's what happens when we approximate
the positive component). After all, that conditioning is typically a maj or restriction, leaving room for
essentially only one \interpretation" (state of the hidden units). H owever, the distribution of a good

the actual output as a probability.

SMultilayer neural networks are usually called \deep" neura | networks.

7In a DBM, a unit receives input from both of its adjacent layer s (if there are two adjacent layers). However, in the
lower layers of a DBN, a unit only receives input from the laye r above it (the layer of its \parent" nodes). If we use a
pretraining method that's designed for DBNs, and then use th e produced model as a DBM, those units will be receiving
input from twice the number of units for which it was designed

8For binary variables.
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generative model, not conditioned on anything (this is what the negéive component is about), tends to
be multimodal: it is trained to give high probability to a variety of training cases. Therefore, a mean
eld variational approximation is a poor choice for modeling the unconditional distribution.

The approximate samples required for the negative component came obtained in a number of
ways (Tieleman, 2008). The Contrastive Divergence (CD) algorithm(Hinton, 2002) does it by running
a Markov Chain for a short time, starting at training data. In the ca se of binary units, \Pseudo
Likelihood" (Besag, 1986) can be seen as an extreme case of CD, evh the Markov Chain transition
operator performs as few changes as possible. The \Persistenb@trastive Divergence" (PCD) algorithm
(Tieleman, 2008; Salakhutdinov & Hinton, 2009a) uses the same appach as CD except that the Markov
Chain state is maintained between gradient estimates. This has a u$el interaction with the learning
algorithm, which causes rapid mixing. This interaction is reported on and exploited further in Section
3.

Comparing undirected models to directed models Undirected layered models with the typical
restriction that there be no intra-layer connections have one mainadvantage over directed models: the
units of a layer are conditionally independent given the states of theunits of adjacent layers, which may
result in more e cient Gibbs sampling. Directed models lack this feature because of the \explaining
away" (Pearl, 1988) e ect which means that nodes in the same layeare not conditionally independent
given the state of their children.

One disadvantage of undirected models is that drawing samples froraxactly the model distribution
(not conditioning on anything) typically requires exponential time. A related issue is that gradient
estimation for training undirected models includes a \negative phasg which almost always has to be
approximated.

Directed models

Variations  Directed multilayer models include Sigmoid Belief Networks (SBN's) (Neal, 1992) and
Deep Belief Networks (DBN's) (Hinton et al., 2006). DBN's are technically a hybrid of directed and
undirected models, but here they are classi ed as directed multilayemodels, because most of their layers
are directed.

Model interpretation In directed models, the presence of lower layers does not changeet distribu-
tion described by the higher layers. Sampling from a directed modeli(e. when we're not conditioning
on anything) can be described as drawing a sample from the distribibn de ned at the top, and then
stochastically propagating that one sample through the lower layes. In SBN's, which are purely di-
rected, this sampling at the top (when we're not conditioning on anything) is trivial because the units
of the top layer are independent. In a DBN, the top two layers of urits are an RBM, from which exact
sampling is intractable.

Training  The training procedure for directed models involves sampling from pseterior given the state
of the visible units. Because this is intractable, approximate inferere is used in practice.

The approximate inference may be implemented as a Markov Chain (N&, 1992), or using variational
inference parameters (Hinton et al., 1995; Hinton et al., 2006).
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1.5.3 The dierence, illustrated by the random bit experime nt

Representation transformation learning can be quite di erent from distribution learning, as is well illus-
trated by the following thought experiment. Let the training data b e binary vectors of xed length, and
let one of those bits (say the rst one) be statistically independent from the other bits, in the training
set. What will unsupervised learning do with that bit?

An autoencoder will try to reconstruct that bit from the hidden re presentation, and will therefore
try to set one unit in the hidden layer apart for modeling this independent bit. That way, the bit will
indeed be reconstructed accurately.

A generative model will be able to describe that bit with very little modeling resources: only the
base rate needs to be noted, and most models can do this using a bia& latent variable model has no
reason to use any latent variables for dealing with this bit.

This di erence illustrates well how di erent the two objective funct ions can be.

As a result of those di erences, the latent representation foundby generative models will be uninfor-
mative about the value of that bit, while an autoencoder will try to pr oduce an internal representation
that speci es exactly what state the bit was in.

If the independent bit was random and irrelevant noise, then the inernal representation produced
by generative models is obviously preferable. If, however, the bit geci es information relevant the
supervised task, then the autoencoder is doing better. The samapplies when there is a bit that only
seemsto be independent from the other units, because the dependendeare not of a type that the model
naturally detects.

1.5.4 In favour of distribution modeling
Theoretical advantages

For some generative models (DBN's and DBM's), there are greedy lar-wise training procedures for
which the training objective function is a lower bound on the full-mode objective function. Even though
in practice these training procedures are not followed exactly, theg existence is theoretically appealing.

Empirical advantages

Many papers claim to have bene tted from generative training (Bengio et al., 2007; Lee et al., 2009;
Hinton et al., 2006; Salakhutdinov & Hinton, 2009a; Nair & Hinton, 2010a). One problem, however,
with empirically evaluating generative training is that it is often combine d with greedy unsupervised
pretraining and other methods, and the authors conclude \deep etworks are great”, without being quite
sure whether to attribute their success to having multiple layers, © having unsupervised training, to
using greedy pretraining, to using generative pretraining, to thomugh meta-parameter tuning, or to luck.
However, Bengio and Larochelle have done many reasonably contted comparisons between training
layers as RBM's using the Contrastive Divergence (CD) (Hinton, 20@) algorithm, and training them
as autoencoders, and usually the RBM method performs best. (Beio, 2009) hypothesizes that this
is because CD-1 training is closer to true generative training (in RBM'9. There seems to be a general
sentiment (see also (Hinton, 2002)) that training with the exact likelihood gradient would be best, if
only there would be a way to get it quickly and with little noise.
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More sophisticated inference

After a generative model is trained, it is often used as a method fore-encoding the data, in a (hopefully)
more semantic representation. For a generative model, this encama step is often simply computing the
conditional probability of the hidden units to turn on given that the v isible units represent the original
input. Those probabilities, sometimes computed exactly and sometiras just approximately, then become
the new representation of the original input. Regardless whethethis inference is exact (e.g. when the
model is an RBM) or approximate (e.g. when the model is a DBN), the omputation is often done
by a simple deterministic feedforward neural network. In this case the best encoding that such a
generative model could theoretically produce is the same as the begncoding that an autoencoder
could theoretically produce’.

However, when the encoding is more sophisticated than simply a detministic feed-forward (greedy)
pass, there is a clear theoretical argument explaining why generate models may well produce better
representations. If, in a generative model, proper inference is d, i.e. also taking into account the units
above a layer when choosing a state for the units of that layer, the this top-down in uence might help
disambiguate the input. Such inference, however, is rarely used (iiSalakhutdinov & Hinton, 2009a) it
is used for training).

1.5.5 In favour of transformation sequence learning
An extreme version of the random bit problem

An extreme case of the random bit example is a generative model thadoes all modeling in the rst
3 layers and does not use layers 4 and 5 at all. The inferred state ohbse top layers will carry zero
information about the input, and will therefore be useless for any sipervised task. | don't know of any
situations where something like this was observed in practice, nor wdd it be a problem if one simply
used the states ofall hidden units as the encoding. However, the thought experiment des highlight how
unsupervised training, especially generative training, uses a di erat objective function than classi cation
and can, therefore, be less-than-ideal when the application of th network is classi cation.

Generative models are hard to evaluate

Another drawback of generative models is that many, such as Signid Belief Networks (Neal, 1992),
Deep Boltzmann Machines (Salakhutdinov & Hinton, 2009a), RBM's ard DBN's, are di cult to evaluate.
Autoencoders and purely discriminately trained models come with a tactable objective function that can
be measured at any time, on the training data or on held-out validation data, to assess training progress
and compare meta-parameter settings. A generatively trained mdel that is going to be used, in the
end, for classi cation, can of course be evaluated once the entirmodel is nished and the classi cation
performance can be measured, but a rst layer cannot be evaluad this way before all other layers are
fully trained. This makes algorithm experimentation and meta-parameter choosing much more di cult.
One popular way to monitor the progress of RBM training is to track training data reconstruction
error, but that is hard to interpret well (Tieleman, 2007). (Salakh utdinov & Murray, 2008) have come
a little closer to evaluating P (x) under many generative models, but their method takes much time ad

9However, generative models have their advantages during tr aining, which means that they might end up closer to that
best possible encoding.
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is not entirely reliable. (Schulz et al., 2010) thoroughly analyses thes two diagnostics, and concludes
that neither is fully satisfactory.

In RBM's, one can track over tting directly by comparing the free e nergy of training data versus
validation data. This does not show unambiguously whether or not the validation data log probability
is increasing or decreasing, but when the model is over tting, this wll produce a warning (the problem
is that it might also produce that warning before the validation data lo g probability begins to decrease).

1.6 Preprocessing data

Some DNN users preprocess the data before giving it to the DNN. Soetimes that is necessary to get
the data in a format that can be handled by their preferred type of DNN; at other times it is not strictly
necessary but nonetheless helps by producing data that is more #ed to the strengths and weaknesses
of the DNN.

A third motivation for preprocessing is the feeling that without it, th e rst layer of the DNN will just
learn to do roughly that same preprocessing, and doing it manually sees time and reduces the required
number of layers. For example, on image data, many types of netwés learn units in the rst layer
that are very similar to Gabor Iters. On the other hand, selecting t he right instances from the space of
Gabor lters (location; scale; orientation) is a di cult task, and may still be solved best by a learning
algorithm.

(Mohamed et al., 2009) is an example of extensive preprocessing, wh signi cantly helped the
model.

(Nair & Hinton, 2010a) used preprocessing to reduce the data dimesionality without signi cantly
changing the nature of the data. The aim was to reduce compute tire.

(Tieleman & Hinton, 2009) used preprocessing to turn grey scale imge data into roughly binary
data, which was easier for the network to handle.

Subtracting the mean and dividing by the standard deviation is a simple method for bringing the
data to a standard scale.

Another commonly used preprocessing method is whitening the data Without strong pairwise
correlations in the input, the model may be able to learn something mee interesting about the data
than just the correlations that it would probably learn on unwhitened data. Principal Component
Analysis can be used to decorrelate data and reduce its dimensionajitwithout losing much information.

A completely di erent idea is to use the DNN itself as a preprocessingtep. (Salakhutdinov & Hinton,
2009b) uses an DNN to process bag-of-words descriptions of dguents into short binary codes, which
enables a simple look-up program to perform the ultimate task of, gien a new document, nding other
documents similar to it.

1.7 Numerical Optimization

Numerical optimization is the main loop in most NN computer programs, but it most papers give it
little attention: they use stochastic gradient descent, possibly wih momentum, and seem to assume that
there's little else that can be done about optimization. However, moe advanced optimization strategies
do exist, and can make a big di erence.
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(Hinton & Salakhutdinov, 2006; Martens, 2010) have shown that putting e ort into the optimization
can be well worth the e ort. (Martens, 2010), in particular, has shown that a better optimizer can
enable a whole new class of models (very deep or recurrent ones) liarn well in practice, much like
the concept of greedy pretraining (Hinton et al., 2006) did®. For those who are reluctant to switch to
another optimizer than gradient descent, there are alternativesthat might be worthwhile, such as using
short runs to carefully select a learning rate, or even a learning rag¢ schedule. The still-common attitude
that gradient descent is the only usable optimizer is simply mistaken, a (Martens, 2010) showed very
convincingly.

1.7.1 Solutions found (or not found) by gradient descent

To the best of my knowledge, researchers who train networks usg gradient descent (the de facto
standard) never reach a local optimum of their objective function Note that this casts the many
arguments about local optima versus global optima in a somewhat spicious light, and suggests that we
refrain from claiming \local optimum!" when what we really observe is the more general phenomenon
of \optimizer failure". One may plot the value of the objective funct ion and notice that it roughly levels
out at some point, but this is in no way a guarantee that no further improvement would be achieved with
more optimization: it only means that if further improvement is to be achieved, it is going to require
signi cantly more e ort. Of course this optimization failure can serv e a useful regularization, like early
stopping, but usually one wants to have more control over the reglarization than this allows.

1.7.2 Monte Carlo gradient estimates

One of the reasons why gradient descent is popular is that often th best available optimization informa-
tion is an unbiased but stochastic gradient estimate, and gradient éscent is one of the few algorithms
that don't need more accurate information.

Sometimes, like with the Contrastive Divergence (Hinton, 2002) graient estimator, this stochasticity
is an inevitable part of the gradient estimator. At other times, however, the only source of stochasticity
is the use of mini-batches. (Schraudolph & Graepel, 2003; Hinton & 8lakhutdinov, 2006) suggest a way
to combine the use of mini-batches with the use of optimizers that rquire exact gradient information.
Their outer loop is over mini-batches, and a short inner loop takes sch a mini-batch and optimizes the
model parameters for a few iterations using only the data in that mini-batch. The underlying optimizer
can be anything (such as the method of conjugate gradients).

1.7.3 Getting better hardware instead of software

An approach that has proven more popular than trying to create better optimization software, is to nd
better hardware. (Raina et al., 2009; Mnih, 2009; Tieleman, 2010)dund that many machine learning
algorithms can be accelerated greatly using machinery originally desited as graphics processors but
now somewhat specialized for scienti c computation.

10| ater, (Sutskever et al., 2013) showed that intelligent mod el initialization can be su cient in getting these same mode  Is
to work.
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1.8 Desirable unit properties

1.8.1 Sparsity

Recent empirical and theoretical ndings suggest that it is good to have units that are rarely active.
This is usually called sparsity, not to be confused with sparsity of paameter matrices.

Advantages of sparsity

(Ranzato et al., 2006; Lee et al., 2009; Nair & Hinton, 2010a), amongthers, claim to have bene tted
from sparsity, be it as a natural phenomenon or induced by adding garsity-inducing components to the
training objective function.

Interpretability The most commonly heard argument in favour of sparsity is increase interpretabil-
ity: the extent to which a unit's state is informative, e.g. for classifying the input. If a unit is active in
the latent representation of only few input patterns, then it seems more plausible that the unit responds
to something fairly speci c and hopefully identi able in the input. In a ¢ lassi er, if such a unit is active,
then that is a clear signal to the classi er as to what is going on in the irput. Compare this to a unit
that is often active. Such a unit corresponds to something that is pesent in many (say half) of the
inputs, and is therefore a less informative signal when it is oft.

Revives 'dead' units (Nair, 2010) mentions that a particular sparsity target, e.g. 5%, can help the
learning process by quickly reviving units that would otherwise be inative for all or almost all training
cases and under the model distribution. In RBM's, such units get alnost zero gradient, and thus take
a long time to develop into something more useful, when gradient desat is used.

How to make sparsely active units

Often, sparse activity occurs without explicit e ort to enforce it, especially in higher layers (see (Lee
et al., 2009) and the online demonstration of (Hinton et al., 2006)). (ee et al., 2009) reported strong
correlations between those sparse higher layer units and the imaggass label, which suggests that those
higher layer units respond to complex, semantically meaningful, rarly present features, such as large
parts of objects in the input image.

However, one may want to explicitly encourage sparsity by including smething to that e ect in the
training objective function. (Nair & Hinton, 2010a) and (Ranzato et al., 2006) present two methods for
doing so. Both use a running historical average of each unit's activit, and reduce activity when that
historical average is large, to arrive at the desired mean activity.

Another approach is to enforce sparsity with a hard constraint: by using multinomial latent variables.
(Larochelle et al., 2010) did some experiments with those, but not vy thoroughly, because the paper
was mostly about another model. However, this is more restricting han just sparsity, because it groups
the latent variables and then enforces that no more than one per up can be active. Fully general
sparsity is enforced in the Cardinality Restricted Boltzmann Machine (Swersky et al., 2012), where the
hidden units can have any state they want, as long as no more thanane speci ed numberk of them
are on.

11 However, it does turn on more often, so on average it does conv ey more information (its entropy is higher).
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1.8.2 Invariances

Invariances are highly valued by some researchers. (Nair, 2010yen describes the whole visual process-
ing task as an invariance task. The idea motivating the search for ingriances is that many types of
transformations of input can be large changes in terms of Euclidian tstance in the raw input space, but
minor changes semantically. For example, if the data is audio data, reorded from a person speaking,
then he may speak a little slower, or with a higher pitch, and thus chame the data dramatically in
terms of raw input, while still saying exactly the same words and coneying the same message. A good
listening system, therefore, has to produce some outputs that i@ largely invariant to pitch and speed.
Conversely, a system that is invariant to such features of the inptt may well be focusing on the high
level meaning. That is why some researchers attempt to force thesystems to have such invariances.

For multilayer networks, however, it is important to distinguish betw een output invariance and
intermediate representation invariance. The desired invariances i@ mostly network output invariances,
and this does not mean that the internal representation has to banvariant as well. Forcing invariances
on layers other than the output layer may, therefore, be counteproductive.

In image processing, a system may seek to have output invariant gzi cally to translation, rotation
(two or three dimensional), scale, lighting (LeCun et al., 2004), partal occlusion, or other features that
the researcher deems to be \inessential" aspects of the input. Adrnatively, a system can try to be
invariant to less well-speci ed aspects of its data, as is done in (Wiskth & Sejnowski, 2002), where
the system is trained to be invariant to whatever is changing on a shd time scale, without being told
explicitly what that is.

How to make invariant units

Some built-in exact translation invariance: convolutiona | DNN's with max-pooling Con-
volutional DNNs with pooling (also known as subsampling) (LeCun et al.,1998; Krizhevsky et al., 2012;
Abdel-Hamid et al., 2012) have some translation invariance built into their architecture. The rst several
layers of these networks are alternating convolution layers and paling layers. A convolution layer applies
a small (e.g. 5x5) local linear lIter at all locations in the preceding layer, followed by a nonlinearity like
the logistic function y = m

A pooling layer follows a convolution layer (which typically has many units) and summarizes the
information of the convolution units in a smaller number of units. A unit in a pooling layer receives
input from a small neighbourhood (e.g. 2x2) of adjacent convolutim units in the layer below. The state
of the pooling unit is either the maximum or the sum or the mean of the $ates of those convolution units.
Correspondingly, it is called max-pooling, sum-pooling, or average-poling. The e ect of max-pooling
is that the strongest convolution lIter response in a 2x2 region is pased on to the next layer, through
the pooling unit, but which of those 2x2 positions produced that strongest response is unkwn to the
next layer. Thus, the state of the units in the next layer is invariant to small translations of the input,
if they're small enough that the strongest Iter response within a pool stays within that pool and no
stronger response is moved (translated) into the pool.

However, the credit for the good performance of convolutional DINs with pooling is hard to attribute,
because these networks also use weight sharing, which is seen by npaas a good idea in general,
and the subsampling serves not only for the invariance but also to rduce the number of units in the
network, which is often desirable given the large numbers of units tht convolutional DNNs typically
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have. Unfortunately, researchers rarely choose to disentangliese e ects.

More general, approximate invariances using calculus: Lie transformation groups (Simard
et al., 1996) approximates well-de ned image transformations (sub as rotation) linearly in pixel space.
These approximations can be used to make template matchers ordure extraction systems which are
insensitive to small transformations along the invariance directions For bigger transformations, e.g.
bigger rotations, this approach fails because the e ect of the trasformation on the raw input values is
no longer well approximated by a linear function.

Brute force for arbitrary well-de ned transformations wit h few degrees of freedom (Frey
& Jojic, 2000) uses iteration to simply try a variety of transformations of the input, in an attempt to
nd one that the classi er can deal with (both at training time and at test time). This is not restricted
to small transformations, but if the transformation has many degrees of freedom, then the space of
transformations is too large to search all of it.

Using a transformation function to create more training dat a An alternative approach, when
one has a transformation function that describes the desired invdance, is to use it to create more
training data. See for example (Hinton, 1987; Simard et al., 2003; Depste & Schoelkopf, 2002; Ciresan
et al., 2010). This has the advantage that the speci cation of the nodel architecture does not get more
complicated, and that it can be done with any type of model. (Ciresanet al., 2010) took this approach
very far and achieved impressive results: they use a simple model éhritecture, but because they made
a lot of extra training data, it performs well.

Like the above brute-force search approach, the approach of aking extra data has the weakness
that only a small space of transformations can be used exhausti\g but that problem takes a di erent
form, here. As long as one can draw samples from the space of trsfiormations, one can generate a
nearly in nite dataset on the y, which on the surface may sound quite su cient. However, if it's a
large space, then learning will inevitable see only a small fraction of itand good results will require
good generalization. If the learning system is good at generalizinghten the method of expanding the
dataset using transformations can do well, as (Ciresan et al., 2018howed. However, it is less direct
than building the invariance into the model, and therefore tends to be much less e cient. That is the
main weakness of this method.

The method di ers from what happens in convolutional DNNs in an important way: making extra
data only enforces invariance at the output layer: intermediate representations are not forced to be
invariant. This can be an advantage: while the state of output units should indeed be invariant to
various transformations, it is not at all clear that the same applies t hidden units.

Breeder learning: learning to create more training data The transformation function that is
used to create additional data is usually a fairly simple one, applied diretly on the raw data, such as
translation or scaling on animagé?. In a more semantic representation of data, such as the represtation
that might be used by hidden units in a DNN (Bengio et al., 2013a), or the representation that goes into
a data generation system that's handmade for this purpose (Nair eal., 2008), far more changes can be
made that keep the transformed data looking, subjectively, reasnable. The \breeder learning" method

120r, more generally, a ne transformations.
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uses this idea to partially learn the transformation function (which generates more training data) (Nair
et al., 2008).

Breeder learning requires a parameterized black box data generat (not learned), which we can
denote as a function G:code! image The general idea is that the system learns to produce codes
that G( ) will turn into meaningful training data. The procedure starts by le arning a function H: image
I code implemented as a deterministic neural feedforward network.H () learns to approximate the
inverse of G( ), in the vicinity of the training data.

If H() is learned successfully, therG(H (x)) x for x 2 training data. When that is achieved, good
variations on training data case x can be made byG(H (x) + ), where is a random small vector in
code space, i.e. the input space d&( ) and the output space ofH (). The label of the variation can be
the same as that ofx.

In (Nair et al., 2008), G( ) is a simple computer program that uses a physical model of handviting:
it has a \pen" (which has some parameters), which is moved around ¥ springs (whose varying sti nesses
are also parameters). Thus, thecode for an image consists of a few numbers describing the pen, and
some more numbers describing the behaviour of the springs.

Writing a parameterized data generation procedure is a powerful \ay of describing data, which is
explored in a di erent way in Section 2.

1.8.3 Local connectivity

When there is a notion of relatedness between the various dimensisnin the input, such as proximity of
pixels (in the case of pixel image input), one may wish to have units thaare connected to only those
input units that represent a (small) neighbourhood. With image data this means that a unit is connected
to a speci ¢ region of the input. With audio data this could mean that a unit is connected only to those
inputs representing a small band of sound frequencies (Abdel-Haid et al., 2012). If a group of units
are \locally connected”, then the closeness measure applies to tse units as well, so the next layer can
again be locally connected.

The main appeal of locally connected units is that local connectivity inthe lower layers of an DNN
goes well with the idea of hierarchically structured data (see Sectio 1.2.1).

Another advantage has to do with the number of model parametes. If the local connectivity is built
into the model, then the model will have fewer parameters than it waild have with full global connectivity.
This can be advantageous if it helps as a regularizer. It can also spéaip the computations.

How to make locally connected units

In some situations, the learning will choose approximately local conactivity without being forced to.
Rarely will all units have local connectivity, but many latent units migh t have strong connections only to
input units in a small region. CD-1 training often results in many fairly lo cally connected units (Hinton,
2006).

Local connectivity can also be encouraged by including a componertb that e ect in the objective
function. L1 weight decay can cause locality, by encouraging units @ have few connections, which
typically end up being to units representing a neighbourhood.

Another approach to engineering local connectivity is to build it into t he model architecture, either
with parameter sharing (LeCun et al., 1998) or without (Gregor & LeCun, 2010). This can serve as
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regularization, by reducing the number of parameters, and as a goputational e ciency optimization,
because unlike with L1 weight decay, where many connections still ést albeit with strength zero, with
these methods there really are fewer connections, so the comgitons can be optimized to really skip
the eliminated connections.

1.8.4 Robustness and independence

If a unit in a network can only make a useful contribution if all other u nits in the network do exactly the
right thing, then the system isn't very reliable. In particular, it might fail to do well on data on which it
wasn't trained, i.e. data where the subtleties of how the various inpu variables go together are slightly
di erent from what they are in the training data. It would be much be tter if a unit can do a reasonable
job even if its neighbours aren't behaving exactly the way they've ben behaving on the training set.
This is the idea behind the dropout regularization method for deterministic feedforward neural networks
(Hinton et al., 2012).

The method is quite simple: every time when a gradient is computed on d&raining case, some
fraction®® of the units* in the network are temporarily eliminated, i.e. their state is set to zero so that
they don't get to do their job. This forces the remaining units to learn to operate without getting to
count on the presence of their neighbours. As a result, they leario become more independent, and
they work better in unexpected situations i.e. on test data. This has worked well with both logistic
units and recti ed linear units.

This is a great regularizer, but at test time the noise isn't helpful. At test time, we don't drop out
units 50% of the time, but instead we halve their outgoing weights. Tte e ect is roughly'® the same in
expectation.

Denoising autoencoders (Vincent et al., 2008) can be thought of aa special case of dropout, where
only the input units get dropped out.

1.9 Meta-parameters in DNNs

DNNs always have quite a few meta-parameters: there are many dices to be made about architecture
(number of layers, layer sizes, unit types), optimization strategy (learning rate schedule, momentum,
etc.), objective function (regularization constants), and data preprocessing. Sometimes, one has strong
intuitions about what strategy is best; at other times, one would ideally like to try many alternatives,
preferably in an automated fashion. In the past few years, this isse has been receiving more attention,
and some advances have been made. One of those advances is thale but e ective method of using
large clusters of computers to try many alternatives (Erhan et al.,2009). Another is the use of machine
learning itself to do the meta-parameter optimization (Snoek et al., 212; Swersky et al., 2013; Bergstra
et al., 2011; Snoek et al., 2013).

1350% is a reasonable choice in most situations.

14This includes both the hidden units and the input units, thou  gh (Hinton et al., 2012) recommends \dropping out"
only a smaller fraction (20%) of the input units.

151t isn't exactly the same because there are nonlinearities i n the network.
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1.9.1 Model architecture parameters

Model architecture has the largest number of meta-parametersand receives the most attention. Even
when we're sticking to fairly established types of networks, there & many choices to be made.

Number of layers

There seems to be little agreed wisdom as to what is a good number ofylars to use. (Hinton et al.,
2006) uses three layers of hidden units, but does not explain how #t choice was made. (Salakhutdinov
& Murray, 2008) suggests that for getting good test data log prdability in a generative model of the
MNIST distribution, more than one hidden layer (i.e. an RBM) didn't help . (Mohamed et al., 2009)
chooses the number of layers using validation set performance, drfound that for their task up to 8
layers can help.

Larger numbers of hidden layers have recently become feasible asdiccessful, because of advances in
optimization (Martens, 2010; Sutskever et al., 2013). However,here are still no clear conclusions about
this question.

Width of layers

Usually, all layer sizes are of the same order of magnitude, unless¢he are very speci c reasons to make
them di erent, such as in (Salakhutdinov & Hinton, 2009b). (Hinton et al., 2006) uses a top layer that is
signi cantly larger than the other layers, to have a powerful geneative model'®. In general, large layers
often help, but the question is which layers bene t most from the adlitional compute resources required
to train large layers. (Erhan et al., 2009) suggests making all layerhiave the same size, which seems to
work reasonably well and eliminates some meta-parameters. On thether hand, one must keep in mind
that not all layers serve the same purpose.

Unit types

The most commonly used unit in DNNs today is still the logistic unit!’, which produces outputs in
the range (G 1) through the function (x) = m However, recti ed linear units (Nair & Hinton,
2010b; Krizhevsky et al., 2012) are less susceptible to the problenf @anishing gradients, and are gaining
some popularity. Another idea that is being experimented with (including in Section 2) is a unit that
squares its input.

1.9.2 Meta-parameter optimization
Tweaking by hand

Still the most common approach is to optimize them by hand, and simplyreport the chosen value (or to
not mention anything at all in the paper). This method is a natural extension of tweaking the algorithm

161n a DBN, one may view the top layer as generating high-level d escriptions of data, and the other layers as a program
for turning those descriptions into the right data format. W ith this interpretation, the nding that the top layer had to
be bigger in (Hinton et al., 2006) suggests that the task of ge nerating high-level descriptions of handwritten digit ima  ges
with an RBM requires more units than the task of translating t  hose high-level descriptions into pixels. To an extent this
agrees with the set-up that ended up working best in Section 2 .

17The tanh variation, which has a range of ( 1;1) through the function tanh( x) = % = (2x) 2 1, is also
popular.
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itself by hand, and requires few experimental runs and no additionaprogramming e ort. That often
makes this the only feasible method for experiments that require lage amounts of computation.

However, being only weakly separated from algorithm design, it incrases the risk of inadvertently
tuning to the test set For large training and test sets drawn from the same distribution, this cannot
really be much of an issue, but for small test sets it might. Machine leening competitions now solve this
problem by publishing training and validation sets, but keeping the teg set secret and allowing only a
limited number of model evaluations on the test set.

Another drawback of hand-tuning meta-parameters is that metaparameter sensitivity goes unnoticed
to the readers of the paper, and quite possibly to the researcherimself.

The third problem with this method is that the researcher does not know well whether the chosen
meta-parameter settings are close to optimal - unless he puts a lobf time into investigating them
carefully.

The problem that most discouraged me from this approach is that it @n take quite a bit of the
researcher's time.

Grid search and random search

The next least programming intensive approach is to do a grid searclover some meta-parameter values,
as was done quite massively in (Erhan et al., 2009; Pinto et al., 2009). His method requires a bit
more programming e ort, but not much: it involves little more than a f ew nested loops, and some
outcome visualization e ort. This approach has the advantage tha meta-parameter interactions and
sensitivity can be identi ed, and that there are more optimality guar antees. Also, because it requires
more programming e ort, researchers are more likely to remembeto do meta-parameter selection based
on a validation set, instead of the test set.

The obvious disadvantage of this method is that it requires many rurs to be performed, and that
the number of meta-parameters that can be tuned is only logarithnic in the number of runs. For toy
problems this solution may work ne, but for larger experiments, only a few meta-parameters can be
tuned well.

A big improvement on grid search is random search, which is not more iccult to implement. It
may sound rather trivial, but it can be much more e cient (Bergstra & Bengio, 2012). Imagine there
is a meta-parameter that, in practice, has no e ect. Grid search vould su er a lot from adding this to
the collection of searched meta-parameters. Random search, dhe other hand, wouldn't su er at all.

More sophisticated automated meta-parameter search

Grid search and random search have the advantage of being autamted, that many machines can be
used, and that experiments can proceed without the research&rintervention. However, they are clearly
not ideal. Imagine that a setting a; for meta-parameter A never seems to work well, and the same for
some settingb; of meta-parameter B. Then it seems pointless to perform the run hat combinesa; and
by: more promising values should be given priority in the search. Such heistics can be implemented
in computer programs, to some extent, for example using non-pametric regression methods to predict
both the performance of meta-parameter settings and the variace of that performance. This method
was used in (Tieleman & Hinton, 2009), and has recently been studietar more thoroughly (Snoek et al.,
2012; Swersky et al., 2013; Bergstra et al., 2011; Snoek et al., 2013
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The advantage is that the search is performed more intelligently. Tke disadvantage is that it requires
more programming e ort. However, e orts are underway to make proper software packages for this;
clearly, this is not something that every researcher should have tamplement on his own.

1.10 Conclusion

DNNs currently enjoy great popularity, but are di cult to study sy stematically. The reason is probably
that they are di cult enough to get to work well, let alone study them with thoroughly controlled
experiments and theoretical investigations. Large numbers of nta-parameters, long run times, and the
black box nature of neural networks, are signi cant obstacles.

Thorough empirical analyses, such as (Erhan et al., 2009), are of liited relevance because they
necessarily involve shorter runs than the long runs that are moreypical of research in practice.

The large number of meta-parameters means that everybody's @eriments are di erent in at least
a few ways, and therefore di cult to compare.

Theoretical results can sometimes lead to, or support, importantinsights. Often, however, the bounds
that can be proven are too loose to be relevant for practitioners.

It is often tempting to draw grand conclusions, and generalization isof course part of a scientist's
task. However, the above di culties have meant that many conclusions about DNNs had to be revoked
later on. Learning by CD gradient estimation works, but not, as one might have initially thought,
because one step of Gibbs sampling is enough to get reasonable sd@sgrom the model. Learning using
Persistent CD (Tieleman, 2008) gradient estimates works, but notbecause there is su cient mixing
in that Markov Chain (Tieleman & Hinton, 2009). Learning using variat ional inference works, but
not necessarily because the inference is close to correct. Ratheahere is a subtle interaction between
the learning and the gradient estimation, which makes the inferencecorrect, or in the case of PCD
makes the mixing work. Also, it is my experience that the simplest of saity checks, like histograms of
unit activities and gradients, often produce highly unexpected ndings. All this should caution against
drawing conclusions, however appealing they may be.

Despite these obstacles, considerable progress is being made in smdvimportant practical problems.
Classi cation performance of carefully manually tuned algorithms on sometimes somewhat arti cial
datasets may not be exactly the \meta objective function” that one truly cares about, but it can serve
well as a rst Iter. New models are being proposed frequently, andbit by bit their properties are
learned, even if only by observing on what types of datasets and &ks they work best. For now, this
is a useful way to continue. However, continued investigation of tle e ects and interactions of all those
meta-parameters, as is happening in research today, is the right ay forward.



Chapter 2

Autoencoders with domain-specic
decoders

2.1 Introduction

This chapter describes a method of learning to understand imageshat is based on learning to generate
images from small codes.

2.1.1 General idea

This approach is based on including domain-speci ¢ knowledge in the leaing system. Adding domain-
speci ¢ knowledge to neural networks is quite a common practice, iad often leads to improved perfor-
mance. Machine learning combined with human knowledge is, apparelyt more powerful than machine
learning alone.

Building knowledge into a data recognition system

In image processing, the most ubiquitous example of this practice ishte use of convolutional networks
with pooling (see Section 1.8.2). We believe that in the lowest layers, fure detectors should be local
and should be doing more or less the same in every location, so we ferthis replication. If we also
believe that some invariance to location is desirable, we add pooling toofce this invariance.

In audio recognition, most systems use a lot of domain-speci ¢ knowedge: the Fourier transform,
Cepstral transform, and sometimes convolution over the time (Lang et al., 1990) or frequency domains
(Abdel-Hamid et al., 2012). Some of this is data preprocessing; sond it is built into the neural network
architecture.

The above are examples of the most obvious approach to using donmaspeci ¢ knowledge for building
a data recognition network: simply build the knowledge into that data recognition network.

Building knowledge into a data generation system

In this chapter, | study an alternative: building the knowledge into a data generation system, which can
then guide the training of a data recognition network. This approad is called analysis by synthesis It

25
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was described by (Halle & Stevens, 1959; Halle & Stevens, 1962) ftlhe domain of speech data, and
has been used in many machine learning models. Autoencoders andgabilistic generative models
(especially causal ones like SBNs) clearly embody this principle. In coputer vision the approach is
ubiquitous, with Active Appearance Models (Cootes et al., 2001) beig an elegant illustration of its

power (see also Section 2.8.1). (Nair et al., 2008) takes the idea fumér by treating the data generation

system as entirely a black box.

Recently, the work on transforming autoencoders started to intoduce more speci ¢ network archi-
tecture ideas in autoencoder-like systems (Hinton et al., 2011). Té approach of that paper inspired the
work presented in this chapter. Its central innovation is to introduce a type of composite unit in the
code layer of an autoencoder. These composite units contain notigt one value, but a xed number of
values (3, in that paper), with enforced interpretations as a triple of ( x, v, intensity), describing the
appearance of a visual component of the image, like an edge. Thesaits are called \capsules" because
they encapsulate a fully detailed description of one visual componén A model typically has a modest
number of such capsules (like 30), each describing its own visual cgunent.

The question is of course how to enforce the interpretation of 90@de units as 30 3 capsule descrip-
tions. The main method that (Hinton et al., 2011) uses for this is to slichtly modify the way the training
data is presented to the model. The work presented in this chapter takes a di erent approach: the
data is presented in the standard autoencoder fashion, the ender is general-purpose, but the decoder
is speci cally designed for the concept of visual capsulés

More concretely, this means that the extraction of a \code", i.e. adescription of the image, will be
performed by a general-purpose neural network, while the recatruction of the image from the code
will be performed by a system that has been enriched with knowledgéhat is speci ¢ to the domain of
visual data.

The motivation for this approach lies in the fact that human knowledge about image generation
is easier to describe to a computer than our knowledge about imageecognition. Put more plainly,
engineered computer graphics is easier than engineered computégsion. The proposed method consists
of a general-purpose encoder network, which learns to producewector graphics® description of the input
image (i.e. computer vision), and a domain-speci ¢ decoder that reders the vector graphics, producing
the output of the system (i.e. computer graphics). Together, the two form an autoencoder: the learning
tries to make the rendered output as close as possible to the inputSee Figure 2.1. We tell the system
(part of) how to verify that a particular vector graphics descript ion is an accurate description of the
input image. Theoretically speaking, that doesn't guarantee that we can also extract a good description
(unless P=NP), but we can train a powerful encoder to do that job quite well.

1The paper also uses some capsule-speci ¢ architecture in bo th the encoder and the decoder.

2Capsules can be applied in this fashion to any type of data for which we can describe a process that generates such
data from parameter values. (Jaitly & Hinton, 2013) does it f  or speech data.

3The expression \vector graphics" may suggest that it deals o nly with straight lines, but straight lines are only the
simplest form of vector graphics. In general, vector graphi cs refers to math-heavy descriptions of images, and is usual ly
contrasted with raster graphics (a.k.a. bitmaps). The mode | of this chapter describes images using such concepts as
rotation and shearing, and makes good use of the mathematica | properties of those operations for the purposes of learnin g
and describing recursively structured objects. Linear alg ebra is an essential ingredient of this technique, so it must be
called vector graphics. However, it should be noted that vec tor graphics is a broad category that includes many di erent
techniques.
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Figure 2.1: The computer graphics-based autoencoder
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Interpretation as a sparse-code autoencoder

A second motivation is found when one looks at sparse coding (Olshaen & Field, 1996). As an
autoencoder, this is more or less the following: a regular autoenced, with a single hidden layer,
that has been forced to use sparse codes. After training, eactode unit in such a sparse autoencoder
has a xed* contribution that it makes to the reconstruction whenever it's activated. Those standard
contributions are di erent for each code unit, but when one visualizes them for all code units, one often
sees that many units' contributions are almost the same. For exarple, there might be 100 units that
each contribute a straight line, the only di erence being just a minor change in location or angle, or
some other di erence that may be quite signi cant in terms of squared di erence in pixel space, but
that to the human eye looks like a semantically nearly insigni cant di er ence. Alternatively, and more
commonly, there will be many units that are all slightly di erent Gabor lIters.

If one uses such an autoencoder to create descriptions of imagder further processing by another
system, all of this near-replication feels sub-optimal. Instead of dscribing which one of 100 minute
variations on the concept of \a line" is found in the image, it would be beter to describe what location,
rotation, etcetera, is applied to one basic version. That would coney the meaning in a distributed
representation, with higher precision, and would be better for thenext stage of processing. That is
exactly what the capsules-based autoencoder is attempting to prduce.

As a result, we nd much less of this kind of replication in the decodef. Even more strikingly, the
decoder units don't learn Gabor lters at all. This suggests that all t his replication, and even the Gabor
Iters as a concept, are no longer necessary because we addedrgmeters for the location and other
attributes of the decoder units®.

Final use of the system

After the autoencoder has been trained, we discard the decodéthe graphics program), and are left with
an encoder network that produces vector graphics descriptionsf images. A vector graphics description
of an image is easier to interpret, for a computer, than a pixel arrg description of the same image. We
can use these descriptions as input to another learning algorithm, iging it an easier job than it would
have if it would use the pixel-based description as input. An example othat is demonstrated in this
chapter.

2.1.2 Purpose of this work

The purpose of this project is not in nding the solution to an applicat ion-level task. Instead, it is a
proof-of-concept, the concept being the use of a partially hardcoded data generation system to train

40r almost xed: a code unit's activation can be quanti ed by a scalar, representing the extent to which the unit is
activated. The standard contribution to the reconstructio  n is then multiplied by that scalar.

5Part of the decoder is handmade and xed, but the typical cont  ributions to the reconstruction, now called \templates",
are learned, and what they learn has little of this repetitio n.

6Gabor lters as output units have several strengths. One str  ength is that they're useful for slightly moving over edges
in the output: adding a multiple of a well-chosen Gabor Iter to an image has the e ect of slightly moving an edge.
Another strength of Gabors is the way they can be combined lin early. After one Gabor unit has moved an edge a bit,
another Gabor can move it some more, or move it back a little. T  hus, high precision in terms of location can be achieved
by linearly combining multiple Gabors. In mathematical ter ms: a Gabor is a localized sine wave, and linear combinations
of out-of-phase sine waves can make sine waves of any phase. Thus, if your output units are required to operate in a xed
location, Gabors are an excellent choice, because linear co mbinations of them can be used to approximate a (slightly)
variable-location Gabor. However, when output units are no  longer restricted to one location, this trick of combining
Gabors no longer adds value. This may be the reason why allowi ng translation made the Gabors disappear: the model no
longer needs to restrict itself to output units that can be sl  ightly moved by linear combination.
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a data recognition system. | implement the data generation systemas a component in an otherwise
standard machine learning set-up (an autoencoder), and show tit it leads to good data recognition.

In the process, | implement a sophisticated partially-learning data generation system in an autoen-
coder, which is then trained using gradients. The next twenty page are full of diagrams describing
the data generation system. | describe it one component at a timepecause it's too complex to draw
the details of all components in a diagram that comfortably ts on one page. The computer program
implements that system and therefore has an internal organizatia that's essentially the Python version
of these diagrams. Computer-assisted di erentiation of the entie system then allows a gradient-based
training approach.

Thus, the second take-home message for the neural networkesearch community is that it's quite
doable to create systems in a gradient-based learner that are martimes more complicated than typical
neural networks. The most complicated neural networks combinalropout, multiple layers, convolution,
pooling, and perhaps a few more tricks, but this still rather bleakly contrasts with the sophisticated
componential systems that engineers in every other discipline useThat di erence may lead one to
conclude that neural networks are unsuitable for sophisticated dsigned structure. This work proves
otherwise: we can create systems that have both the sophisticatl componential structure that other
engineers take for granted, and the ability to automatically train most of the components using a dataset.

To enable this combination, a few guidelines must be kept in mind. First & all, the entire system
must always be di erentiable. Second, we must ensure that as the ipdients are propagated through the
various components, they don't vanish or explode too badly. Third,we must use a numerical optimizer
that can learn dozens of di erent groups of parameters at the sme time, all of which have di erent
semantics, which usually leads to di erent gradient characteristics Optimizers that use, for example, a
single xed learning rate, are ill-suited for such a task.

2.2 The encoder

The encoder is emphatically not the crucial ingredient of this model. Most of this project is about how
to give the decoder the tools to generate data from small meaningf codes. However, an encoder is still
needed, so here's what | did.

For the encoder | used a deterministic feedforward DNN. Its inputis the original image; its output
is an attempt at a vector graphics description of that image, in the language that the decoder requires.
It is a fairly standard neural network. No part of the encoder is specialized for this task; no part of it is
particularly innovative; and the details are not central to the contribution of this thesis. The fanciest bit
of it is that | used dropout (see Section 1.8.4) for regularizatior, and skip-layer connections for e cient
learning.

Of course, just saying that the encoder is a feedforward DNN leaas many things to be decided: the
number of layers, the type of units, regularization details, etc. | dd not investigate all of these very
extensively, because the de ning component of the system is nothe encoder but the decoder. Here, |
describe the encoder architecture that | ended up using, withoutclaiming that it is the best possible for
the task. The reader is encouraged to skip these details for now,nal focus rst on understanding the
decoder.

A diagram of the encoder is shown in Figure 2.2. For details, read thedilowing subsections.

70n MNIST, it made for signi cantly better reconstruction an d classi cation performance.
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I did very little experimentation with the encoder architecture, because the emphasis of this work is
on the decoder, and the encoder was working just ne. Howevelin an impressive case of \don't assume
that you know things without having tried them" &, a simple one-hidden-layer encoder (with the same
total number of units, all logistic) turned out to work just as well o n the MNIST dataset. This strongly
supports the idea that the sophisticated decoder is indeed the crial ingredient. However, | still believe
that computer vision is not an easy task for a neural network. MNIST and TFD aren't quite complete
computer vision tasks: they're small, they're grey scale, and MNISTis particularly easy because most
pixels are near-saturated. High-resolution RGB images of interesitg scenes are more challenging. For
such future work, | suspect that a more sophisticated (multi-laye) encoder will make a big di erence.

2.2.1 Number of layers and connectivity

Having three layers of units between the input (the image) and the aitput (the vector graphics descrip-
tion) worked well.

This means that there are four layers of weights: input! hiddenl, hiddenl1! hidden2, hidden2!
hidden3, and hidden3! output. To avoid the problems of vanishing gradients, | added skipeonnections
from the rst two hidden layers straight to the output. Thus, if th ere would be vanishing gradients, at
least the chain input! hiddenl! output would still learn (it's not that deep), and after that's learne d,
hiddenl would have meaningful values, so the chain hiddenl hidden2! output can be learned, etc.
These skip connections made a big di erence in reconstruction ermoand in classi cation of the MNIST
dataset: with skip-connections the error rate was around 1.7%, ad without skip-connections it was
9.9%. It should be noted that with proper initialization (Sutskever et al., 2013), skip-connections would
probably not have been necessary.

2.2.2 Layer size and type

After some exploration, | found that a decent set-up is to have rst, two hidden layers of units that
use the logistic nonlinearity, and then a third hidden layer of units with a squaring nonlinearity®. For
simplicity, all three of those layers have the same number of units.

Some exploration showed that a total of 2,000 hidden units is a decérchoice'®, so each hidden layer
has 666 units.

All of this could probably be tweaked for better performance, but these values are simple and work
well enough. Again, the encoder is not the de ning component of tke system.

2.3 The code language and the decoder

The decoder architecture is engineered using domain-speci ¢ kndedge. It is designed to decode codes
in a speci ¢ code language; a speci c type of vector graphics desigtion. That language and the design
of the decoder are described in this section.

8My thanks to Radford Neal and Rich Zemel for requesting this.

9The system also works quite well with exclusively logistic u  nits, but using squaring units in that third layer did reduce
the MNIST classi cation (see Section 2.6.6) error rate from  2.4% to 1.7%.

10\ith a total of 1,000 hidden units (instead of 2,000), MNIST ¢ lassi cation error rate went from 1.7% to 6.4%.
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Figure 2.2: Component: a general-purpose neural network with dspout (GPNN). It's a fairly standard
DNN, with dropout, skip-connections, and two types of units. All connections are global: there are no
restricted receptive elds, and there is no weight-sharing (of couse this could be added). The output
layer simply adds up all input that it receives. When this system serve as the encoder section of an
autoencoder, the original data is the input, and the \code" will be the output. In our case, the \code"
consists of the pose of all capsules in the model.
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2.3.1 Capsules in transforming autoencoders

Because the decoder for this work is quite elaborate, it must be intnduced step by step. The rst step is
the work of (Hinton et al., 2011), which introduces the concept of a\capsule". A capsule serves roughly
the same purpose as a unit in the code layer of any autoencoder, bis more sophisticated and thus
serves the purpose more e ectively. In particular, it contains more than just one value, and the designer
of the system imposes an interpretation on the various values.

In (Hinton et al., 2011), a capsule represents a component of an ingg, like an object in a scene, with
a speci ¢ location and brightness. Thus, the capsule contains thre values, which together make up the
\pose" or con guration of the image component: X, y, and brightness. Since this pose includes not only
the geometric position but also theintensity, we might call it an \iPose".

Also, every capsule has a learned image \template" associated with ita platonic ideal of the object.
This template is constant, but its appearances vary: it shows up atdi erent locations and with di erent
brightness values. In the decoder, the capsule essentially copiehe template into the model output,
at the location and brightness that are speci ed in the three code alues a.k.a. the \pose". Thus, the
\computer graphics-based" decoder is limited to taking a xed template per capsule, translating it in
2D, and multiplying it by an intensity. The pose is di erent for each dat a case and is produced by the
encoder in a parametric way. A capsule's template, on the other had, is the same for every data case,
i.e. it is a learned constant and does not come from the encoder.

It is important to carefully distinguish between a capsule's instantiation and its intrinsic nature. The
intrinsic nature is just the template. This is learned, but after the m odel has been learned it becomes a
constant. While the model is learning, it is constant in the sense thatit's the same for every data case.
The instantiation, on the other hand, is typically di erent for di ere nt data cases.

2.3.2 More powerful capsules: enabling full a ne transform ations

The next step is to add more parameters to the pose: instead of gt translation and intensity (2+1
values), capsules now allow general a ne transformations and inta@sity. Thus, they have 6 + 1 values
in their pose: six for the details of the a ne transformation, and, a s before, one for the intensity.

This adds much exibility to the system. The capsule can now projectits template not only in any
location and with any intensity, but also with any scaling (along two axes), rotation, and shearing.

This brings us much closer to the way computer graphics systems wk. In a computer graphics
system, a scene is described as a long list of objects, each with its pwransformation. Those transfor-
mations are described by homogeneous coordinate transformatiomatrices in three dimensions. In this
work, we use just two dimensions to keep things simple, but the priniple is the same.

The reason why computer graphics systems use homogeneous ddinate transformation matrices is
that they are incredibly convenient. To combine the e ects of multiple transformations, one only needs
to multiply their matrices. This makes it easy to use objects that are composed of parts, recursively if
necessary. To get the position, orientation, scaling, etc., of a parof some composite object, one only
needs to multiply together two matrices: rst, the matrix that des cribes the coordinate frame of the
composite object with respect to the global coordinate frame; ad second, the matrix that describes
the coordinate frame of the part with respect to the coordinate fame of the composite object. Matrix
multiplications can be built into a di erentiable graphics-based decode in an autoencoder, so all these
possibilities become available when capsules understand full a ne trasformations. In Section 2.3.4, the
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convenience and success of this approach is demonstrated.

Of course, the decoder in our learning system is humbler than a fulleale modern computer graphics
system. This decoder does not deal with three-dimensional grapts, with lighting, with atmospheric
in uences, etc. In principle, nothing prevents that, but more compute power will be needed before all
of that can realistically be done.

A diagram of the rendering (output generation) process of a simplglatomic) capsule is shown in
Figure 2.3; details are described in the following subsections.

Multiple coordinate frames

The computer graphics framework is essential, especially for the syem that uses composite objects, so
| must introduce some computer graphics notation now.

The central concept is that of a coordinate frame. In computer gaphics, coordinates are three-
dimensional, but having only a two-dimensional world does not chang¢he underlying ideas.

The most obvious coordinate frame is that of the world. One can thirk of this as the most o cial or
absolute coordinates, like GPS coordinates. An insight that made cmputer graphics much easier was
to accept that this is not the only coordinate frame worth thinking about. We also have the coordinate
frame of an object (composite or atomic), and the viewer's coordiate frame.

Each of these is a di erent set of axes: they can all be used to desbe the same locations, but the
descriptions will look di erent. If we use homogeneous coordinatesthe translation between coordinate
frames becomes a matrix-vector multiplication. In a two-dimensiond world, a location is normally
described by just two numbers,x and y, but using homogeneous coordinates, those are made the rst
two values in a vector of three. The third value will always be 1 (that's a bit of a simpli cation, but for
the purposes of this work it will do).

To translate a location description from object coordinates (hom@eneous) to world coordinates

(homogeneous), we simply multiply the coordinate vector by the (ohect! world) transformation matrix.
If we then wish to know where that location is in the viewer's eld of vision, we multiply that world
coordinate vector by the (world ! viewer) matrix. Because these two transformations are both lineg
the composite transformation is linear, too, and is described by thgobject ! viewer) matrix, which we
get by multiplying the (object ! world) transformation matrix and the (world ! viewer) transformation
matrix. Naturally, the reverse transformation is obtained by multip lying by the inverse of the matrix:
(viewer ! object) = (object ! viewer) 1.

Because the third value of every coordinate vector must be 1, thehird row of every coordinate
transformation matrix must be [0; 0; 1], leaving six degrees of freedom.

The autoencoder in computer graphics language

Using this computer graphics framework, the autoencoder can beescribed as follows.
The templates are the objects. In their own coordinate frame, tley are of unit size, i.e. a template
pixel that's right in the middle of the template is at position (0.5, 0.5) in t emplate/object coordinates.
The geometric part of the pose, i.e. the a ne transformation (6 degrees of freedom), describes the
transformation between the object coordinate frame and the wdd coordinate frame, which is also the
camera coordinate framé!. This coordinate frame is also of unit size: an output pixel right in the middle

11n this simpli ed computer graphics system, having a separa te camera coordinate frame doesn't help. If we would
have a separate camera coordinate frame, the step from the ob ject coordinate frame to the nal (camera) coordinate frame
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Figure 2.3: Component: Atomic capsule rendering (ACR). \iGeo posé& means a pose speci cation that
includes both the intensity transformation multiplier and the geometric transformation matrix. The little
circles on some lines, and their attached square gures, illustrate ma example of the type of message that's
passed through that line in the system.
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of the output is at world/camera coordinates (0.5, 0.5).

Transformation representations

There are several ways in which the pose could de ne the transfonation between the object coordinate
frame and the world coordinate frame.

Perhaps the most intuitive approach is that the six pose values thatare dedicated to the geometric
transformation are simply the rst two rows of the 3x3 matrix (obj ect! world). The third row is xed
to be [0; 0; 1]. That way, it directly tells us where a pixel of the template ends up in the output image.

However, there are other, better, representations.

The renderer-friendly approach

Rendering really requires the opposite of the above: given a pixel lation in the output image, it needs
to know where in the object(s) to look to nd out what to draw in tha t output pixel. The corresponding
location in the object frame (the template image) will typically not be integer, so we use a bilinear
interpolation of the four surrounding template pixels.

Thus, what the renderer really needs is the (world!  object) transformation matrix. Of course that's
simply the inverse of the (object! world) matrix, and matrix inverse is a di erentiable operation, so in
theory it doesn't really matter which is represented by the pose. Havever, in practice, matrix inverses are
best avoided. Having a matrix inverse in the decoder means that thee can be unpleasant boundary cases
and near-boundary cases which would lead to large gradients. Thefore, it's better that the geometric
transformation part of the pose directly represent (the rst tw o rows of) the (world ! object) matrix.

The human approach

There is an even better way to represent transformations. Findirg the natural representation of things
is the theme of this entire research project, and geometric trarfermations, too, have more natural
representations. How would a human like to describe the transforration? He might say something like
this: \Okay, we have this template. We're going to rotate it 30 degrees counter-clockwise, shear it to
the right 1%, then scale up horizontally by +120% and vertically by +15%, and then we're going to
move it into the upper right corner of the output.” That's quite dier ent from writing down the rst
two rows of a homogeneous coordinate transformation matrix. ltstill involves six degrees of freedom,
but they're expressed in a much more intuitive way; much easier for bmans to deal with. Experiments
showed that it's also easier for a neural network. Perhaps it wouldi make a di erence if we used a
highly second-order-aware numerical optimizer like (Martens, 20Q@). However, with the relatively simple
optimizer that | ended up using, disentangling the factors of variaton this way certainly worked quite a
bit better.

would proceed via an intermediate coordinate frame (the wor Id frame), but there's no reason why the model couldn't
simply learn to make the world and camera frames identical, o0 r make the object and world coordinate frames identical.
Normally, in computer graphics, we're dealing with a largel vy static world in which it makes sense to have objects in a
standard con guration (aligned with the horizon) and a movi  ng camera which is less restricted. However, in this simpli  ed
situation, we do not have that.
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The order of the transformations

The more intuitive transformation description above describes the(object ! world) transformation as
a composition of four elementary transformations: rotation, sharing, scaling, and translation, in that
order. This sequence of transformations is implemented as a sequee of multiplied transformation
matrices; an illustration of the process (including some additional déails which are explained later) is
included at the end of this section in Figure 2.4.

The order matters here, i.e. these four transformations are noall commutative. To illustrate this,
consider a rotation of 90 degrees clockwise, and a translation of 1fhits to the right. If we apply rotation
rst and translation second, as the above example does, then (0)ds translated to (10,0). However, if we
rst apply translation, which takes (0,0) to (10,0), and then rotat ion, we end up at (0,-10). The rotation
still means that the object will be turned, but the translation now m eans something quite di erent, and
less intuitive. This interaction is undesirable and can be avoided by aplying the rotation before the
translation. In fact, translation non-intuitively interacts with the other two elementary transformation
(scaling and shearing) as well, so it must be applied as the very last.

Avoiding inverses

Thus, the human-style transformation description makes two impatant choices. First, it chooses to
describe the (object! world) coordinate transformation, instead of the (world ! object) coordinate
transformation that the graphics renderer would prefer. The seond choice is the order of the primitive
transformations: rst rotation, then shearing, then scaling, and nally translation. There is some
justi cation for that order, as described above, but it is to an extent arbitrary. For example, | cannot
think of any compelling argument for why rotation should come befoe shearing. | chose to write the
example with this speci c order because experiments with the autorcoder showed that it was the order
that was most convenient for a neural network. However, with hirdsight it's clearly also a reasonable
choice.

Of course, we still want to avoid inverting anything: the inverse of ascaling transformation involves
a division, and divisions aren't pleasant when one needs well-behavedaglients. The solution is to
construct the (world ! object) transformation matrix after all, but to do so using these insights about
what makes for a learner-friendly representation. The (world! object) matrix is the inverse of the
(object I world) matrix, so we must reverse the order of the elementary trasformations: the (world
I object) matrix will be constructed as the product of these four matrices in this order: a translation
matrix; a scaling matrix; a shearing matrix; and a rotation matrix. Wit h this decomposition, the fact that
it's the (world ! object) transformation instead of the more intuitive (object ! world) transformation
is not very troubling anymore: for example, the (world ! object) rotation transformation in radians is
simply minus the (object! world) rotation in radians, and having to change the sign of its output does
not burden a neural network.

Learning logarithms vs. learning raw values

The scaling values are multipliers, and the most natural represention for multipliers is as their loga-
rithm. It would make sense, therefore, to include in the pose not tle scaling values, but the logs of those
values.

| tried that and it didn't work well. One of the problems is that when the scaling value and its log



Chapter 2. Autoencoders with domain-specific decoders 37

get large, the gradient for the log gets large, too. Another problen occurs because of the practicalities
of training this model using a GPU: when the network learns a bit too eagerly and then makes one
big mistake on one unexpected data case, producing a large log scalivalue, the scaling value itself
can become too large for a 32-bit oating point number in a computer If one doesn't write various
complicating exception rules, this leads toinf and nan values in the model, which is unacceptable.

Therefore, | chose to include not the log of the scaling multiplier, butthe scaling multiplier itself, in
a capsule's pose. This means that it's more di cult to learn extremely small or extremely large scaling
values, but it still worked in practice.

Choosing the origin

If you take an image, in a coordinate frame where the lower left corar is the origin, and you decide
to rotate the whole thing counter-clockwise by 90 degrees, the imge ends up not only rotated but
also moved a lot. The same applies if you decide to scale or shear it. This counter-intuitive, and
therefore not ideal when a person has to design transformationsExperiments veri ed that it is similarly
problematic when a neural network is designing them.

All of these problems get much smaller if the origin is in the middle of the image. This can be
achieved as follows. Before applying the learned transformation, & apply a xed transformation that
moves the image so that the origin is in the centre. Then, we apply thdearned transformation, which
can now nicely assume that the origin is in the centre. Last, we apply aother xed transformation that
moves the (now transformed) image back to more standard cooidates, i.e. a coordinate frame where
the origin is in the same corner where it originally was.

This change, while not changing the number of learnable parametersr degrees of freedom in the
transformation, means that the transformation is learned in an exen more natural language: a language
where rotation means rotation around the middle, instead of rotaion around a corner, and likewise for
scaling and shearing.

Summary: the learner-friendly approach

The \nice" (learner-friendly) description still has six degrees of freedom:
Two, tg and t1, for translation along the two axes.
Two, sp and s;, for scaling along the two axes.
One, z, for shearing.
One, , for rotation.

See Figure 2.4 for a diagram and some more details.

In the diagrams, | call this \nice" representation of a geometric transformation \geoNice", and if an
intensity is speci ed, too, it's \iGeoNice". For notational convenien ce only (i.e. to reduce clutter in the
diagrams), the \iGeoNice to iGeo(matrix)" component is introduced in Figure 2.5.

Overview: capsules with full a ne transformations

Figure 2.6 shows multiple capsules in an autoencoder.
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Figure 2.4: Component: \nice" to matrix (NTM) representation con version for geometric transforma-
tions. This component allows other components to describe geomet transformations in a natural or
\nice" format. This component produces a matrix, using as input that natural representation. Error
derivatives of the matrix are backpropagated through this compament, and come out at the bottom as
error derivatives for the 6 numbers in the natural representatia.
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Figure 2.5: Component: iGeoNice to iGeo(matrix) (INTM) representation conversion for geometric
transformations. \iGeoNice" means a speci cation of both an intensity scalar and the \nice" (i.e.
learner-friendly) representation of a geometric transformation In contrast, \iGeo" or means an in-
tensity scalar and the matrix representation of a geometric trangormation. Notice that this component
doesn't describe any new computations; its purpose is notational my. NTM: Figure 2.4.

2.3.3 Output models

After each capsule has computed its contribution to the output, the contributions from all capsules must
be combined, somehow, and there are di erent ways to do this.

The most intuitive way is to simply add them up. For each output pixel, we ask what contribution
to it is made by each of the capsules, and we add those up to get thenal value of the pixel.

However, there are more sophisticated approaches, which in my eeriments worked better. When
we're deciding what the value of a particular output pixel should be, we could use the largest of the
capsules' contributions, instead of the sum. This nonlinearity allowsthe model to sweep many things
under the rug: only the dominant capsule will get to decide a pixel's intensity. It is therefore more
natural to speak of di erent capsules' \suggestions" instead oftheir \contributions".

The problem is that it makes many gradients go to zero: the learning gnal disappears for all capsules
except the one with the greatest output to a particular pixel. What works better is a softened version
of the max function: maxSoft(a) = log(  exp(d)). However, that has a problem, too: if the capsules’
outputs are close to each other, then this function is so soft thatit becomes Iineq; again, like using
the sum. What worked best for MNIST was a compromise: maxSemiSt(a) = w. This
combines some of the di erentiability of maxSoft with some of the seletiveness of the hard max function.

Thus, if a capsule doesn't wish to draw on some part of the image, it sbuld output zero there, so that
the max will come from another capsule. If a capsule does wish to dvaa part of the image, and other
capsules draw there, too, then the result is that whichever one daws with more intensity determines the
outcome. This is not entirely satisfactory, because it means that dawing dark details (i.e. intensity near
0) on a bright background (i.e. intensity near 1) is impossible. Howevg if capsules only draw non-zero
output where they're sure that they know the right intensity, the n it works.
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Figure 2.6: A relatively simple autoencoder, where the decoder coists of multiple simple (atomic)
capsules. Each capsule gets its pose from the partly shared enard(which has shared hidden units),
and the capsules' outputs are combined to make the model's nal otput. Each capsule has its own
learned template. \iGeoNice" means a speci cation of both an intensty scalar and the \nice" (i.e.

learner-friendly) representation of a geometric transformation In contrast, \iGeo" means an intensity
scalar and the matrix representation of a geometric transformaion. GPNN: Figure 2.2. INTM: Figure

2.5. ACR: Figure 2.3.
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One small modi cation can be made. When, say, 10 capsFers all sugstea pixel intensity of zero,
this maxSemiSoft function will not output zero, but rather W 0:023. To make it easier
for the system to really output zero, | subtract that value after computing maxSemiSoft, to produce the
nal pixel intensity.

Other ideas are ( &) with (x) = Wl(x) max(P 4;1), or a softened version of the latter, but
none of these worked very well in my experiments.

2.3.4 Representing composite objects: composite capsules

The next step is the creation of capsules that represent compogitobjects, i.e. constellations of parts
which can all be moved together. | call these composite capsules (). The parts of these composites
are represented by atomic capsules (ACs), which are what | desitred above.

The next few subsections describe the details of this set-up; forraoverview diagram see Figure 2.7.

A new coordinate frame

As in computer graphics, the orientation (\pose") of the parts of a composite object will be internally
described relative to the coordinate frame of the composite; notelative to the world coordinate frame.
This makes sense: relative to the composite objects, the parts aralways in exactly the same con guration
(for rigid composite objects), or approximately the same con guration (for somewhat less rigid composite
objects). When we need to know the orientation of a part relative b the world (e.g. when we're rendering
the image), we can calculate it by multiplying the part-in-composite matrix and the composite-in-world
matrix, but when we're describing the scene, it's easier to just talk dout the parts relative to the
composite, and about the composite relative to the world.

In the autoencoder, a composite capsule (CC) will have a \CC-in-wold" pose that describes its
orientation relative to the world. The parts of the composite will be atomic capsules (ACs), and their
\AC-in-CC" pose describes their orientation relative to the CC.

The same two-stage set-up applies to the intensity scalar: the ndintensity of an AC's appearance
will be the product of the AC's nominal intensity (which is relative to its CC) and the CC's nominal
intensity (which is relative to the world, i.e. it is absolute).

Thus, we now have two kinds of poses in the code layer of the autoender: CC-in-world poses,
and AC-in-CC poses. Both types consist of a geometric transformtion (a matrix) and an intensity
transformation (1 multiplicative scalar), i.e. both are \iGeo" poses.

The pose of a composite (relative to the world) can be multiplied by thepose of a part (relative to
the composite) to give us the pose of the part (relative to the world. That process is best described in
a diagram: see Figure 2.8.

More CC pose: a CC's internal shape distortion

If a CC represented a rigid composite object, we would need nothingnore than is described above.
However, that would take away much of the purpose of having CCs:a rigid CC isn't more powerful
than an AC. ACs are rigid by nature: they have a constant template. Having multiple rigid CCs that
are forced to use (copies of) the same ACs would still make some smnbecause it forces extensive use
of the templates of those ACs, but exible CC's can be made, too, ad are better.
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includes both the intensity transformation multiplier and the geometric transformation matrix.
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This can be done by allowing a CC to vary not only its geometric and intersity pose, but also to
slightly vary its internal shape: the poses of its component ACs reléive to the CC. One way of doing so
is by de ning a CC's pose to also include all of its AC-in-CC poses, but ttat leads to overly large CC
poses, and there is a better way.

A CC's pose must, of course, include its geometric orientation and atintensity, but we'll add a third
component: several \distortion" variables that describe how the AC-in-CC poses of the components of the
CC vary from what's typical for this particular CC. A CC is, then, de ned by the learned function that
maps this \distortion" component of its pose to the AC-in-CC posesof its components. That function is
the intrinsic nature of a CC (constant over cases, but learned), lile a template is the intrinsic nature of
an AC (constant over cases, but learned). In my experiments, that learned function is implemented as
a DNN with the same architecture as the encoder (see Section 2.2¢xcept that it doesn't use dropout
(Section 1.8.4).

Because there are only few distortion variables, only a few kinds ofhanges can be made in a CC's
appearance: the CC cannot be \distorted" into just about any shape. With the introduction of dropout
on the distortion variables (explained in Section 2.4.4), a CC gets an ideti able default con guration
of its ACs, and the values of the distortion variables describe only rlatively minor deviations from that
default (see Figure 2.22).

2.3.5 Multiple CCs

As described above, a CC's pose is decoded to an output image. An etmediate step in this process is
the poses for the component ACs:

CC pose! AC poses! output image.

This is analogous to the decoding process of a regular autoencodehere the decoder has a hidden
layer:

Code layer! decoder's hidden layer! output.

In such a regular autoencoder, we can choose to make the code éaylarger without violating any
underlying assumptions. Similarly, in the CC-based autoencoder, wean give a CC moredistortion
variables. Those more numerous distortion variables then coopetiavely decide on the AC-in-CC poses.

What we cannot do, however, is create multiple CCs and ask them tolsare the ACs. The assumption
is that ACs live next to each other in their own isolated world, and that world is a single CC. If there
are to be multiple CCs, they should each have their own ACs. The strature must be such a hierarchy.
However, it turns out that by carefully blurring some boundaries, dightly diverging from the hierarchical
structure, we can make multiple CCs share ACs, on the condition th& (roughly speaking) only one CC
is active at the same time. A formal description follows.

If we must obey the hierarchical structure to the letter, we only have two options. We can decide
that a single CC is enough (this is somewhat limiting), or we can decide tht we need multiple CCs and
that they'll all have their own ACs (this makes for a large total numb er of ACs, which is quite costly).

However, there's a compromise that allows multiple CCs without requiing much more computation
time: the multiple CCs can form a mixture, much like a mixture of experts. It is crucial that, most of
the time, the mixture manager makes a clear choice for just one offte CCs.

Of course, in a mixture each CC still needs to have its own ACs, but if aly one CC will be activated
by the mixture manager, then only that one CC's set of ACs will actually have an e ect, so we have not
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increased the number of ACs that need to be dealt with (renderedgradient backpropagated, etc). For
datasets that are well described by a mixture, like MNIST, this is ided.

A mixture manager has to make di erentiable decisions, so during leaming it doesn't really activate
only one of the mixture components. It tries all components, but tses weights to do more learning in
the \more responsible” components. This presents an obstacle tthe proposed e ciency optimization.

The solution is to encourage the manager to express very strongreferences most of the timé? : for
a given data case, the manager should choose a single mixture compmt with high con dence. Then,
in some places we'll ignore the fact that the manager still has a little bit of uncertainty about which
component should handle the data case. This is the blurring of boundries that | mentioned above.

Encouraging low entropy

A traditional mixture manager (Figure 2.9) has a softmax output. |t works with values f x;g for each
candidate componenti, which are then converted to probabilities fy;g by the formula y; = exp(X;
log( j exp(x;))). If the manager is con dent about which mixture component should be used, then
this fy;g distribution will have low entropy: it will be almost exactly one-of-N, i.e . oney; value will be
almost 1 and the others will be almost 0. However, things don't have & go this way: the manager is
allowed to produce a high entropyfy;g distribution, by having the largest few x; values close together.

The rst step is to modify the manager by adding i.i.d. random variables f ;g to fx;g before the
normalization step, like (Salakhutdinov & Hinton, 2009b) did to get nearly binary codes. This way, the
probabilities are insteady; = exp(x; + i log( i exp(xj + j))) (Figure 2.10). These can still have quite
some entropy, but the manager is now thoroughly discouraged frm making the largest fewx; values be
close together: if they are, then thef y; g distribution will be signi cantly in uenced by the random f ;g,
e ectively overriding some of the fx;g, i.e. the manager's wishes. No manager likes to give up control
like that, so the manager will eventually learn to produce low entropy choices by always makingx; for
the chosen componeni much larger than the other x values.

A distribution that worked well in my experiments was the uniform distr ibution over the interval
[0; 10]. On MNIST, with 25 mixture components, this led to the most favoured mixture component
having ay; value of 0.99 or more, for 80% of the data cases, and 0.9 or more @0% of the data. Having
25 mixture components means that the greatest possible amountfeentropy in fy;g is log 25; typically
the actual amount of entropy came out to only about 2.5% of that, because of this modi ed manager.
It might have been even less if the system weren't also trying to keejall options open, to an extent (see
Section 2.4.1 and Section 2.4.5).

For the second step, we must rst take a look at what the traditional mixture of experts set-up with
CCs would be (see Figure 2.11). There, each expert (each CC, in owase) gets to suggest an output,
and the degree to which they're mistaken (the di erence from the aiginal, squared) is weighted byfy;g
from the manager, to produce the network's error value for a paticular data case.

Given that, by adding the random f g, we have a manager that will typically make low-entropy
choices, we can optimize by sweeping the last small bit of entropy uret the rug, as follows.

There will be multiple CCs, all of them with their own pose g as suggested by the encoder, and all
of them with their own y; from the mixture manager. Typically, one of the fy;g will be nearly 1; the

121t would be bad to have such discrete choices all the time : that would eliminate the gradients that we need for learnin  g.
The system does not seem to fall into this trap, possibly beca use of a light weight decay (see Section 2.4.5). See below for
some statistics on how strong the manager's preferences typ ically are.



Chapter 2. Autoencoders with domain-specific decoders 46

A"$l"*/*)+‘ "8)18)"‘-9\:_
YHY6>")"*00&-$'0)8#/-$Y6*%64/# T 2)</21.28%.)-@7
2%"-& Yt *[>-1%#)?7
1"#$%&'(%)""*+

,+-.-/01-20.-3-&"428/0120477

*18)+-90
— 2:#"$-)</-
_ J [*=">[#7

Figure 2.9: Component: traditional mixture manager (TMM). It's ju st a mathematical function.
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Figure 2.10: Component: regularized mixture manager (RMM). The s&zable random in uence encourages
the model to make thef x; g represent very strong preferences.

others will be nearly 0. We can extract the pose of the selected CC ima di erentiable way as follows:
P = ¥ p. Thatconcept of \the selected CC" is getting blurred here becaus it's no longer strictly
just one of the CCs, but it still works in practice. This has some similaiities to what happens in mean
eld variational inference in generative models: instead of treating thestate of a unit as \probably (99%
chance) a one, but maybe (1% chance) a 0", we treat it as 0.99.

Then, the chosen CC must apply itsdistortion ! AC-in-CC poses function. For extra uniformity
among the CCs, and to share some of the learning signal, the learnashplementation of this function can
be partially shared among the di erent CCs, as follows. The functionis implemented in the decoder as a
deterministic multilayer feedforward neural network that takes as input the distortion values (of course)
and a one-of-Nfy;g indication of which CC's function is to be applied. Thus, which CC's distortion
I AC-in-CC poses function is computed is determined by which of thefy;g is 1. When in practice
the fy;g are not exactly one-of-N but are almost one-of-N, we can providghe almost-one-of-N fy;g
values instead of exactly-one-of-Nfy;g values and it'll still work ne, and this way, everything can be
di erentiable. The distortion ! AC-in-CC poses DNN is the same general-purpose neural network as
the encoder (Figure 2.2), except that no dropout is applied.

This optimized mixture is shown in Figure 2.12.

When the fy;g have zero entropy, the two ways of implementing a mixture are equiglent, except
that with this second set-up there's more shared learning in thedistortion ! AC-in-CC poses function.
When the fy;g have little entropy, the two implementations are almost equivalent, because everything
in the system is di erentiable. When the fy;g have a signi cant amount of entropy, the semantics of
this optimized implementation aren't very meaningful: the poses of mutiple CCs are averaged, and the
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Only two CCs are shown for brevity. CCs have learned componentsso each CCR is di erent. GPNN:
Figure 2.2. CCR: Figure 2.7. TMM: Figure 2.9.
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Figure 2.12: The optimized mixture implementation. The section in the large box is almost the same

as Figure 2.7: only thedistortion !

AC-in-CC poses function is di erent (see the bottom of the box).

GPNN: Figure 2.2. RMM: Figure 2.10. INTM: Figure 2.5. MIGP: Figure 2.8. ACR: Figure 2.3. OM:

Section 2.3.3.
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implementations of the distortion ! AC-in-CC poses functions for di erent CCs are blended. However,
the manager has a strong incentive to learn nearly exactly one-of# fy;g, so this situation occurs rarely.

Of course, this optimization only really helps when it's costly to apply the pose! output function
for lots of mixture components (lots of CCs, here). In our case, his is costly because rendering and
backpropagating gradients through the rendering take up a signicant chunk of the compute time, even
with the optimization.

Lastly, note that this implementation of a mixture nicely emphasizes how a mixture is equivalent to
a function with an additional categorical parameter.

Ambiguity in the mixture

Sometimes, a data case may come up that can be represented eithiey one CC with one geometric
transformation, or by another CC with a di erent geometric trans formation. Imagine, for example, that
the image shows a somewhat rotated square. If there's a CC that'good at producing squares (maybe
it can handle rectangles of various widths and heights as speci ed in # distortion variables), it can
reproduce this image nicely. If there's another CC that's particulaly good at producing diamond shapes
(with, perhaps, variations in edge thickness as speci ed in itsdistortion variables), than that one can
also reproduce the image, but it will need a di erent geometric trandormation. The system can handle
such ambiguity gracefully, because every CC is instantiated with its @vn geometric transformation. The
exibility would have been lost if there would be only one global geometic transformation, that would
be applied to whichever CC is activated by the manager.

2.4 Regularization

2.4.1 Three reasons to regularize in general

There are di erent reasons why regularizing any kind of neural netvork often helps.

Avoiding over tting

The best known reason is over tting prevention: by keeping the leaning capacity small, one can avoid
situations where the training data is handled well by the trained network, but other data from the same
distribution isn't.

Avoiding undesirable solutions

Another reason, somewhat less frequently cited, is that well-chan regularization can sometimes prevent
the network from learning to do the assigned task in ways that the @signer considers undesirable, even
if it also works on held-out data. An example of this type of regularizaion is making the code layer of
an autoencoder into an information bottleneck3. Without that bottleneck, the autoencoder would be

131t is debatable whether an information bottleneck should be  called regularization . Most things that we routinely
call regularization are soft constraints that have nothing  to do with the model architecture; an information bottlenec  k
is clearly not in that category. On the other hand, informati ~ on bottlenecks in the architecture have much in common
with conventional regularization methods such as weight de cay: their purpose is to limit the abilities of the model in
some way, without signi cantly reducing other aspects of it s abilities (the model can still have as many units as we have
hardware capacity for). Weight decay e ectively prevents t he model from learning many large weights (which could lead
to over tting); an information bottleneck requires an e ci ent code (which similarly aids generalization). Thus, ther e is
an argument for calling an information bottleneck  regularization . |1 nd this an appealing argument, but it is obviously a
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able to reconstruct all data well, including held-out data, but even though that's the objective function,
it's not what the designer really wants. Usually, the reason for training autoencoders is not some desire
to be able to reconstruct things, but rather the wish to learn a usdul representation of the data'*. That
discrepancy explains the need for regularization of this type.

Gradient maintenance

A still less commonly emphasized reason for regularizing is the desiretkeep gradients from going to
zero prematurely. It arises because gradient-based learning is ahys trying to reduce reconstruction
error in the short term, which can lead to decisions that are harmful in the long run.

Imagine, for example, that the encoder of a mixture-of-CCs autencoder has learned never to use
mixture component #13, possibly because its random initialization wasso poor that the best way forward
in the short term was to simply disable it entirely. Now that component #13 is never used any more,
its template has no e ect on the model's performance and therefag has zero gradients and will never
change. It remains underdeveloped, and the mixture manager will aver want to use component #13.
Obviously, this is an undesirable situation. It could be compared to a kd in high school who never learns
to play hockey because nobody ever wants him on the team, so hetgezero practice and indeed never
develops hockey skills.

It would be much better if the mixture manager would, every once in awhile, give #13 a bit of a
second chance. Whenever that happens, its template would get s@e learning signal, and eventually it
would become useful, and the mixture manager would eventually o er#13 a permanent job. In other
words, the manager should keep exploring alternatives, and shouldvoid writing o possibilities too
harshly, unless that is really necessary.

The manager can be gently encouraged to give such second chaac®ther components of the system
are susceptible to the same type of vicious cycles and also need to becouraged to give second chances.
That way, every component is always at least a little bit involved in the action, and we don't have these
prematurely disappearing gradients.

2.4.2 Regularizing qualities of the capsules concept

Because of the nature of this domain-specic decoder, the autaeoder is not very susceptible to
the rst two problems that regularization usually aims to curb: over tting and undesirable but well-
reconstructing solutions.

Small code

One of the bottlenecks that prevent these problems is the size ofhie code layer. The code layer of the
mixture of CCs in Figure 2.12 contains a categorical variable indicatingwhich mixture component to
use (out of e.g. 25 components), an intensity and a geometric trasformation of the component (which
have a xed interpretation in the decoder and therefore automatically generalize), and some distortion
variables (anywhere for 5 to 30, in most of my experiments). The ditortion variables can contain quite
some information, and their interpretation by the decoder is not xed, so they could be involved in
over tting. However, there are not many of them. There is no nea to have many, because much of

subjective choice.
14 We could use an autoencoder for the purpose of reconstructin g: if we give it a small code layer, and it still learns to
reconstruct well, we have a lossy compression algorithm.
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the information about the input image can be encoded in the intensityand geometric transformation,
and in the mixture component indicator variable: the CCs learn good nodels of di erent types of input
images, and all it takes to activate the right CC is that one indicator variable.

Largely xed decoder

Consider the decoder of the AC-based autoencoder of Figure 2.6f we have 10 ACs, each of which has
a template of 10x10 pixels, then those 1,000 pixel intensities are thenly learnable parameters of the
decoder. If we have at least a few thousand images to train on (mgnmodern datasets contain millions
of images), those 1,000 parameters will be rather tied down by havigto participate in reconstructing a
few thousand images. They will not have much exibility left for memorizing individual training cases,
i.e. for over tting.

The decoder of the CC-based autoencoder (Figure 2.12) does dam many parameters, namely in
the distortion,fyjg ! AC-in-CC poses function. However, that CC-based autoencoder can also be seen
as an AC-based autoencoder, where the encoder is bigger and tains the distortion,fyig! AC-in-CC
posesfunction, and the decoder has again only something like 1,000 learnéd parameters. Therefore,
the above argument still applies.

Componential structure

The above e ects on their own would still leave the possibility of the ercoder failing to produce good
descriptions of images on which it was not trained. However, the cogl language is also quite compo-
nential: one AC's pose does not a ect another AC's output. Therebre, the encoder is likely to learn a
similarly componential approach, which helps prevent over tting. Every component of the encoder (say
every AC's pose encoder) has to work well for every training caseand such an encoder component is
smaller than the entire encoder and is therefore more e ciently redricted by the training data.

2.4.3 Additional regularization

The capsules-based autoencoder does need regularization, bubtrfor the usual reasons.

The model needs a large number of learnable parameters, becausemputer vision is not easy, and
the encoder is doing computer vision. However, over tting is not mwch of an issue, because of the model
architecture, as explained above.

Avoiding undesirable solutions is a bit of an issue, and inspired some ohe regularization strategies
that | use. These are helpful but not essential.

The main reason for having regularization is the least well-known of tle three: maintaining non-zero
gradients. The system has many components, all interacting in learable and sometimes complicated
ways. Because of that, there are several ways in which a compomtecould be disabled prematurely.
One example is discarding mixture component #13 as | mentioned bef@. Another example would be
deciding to add translation to a capsule's pose that ensures that it ismever inside the output image any
more. This would immediately eliminate all gradients related to that capsule.

Because of these dangers, regularization is needed, mostly to kethe many pieces working together
in an at least mildly reasonable way, so that better ways can be learn&by gradient-based optimization.
That can be done by weight decay (most pathological behaviour wold involve some large learned values
somewhere in the system), but also by more problem-speci ¢ reguti&zation methods.
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Section 2.4.4 lists the various regularization strategies that | foundhelpful for preventing undesirable
solutions. Section 2.4.5 lists regularization strategies that are inteded for gradient maintenance.

2.4.4 Avoiding undesirable solutions in the capsules-base d autoencoder

Sometimes, autoencoder training can lead to solutions (learned fugtions) that are decent or even good
at reconstructing the input, but don't really do what the researcher was hoping for. This is because the
objective function, \reconstruct the input well", is not what a res earcher typically cares about. Because
of this, autoencoder regularization is an active area of researctsee for example (Rifai et al., 2011).

Dropout on the distortion variables

Dropout (see Section 1.8.4) on the hidden units in a neural networkénds to make the units operate more
independently, and thus avoids over tting much like the componentiality of capsules can. Dropout can
be applied to the distortion variables of a CC's pose, and have the same ect: the individual distortion
variables learn to operate more independently of each other. This @kes a big di erence.

As a second e ect, it prevents a CC from generating very di erent output for di erent data cases.
The CC will want to always produce the same output, or, failing that, not overly di erent outputs for
di erent data cases. To understand this, imagine that a CC produces very di erent outputs for di erent
data cases. If, for some data case, it is to produce an output vgrdi erent from what it typically
produces, it will be told to do so by its distortion variables. If those variables are subject to dropout
(i.e. to being set to zero at times), then there's a signi cant probalility that the CC will not \get the
message" (because the message dropped out), and instead ofthvery unusual output, it will produce
a much more typical output, thus incurring a large reconstruction error. Therefore, when the distortion
variables in a CC's pose are subject to dropout, the CC will prefer tlat each distortion variable describes
only a small variation on the CC's typical output.

For the same reasons, the distortion values will have a mean value dde to zero, relative to their stan-
dard deviation'®: if the distortion values are approximately zero, dropout cannot ause much damage.
Thus, a CC gets a clear default output shape, namely the shape thait produces when all distortion
values are zero. This is shown in Section 2.6.4 (especially Figure 2.18).

In a mixture of CCs, each mixture component covers some manifold ithe data space, and all mixture
components together are to cover the most densely populated paof the data space. If it's a mixture of
CCs whose distortion variables are subject to dropout, there's a pessure to make each of those manifolds
quite local, as opposed to stretching from one end of the data spacto another. This makes for very
identi able clusters (details are in Section 2.6.6), taking MNIST classi cation error rate down from 12%
to 1.7%.

Disallowing negative intensities and \negative ink"

Another undesirable solution to be avoided is one that gets overly aative with the use of \negative ink".
Consider the case of a capsules-based autoencoder where theiuidual ACs' outputs are simply added
up to produce the model's output. The researcher may prefer thaa capsule's in uence on the output
should be non-negative, i.e. that it should only be adding things to theoutput, and never subtracting

151n typical runs, the mean value for the distortion values was  found to be ranging from -0.2 to +0.2 standard deviations
away from zero, i.e. quite close to zero indeed. Without drop out on the distortion values, in one run the mean distortion
values ranged from -1.1 to +1.5 standard deviations away fro m zero.
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things. In short, perhaps the capsules should not produce \negiave ink", even if that would, in the
short term, lead to slightly better reconstructions. In the long term, the researcher may think that such
\negative ink" is just not \natural" (whatever that word means ex actly), and will therefore not lead to
good solutions.

Non-negative output from ACs can be enforced by requiring that toth the templates and the inten-
sities (which are part of the poses) be non-negative. This could beahe in a few di erent ways:

By adding weight decay but only on negative template pixels, and by sinlarly penalizing negative
intensities. This implements the non-negativity wish in a soft way, and requires one to choose the
weight decay strength.

For the template pixels (which are simply learned parameters), it cold also be done by simply
refusing to make them negative, even if they're zero and they have negative gradient. This
implements a hard constraint. However, this cannot easily be donedr the intensities, because
those are not learned parameters but functions of learned parasters and the input data.

Another way to implement a hard constraint is to learn not template pixels, but f * of template
pixels for somef . Thosef !(template) values are then transformed byf () to produce the actual
template pixels. This not only applies to learned template pixels, but al® to dynamically generated
intensity values. If f () is a non-negative function, this will have the desired e ect. One sgh
function is f (x) = max( x; 0), but that has the drawback that its gradient is zero when the input
goes below zero. Another idea would bé (x) = log(1 +exp( x)), or f (x) = % log(1+exp(x 10)) if
we want to make it easier to produce near-zero outputs. That lasfunction is what | used whenever
| felt that a capsule's contribution should always be non-negative.

For classi cation of the MNIST digits database, disallowing negative ink halved the error rate (from
3.3% to 1.7%).

2.4.5 Gradient maintenance in the capsules-based autoenco der
Gradient maintenance by weight decay

The most commonly used form of regularization in neural networks isL2 weight decay, and | decided
to use it here, too, albeit with one small change. Usually, weight decais implemented as an additional
loss of . 2, where is a meta-parameter that speci es how strong the weight decay isand is the
vector of all learnable parameters.

Instead of that, | used ;max(0;j ij 0:1)2. This means that only the part that is more than
0:1 away from zero is penalized. | did this because | consider values thare 0:1 (or less) to be no less
acceptable than values that are exactly zero. In fact, a value of @ has an advantage over a value of zero,
when it comes to gradient maintenance: a weight of zero means that connection is entirely disabled,
and this makes zero gradients more likely. However, | did not thoroghly investigate if this change is
important or not. It doesn't seem likely to be harmful, and with the co mputer automatically computing
the derivative of the loss function, it wasn't much of an added burden.

Such weight decay can, in theory, prevent all of the problems thatarise from the model having learned
some unnecessarily extreme values, like the thought experiment witthe unfortunate mixture component
#13. Weight decay would (indirectly) tell the mixture manager to only express such an extremely



Chapter 2. Autoencoders with domain-specific decoders 54

negative opinion of #13 if even a minutely less negative one would alreagdmake for signi cantly worse
performance, which typically won't be the case.

Because the main purpose of the weight decay was not capacity cool but just \gradient mainte-
nance", it didn't have to be strong. | used =10 6, which is not much®®.

A similar decay rule could also very reasonably be applied to not the weigts but the states (or
inputs) of all hidden units in a network’, but | didn't experiment with that. | did, however, apply a
bit of such decay to the values in the code layer of the autoencoder

Gradient maintenance by preventing excessive scaling

One speci ¢ cause of disappearing gradients is when an AC's templatis always scaled up so much that
only a few pixels of it are visible in the output. When that happens, the other pixels get zero gradients.
Another problem that may arise is when for di erent cases a di erent part of the template is in the
output; again, the e ect is that typically only a few pixels of the temp late are used.

It's a bit tricky to express \the number of template pixels that are n ot visible in the output because
of scaling" as a simple mathematical function, but there's a surrogée that works well enough in practice.
When the geometric transformation (template ! world) has a large determinant, the template is being
scaled up a lot. We can express a penalty in terms of the determinant It won't correspond exactly
to \don't scale too much of the template outside the output”, but it 'll be better than nothing. In my
experiments, it solved the problem.

For the implementation details, consider an autoencoder like Figure B or Figure 2.12. The \geo"
part of the \iGeo" pose that goes into the ACR components repregnts the (world! template) coordinate
transformation. We would like to say that the determinant of the (t emplate! world) transformation
should not be too large, but we can instead say that the determinanof the (world ! template) trans-
formation should not be too small. The penalty termis max(0;s det(world ! template))?, where
is the tunable strength of the penalty and s is the smallest determinant that we're entirely happy with.
| set s to the value that would make the template exactly as large as the erite output.

Gradient maintenance by nondeterministic mixture compone nt selection

The mixture manager presented in Section 2.3.5 gets random variabdeadded to its preferences, making
the actual decisions a bit unpredictable. The main goal here is encaaging low entropy to enable the
optimization outlined in that section.

The noise means that sometimes, a mixture component will be activad that the manager didn't
really intend to activate. Despite the fact that it wasn't intentional, the suddenly activated mixture
component still has to reconstruct the input as accurately as posible. In other words, it still receives a
training signal. Thus, when the mixture manager hasn't quite made upits mind yet about which of two
mixture components should be handling a particular input, on averag@ both will get a learning signal.
Therefore, also the perhaps slightly less favoured component geta chance to learn, and if it learns very

16 \without weight decay, the MNIST classi cation error rate (s ee Section 2.6.6) went from 1.7% to 2.0%.

171t wouldn't be \weight decay", but it might be called \interm ediate value penalization". In mathematical notation
we can write it as  p , i.e. the component of the objective function that comes from intermediate value penalization:
ivp () = ED [kh(x; )k%], where is the regularization coe cient, D is the training data set, is the collection of
X

learnable model parameters, and h(x; ) is the function that computes the unit values for training ¢ ase x with model
parameters . | consider it to be related to weight decay because the formu la for that is quite similar: wa ()= Kk k%
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well, the mixture manager might start to favour it more after all. Thu s, this noisy manager also has
some \gradient maintenance" e ect.

Also, the mixture exibility means that we can, after training, artic ially select a particular mixture
component to see how it would reconstruct the input (see Section .B.5).

Gradient maintenance by encouraging the use of all mixture c omponents

In Section 2.4.1, | mentioned the undesirable scenario of a certain miMre component (let's call it
component #13) never getting activated by the mixture manager. Such non-inclusive behaviour on the
part of the manager can be explicitly discouraged by adding anothebit of regularization to the objective
function.

Training typically proceeds with mini-batches especially given the current trend towards paralleliza-
tion of compute power. Let's say that there are 500 data cases in aini-batch. If there are 25 mixture
components, it would be reasonable to suppose that all 25 of themra used for at least one of the
500 data cases. If all 25 components on average get the same Wwdoad, then the probability of one
component having no work at all in a batch is about 3 10 8, i.e. quite small. However, if the manager
does not distribute work evenly, there might be a mixture componen that gets no work at all in an
entire batch. The idea is to punish the manager whenever such a thigp happens.

We take the fy;g (these are 25 values per data case if we have 25 mixture componshtand average
them over the 500 training cases of the batch. Now we have 25 valsethat describe the share of the
batch that was assigned to each mixture component. Of those 25umbers we take the logarithm; we
add up those logarithms; we multiply that by some that indicates how urgent this directive to the
manager is; and the result of all that is added to the objective funtion, to be maximized?*®.

The same can be said with a formula: add Iog(Ni j yf ), where N is the number of data cases
in the batch, and y! is the responsibility that the mixture manager assigns to mixture conponent i on
data casej .

This way, if the manager does avoid the use of, say, mixture compamnt #13, this component of the
objective function will have a very low (i.e. unfavourable) value, andthere will be a gradient pushing
towards using mixture component #13 more.

The scheme is a little vulnerable to very bad luck: if a batch shows up tlat, by coincidence, has no
cases for a particular mixture component, there will be a severe pwlty. It is, however, not an extreme
penalty, and therefore also not an extreme gradient. The systentan be made more robust by using a
historic average of thefy;g, instead of the batch average. However, | am not under the imprssion that
using the batch average caused any problems, and it does eliminatdé¢ need for tracking history and
incorporating it into the automated gradient computation.

2.4.6 Regularizing the encoder

All of the above regularization strategies deal with the code layerand together they are quite su cient
(many are not even essential). However, performance can still bienproved somewhat by also regularizing
the encoder, using dropout.

The encoder is a large neural network with a di cult job to do: compu ter vision. The language of the
descriptions that it needs to nd is nearly xed (unlike in a regular aut oencoder), and the componentiality

181f you're working with a numerical optimizer that insists on minimizing instead of maximizing, just add a minus sign.
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of that language further reduces the danger of over tting, but some over tting can still happen. Dropout
works well to combat that. Dropout is a very simple and reliable methad, and in all of my experience
with it, | have never come across a situation where a dropout rate 550% was far from optimal. That
value is what | used in the encoder.

Again, this is far from essential, but it does help a bit.

2.5 Other implementation notes

Before | describe a few more details of my implementation, | must embpasize that this is only one
implementation of the idea, and it could be done quite di erently, and undoubtedly better. The main
idea is to include domain-speci ¢ knowledge in a sophisticated compomgially designed data generation
system, so that a data recognition system can then learn from it. hat can be done in many ways. That
being said, here's a bit more about how I did it.

2.5.1 Computer-assisted model handling

Because the model is more complex than a typical neural networkhigger software tools are needed than
just a simple script or two. | created a system that allows one to desribe a model as a mathematical
function: from the input(s), we calculate intermediate values; from those, we create further intermediate
values; and in the end, we compute the output value. In this case,he input is an image and a vector

that contains all learnable parameters, and the output is the objestive function value. This notation
allows for automatic di erentiation, for computer-assisted visualization, and for componentiality by
de ning helper functions which are then invoked from the main function (or from other helpers).

Having such a tool makes the development e ort much easier, espélly when one needs to try lots
of di erent variations on a model. It is quite a natural and exible too |, and | was certainly not the rst
to think of it. A more developed system for the same purpose is Theao (Bergstra et al., 2010), and
the only reason why | did not use Theano is that it wasn't yet very mature when | started this research
project. However, it is obviously a wheel that should not be re-inveted by every researcher.

2.5.2 Using GPU's

Machine learning programs usually require large amounts of computg@ower, and nowadays Graphics
Processing Units (GPUs) are best at providing that. | used GPUs through the Cudamat+Gnumpy
interface for Python (Mnih, 2009; Tieleman, 2010).

Most computations are standard (matrix multiplications, simple elementwise operations) and are
available in any GPU API. However, somewhat ironically given what \GPU" stands for, | spent a lot
of time implementing AC rendering and its derivatives on GPUs, in the CUDA programming language.
These computations take up the biggest chunk of compute time, ath are somewhat tricky to implement
on a GPU, given a GPU's aversion to conditional statements and di culty with enabling large amounts
of e cient randomly accessible memory.
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2.5.3 The numerical optimizer
The problem

A simple neural network with one hidden layer has four groups of leanable parameters: input! hidden
connection strengths, hidden! output connection strengths, hidden biases, and output biases.

The presented mixture of CCs (Figure 2.12), on the other hand, ca reasonably be said to have 62
groups of learnable parameters, such as:

The ACs' templates.

The encoder's skip-connection weights between the second hiddéayer and the geometric CC-in-
world translation outputs.

The distortion ! AC-in-CC poses function's connection weights between the third hidden layer
and the AC-in-CC intensity values.

The encoder's skip-connection weights between the rst hidden lagr and the mixture manager's
fxig.

It's debatable whether the biases to geometric translation values i pixels) should be counted as
separate from the biases to geometric rotation values (in radians)but whatever counting method you
consider to be reasonable, the number will far exceed four.

These di erent groups of parameters have dierent types of e ects and are expressed in di erent
units, and therefore have dierent gradient characteristics: di erent gradient sizes, dierent internal
second-order characteristics, di erent interactions with the other 61 groups, and di erent sensitivities to
the various sources of randomness in the model.

Because of all those dierences, | didn't choose the commonly usedlgorithm of simple gradient
descent with a single xed learning rate. Something more sophisticatd is needed.

The main idea: conservative learning

Philosophically more satisfying would be to have 62 di erent learning raes, but in practice it's easier to
have individually adapting learning rates. There are many ways to implenent adaptive learning rates,
and most of those ways have meta-parameters that need to be tsky hand. Setting 62 sets of adaptivity
parameters is no good either, so | designed an adaptive learning ratalgorithm with emphasis on being
cautious: if in doubt, any doubt at all then use a small learning rate. This means that it won't be
optimal for any of the 62 groups of parameters, but it won't causeany disasters either. Especially in
research situations, it's better to have to run a program ve times as long because of sub-optimality than
to spend very much more time writing the program, in search of 62 ofimal strategies. The philosophy
of this approach is similar, in spirit, to the way computer science theaists design \optimal" algorithms
that are guaranteed to achieve their goal in the shortest possibleamount of time, up to a constant
multiplicative factor which could be quite large but is considered to be wimportant.

The optimizer that | designed for this work is not, in my opinion, a core component. Other good
optimizers might do the trick just as well, or better. | just made something relatively simple but
very robust, not aiming for (or caring about) stellar performance. All of this work is a proof-of-concept
anyway, so optimality is not a major concern. Because of that, | hae not thoroughly compared variations
of the optimizer, nor have | compared its performance to that of dher optimizers. The main point of
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this work is in the model design, not in the optimizer. | do, however, irclude a brief description of the
optimizer here, for completeness.

Four suggestions for i

The optimizer deals with each learnable parameter individually: it makesno attempt to understand

the interactions between di erent parameters i.e. the o -diagonal terms of the Hessian. When deciding
by what amount to change a learnable parameter, it comes up with far di erent suggestions, each
based on a dierent type of analysis, and then goes with the most coservative of the four, i.e. the
smallest of the four proposed changes in the parameter value. Thieope is that such conservatism, while
probably not good if we need very fast learning, will at least avoid disaters, for all 62 di erent types of

parameters. The four proposals are the following, withg, = % standing for the mini-batch objective

function gradient for the parameter under consideration:

The rstrule, i.e. the rst suggested value for  ;, is simply a maximum on the (absolute) change
in parameter value: ; = 1 sign(g). This rule exists only as a last resort measure to prevent
extreme changes in parameter value, and is almost never the dominaone.

The second suggestion for ; is a maximum learning rate: ;= 2 g.
The third rule aims to limit the typical size of the updates: i= 3 q% whereéji’Z is an estimate

of the mean ofg? over mini-batches, and is implemented as a historical decaying avege of that
squared gradient (see more details below). In rmsprop (Hinton, 202), this is the only rule.

The fourth rule is in place to recognize that if a gradient is larger, tha might in fact be reason to
change the parameter value less rapidly. It can also be explained asnaing to limit the amount
by which we're attempting to change on a single update. ;= 4 (3% with the same é,z as in
the third rule. If, by a rescaling of a parameter'®, the e ect of small changes in the value of that
parameter is made ten times greater, then intuitively, the reasonale thing to do is to make ten
times smaller changes. This fourth rule is in place to respect that insit.

All of these rules have their strengths and weaknesses, but thedpe is that by always taking whichever
of the four makes the most conservative suggestion, we'll alwaysebreasonably safe. It seems to have
worked well enough in practice.

The algorithm has four ; meta-parameters, which | explored manually to nd good valueg°.

Conservatively tracking historical gradient size

The algorithm also has meta-parameters in the choice of how to compie §. The typical way to compute
this is with an iteration that makes an update every time g; is computed: th,c,, * &+ (1 1) &Boq-
Here, can be thought of as the amount of time until a memory has signi cartly decayed. A large

has the advantage that large gradient values (which signal a needof proceeding with caution) are
remembered longer; a small has the advantage that large gradient values have an almost immedta

19Here, a \rescaling" means that the model would use ; 10 where it previously used simply ;. This doesn't funda-
mentally change what the model is doing, but it does make the e ect of an in nitesimal change in i ten times greater.

20Recently, e ective systems have been developed that automa te the task of nding good values for meta-parameters
(Snoek et al., 2012; Swersky et al., 2013; Bergstra et al., 20 11; Snoek et al., 2013). In my opinion, they are now su cientl 'y
mature, and | recommend their use for situations like these.



Chapter 2. Autoencoders with domain-specific decoders 59

Figure 2.13: The change, over time, in the fraction of learned pararaters of which the update size is
determined by rule #3, and by rule #4. The other two rules didn't domin ate for a signi cant fraction
of the parameters.

e ect when they occur. | ended up using three decaying averagey, each with a dierent : one with
=exp(0) =1, one with = exp(3), and one with = exp(6). The actual § used by the above rules
three and four is then whichever of these three moving averagesal the most alarming assessment of
gradient size, i.e. it's whichever of these three gives the largest nuber.
As again becomes clear here, this optimizer is full of heuristics. | hav not found time to study it
thoroughly, but it seems to have done its job acceptably.

The two dominant rules

After nding good values for f ;g, one can record which of these four rules tend to dominate most
often, i.e. which rules tend to make the most conservative suggeisins. In practice, the third and fourth
rule tend to dominate. At rst, the fourth rule dominates for all pa rameters (this is just an artefact
of initialization), and then, slowly, the third rule becomes dominant for more parameters. A plot of
this process, for a typical run, is shown in Figure 2.13. It shows hownitially, rule #4 dominates, but
that's because the initial gradient size estimates are high (anothebit of conservatism), and rule #4 is
the most sensitive to large gradients. Then, over time, rule #3, whid aims for same-size changes in
the parameter value, gets to dominate more and more. Sometimesuke #4 dominates a bit more again,
when there are more large (or noisy) gradients. When those subsi] rule #3 takes over again. Rule #1
is almost never used: it is only an emergency break. Rule #2, i.e. the siplest form of gradient-based
optimization, turns out to be simply useless and is never used, with tie f ;g values that turned out to
work best. Over time, rule #4 dominates fewer and fewer paramete updates, but even at the end of
training, rule #4 still dominates for 40% of the parameters.

2.6 Experiments on MNIST

Experiments on MNIST unambiguously showed the potential of this method. The domain-specic
decoder really captures the nature of the MNIST images, making it asy for gradient-based learning to
Il in the detalils.
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2.6.1 Details of the model

On MNIST, a mixture model works well. | used the model described in kgure 2.12, with 25 mixture
components (CCs). One might expect a mixture of 10 componentsa do best, but having some extra
worked better?’. There is signi cant variation within digit classes, and apparently the model sometimes
wants to treat di erent versions of a digit separately.

| wanted to use 10 ACs, with 10x10 pixel templates, but to reduce he risk of confusion in an already
complicated program | decided to not use the same number too oftg and opted for 9 ACs with 11x11
pixel templates. It probably doesn't make a big di erence. Classi cation error rate is quite robust with
respect to the number of ACs: with anywhere between 9 and 50 AC<lassi cation worked well (typically
around 1.7% error rate, albeit with variance), but 3 ACs is not enoudh (classi cation error rate went up
to 5%).

30 distortion parameters per CC, dropped out with a rate of 1/2, worked well, but further exploration
revealed that any number of distortion parameters between 5 and0 works decently. More than 50 didn't
work well, with classi cation error rate (see Section 2.6.6) going up t03% (with 70 distortion parameters)
and 7% (with 100 distortion parameters). o

At the output, the ACs' contributions are combined using the formula W, as explained
in Section 2.3.3. After computing the model output that way, the standard squared error objective
function is used.

2.6.2 Reconstructions, and ACs' contributions

Figure 2.14 shows reconstructions, and how they're created, foa typical run with the aforementioned
settings. The 9 ACs have all found a role for themselves, though fosome images, some ACs are not
participating in the reconstruction, i.e. they have intensity near zero. The 9 templates are shown in
Figure 2.15. Note that the contributions in Figure 2.14 are a ne & inte nsity transformed versions of
the corresponding templates.

Notice that, like most autoencoders, the system fails to reprodue some small irregularities: the
reconstruction is essentially a smoothed version of the original. Thigs not very di erent from the way
a person would reconstruct images, if he would only be allowed to looktahe image for a little while
before having to draw a reconstruction from memory.

Included in the gure caption is the reconstruction error, both wit h and without dropout. Here,
without dropout means that the model (which was trainingwith dropout) is run in a modi ed form, to
have something deterministic. Section 1.8.4 describes the changeaept that one thing is di erent from
what | wrote in that section: for the distortion values, which are normally subject to dropout, | don't
halve the outgoing weights. | tried that, and it made for worse reconstructions. Halving the outgoing
weights is equivalent to halving the distortion values. My hypothesis isthat the distortion units are few
enough that they matter individually, unlike most units in a neural net work. Therefore, the individual
values choose a typical scale, during training. Halving the value take it away from that scale.

Another interesting observation can be made from Figure 2.14: edccapsule has its own typical place
of application. To verify this, Figure 2.16 shows where the capsulesypically place their contribution.
Clearly, each has its own area.

2110 mixture components was not enough: it led to a classicati on error rate (see Section 2.6.6) of 10%. 100 mixture
components worked as well as 30 components, with an error rat e of about 1.7%.



Chapter 2. Autoencoders with domain-specific decoders 61

Figure 2.14: The model's reconstructions of twenty images. Columns original image; reconstructed
image; mismatch; rst AC's contribution; second AC's contribution; etc. The squared reconstruction

error per pixel Ni : (xi %)?, where N is the number of pixels andX is the model's reconstruction
i=1
of pixel i, is 0.0095 (15% of data variance) on training data with dropout (i.e. the training objective
function), is 0.0057 (9% of data variance) on training data when drgout is disabled, is 0.0104 (15% of
data variance) on held-out data with dropout, and is 0.0069 (10% ofdata variance) on held-out data
without dropout. Notice how for two images of the same digit class, acapsule usually takes on the same
role in both of the images. For example, even though the two imagesfdhe digit 5 look quite di erent,
the rst capsule represents the upper bar of the digit in both case. This indicates that the model has
learned to understand that the two images aren't all that di erent , even though their Euclidian distance
in pixel space is large. This insight is acquired entirely unsupervised, lt can be used for classi cation,
as shown in Section 2.6.6.
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Figure 2.15: The model's learned templates. Each is 11x11 pixels, but ithe model these pixels represent
points instead of little squares. Between those 11x11 points, bilineainterpolation is used. The result
of that interpolation is shown here. One clearly sees pieces of penreke. Figure 2.14 shows how those

are combined to form digits.

Figure 2.16: The places where each capsule is applied. This shows thentres of gravity for the cap-
sules' contributions. The rst of the 9 squares shows where the entre of gravity for the rst capsule's
contribution is, for 100 MNIST images: usually somewhere in the uppehalf of the image. The order of
the 9 capsules is the same as in the other gures. Compare this to Fige 2.14.
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Figure 2.17: Top: the means of a mixture of 10 factor analyzers, &ined on the raw pixel values of
the MNIST dataset. Bottom: the means of a mixture of 10 factor analyzers, trained on the AC iGeo

pose values of the MNIST dataset, as interpreted by the encodeof the capsule-based autoencoder.
Visualization is done by the decoder of the autoencoder.

2.6.3 Modeling the MNIST distribution with a simple generat ive model

The idea is that these MNIST images are better represented as colitions of pen strokes, placed appro-
priately, than as collections of pixel intensities. This hypothesis sugests that simple generative model
of collections of pen strokes should work better than a simple genative model of pixel intensities. |
tested that by building a Mixture of Factor Analyzers (MFA) of pixel intensities, and another MFA of
the pose values that the encoder of my autoencoder produces wh given the MNIST images.

First, | trained a mixture of 10 Factor Analyzers on the pixel intensities in MNIST. The means of
the 10 factors are shown in Figure 2.17 (top). It is clear that, in the space of pixel intensities, a model
as simple as an MFA fails to accurately describe the MNIST dataset.

Second, | ran all of the MNIST images through the capsule-basedwoencoder, and recorded the
resulting AC iGeo poses. Thus we have a di erent description for evey MNIST image. On the collection
of those descriptions | then ran a mixture of 10 factor analyzers.The 10 learned means are in AC iGeo
pose space, but can be translated to image space by the decoddrtibe autoencoder. The result of doing
that is shown in Figure 2.17 (bottom). Here we see that the MFA fourd 10 mixture components that
describe the data much more accurately. The conclusion is that in ACGeo pose space, the structure
of the MNIST dataset is su ciently simple and straightforward that even an MFA, i.e. a very simple
model can do a good job modelling it.

2.6.4 The e ect of individual distortion parameters

A CC has three di erent types of pose variables: intensity, geometiic transformation, and distortion.
The e ect of the rst two is pre-de ned, but the e ect of the dist ortion variables is learned. To visualize
what meaning a CC has chosen to give to its distortion variables, we st ask it to produce its most
typical output image: we give it typical intensity and geometric tran sformation values, and distortion
values of zero. Zero distortion is not that strange for a CC, becase it's used to the distortion values
getting dropped out. The output, given this pose, gives a good sese of what sort of images the CC
typically produces.

Next, we focus on the rst distortion variable. If we give it a di eren t value (while keeping the other
distortion variables set to zero), the CC will produce di erent outp ut. If we give it fairly negative values,
like 2 where is the standard deviation of observed values of that distortion varable, we get to see
how far it typically changes the output. If we give it the value +2 , we see the other end of the spectrum,
and intermediate values give somewhat less transformed outputsThis procedure can be repeated for
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the other distortion variables. Thus, we get an overview of which vaiation each distortion variable has
come to stand for. The result of that, for two CCs in the mixture, is shown in Figure 2.18.

Each row in the gure describes a di erent distortion variable (the C Cs in this model had 8 distortion
variables). In the middle of the row is the image that results when thevariable is set to 0. To the left,
the result is shown of more and more negative values; to the right @ positive values. Of course, this
way we only see images where all but one of the distortion variables lva value zero, so we don't see
how the various distortion variables interact. Nevertheless it's infaomative.

| chose to show this for a model where the CCs had fewer than 30 dartion variables, because the
more distortion variables there are, the smaller the e ect of a singleone becomes. With 8 distortion
variables, each has a signi cant in uence, which makes this method bvisualization more e ective.

2.6.5 The mixture: all components try to reconstruct

After looking at the internal workings of a single CC, we can also look awhat the mixture is doing. As
mentioned in Section 2.4.5, even mixture components that are not usally chosen to handle a particular
image need to be somewhat prepared to handle it anyway, becausé the stochastic behaviour of the
mixture manager. Figure 2.19 shows the reconstructions of 20 di eent images, by each of the 25 mixture
components.

2.6.6 Clustering as semi-supervised learning

Most autoencoders end up as data pre-processing modules forhar systems like classi ers: the classi er
uses not the raw (original) representation of the input for a training case, but instead the code that the
autoencoder assigns to that input. We can choose to do that with yist a small part of the code: just
the mixture component index, i.e. nothing more than just that one categorical variable. Another way
of saying this is that we let the mixture-of-CCs autoencoder cluste the data into 25 clusters (if we have
25 CCs), and then we ask the classi er to assign a label to each clust. All inputs that the mixture
manager assigns to one cluster get the same label.

Thus, training the classi er is a very small job: it has to choose 25 lakels (namely one for each
cluster). In this example, the classi er only gets to make 25 choiceswith 10 options per choice. That's
quite di erent from learning a million neural network weights, or choo sing thousands of support vectors
from a collection of sixty thousand. On the one hand, this means thait won't be able to do a good job
if within many clusters there are lots of data cases that need to be igen di erent labels. On the other
hand, the classi er only needs a tiny bit of training data to properly m ake its decision worth an amount
of information of log,(10%°) bits.

We can turn this set-up into a semi-supervised learning situation, agollows. First, all training data is
provided without labels, and the mixture-of-CCs autoencoder ges trained on that. Second, the classi er
is given the mixture manager's clustering result, and from each of tle 25 clusters it gets to pick one
training case for which it will be given the correct label. That might be, for example, the one training
case that gets assigned to the cluster with the highest con denceby the mixture manager. The classi er
then puts the label of that training case on the entire cluster.

At test time, we get an unlabeled image, and ask the mixture manageto which cluster the image
belongs. The system will then output, as its guessed label, the labahat was assigned to that cluster
by the classi er during \training".
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Figure 2.18: The e ect of changing individual distortion variables, for two CCs. Notice how most
distortion variables control only one or two aspects of the appeaance: they're fairly specic. This is
encouraged by applying dropout to the distortion variables (see Setion 2.4.4).
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Figure 2.19: Reconstructions by di erent mixture components. First column: the original image. Second
column: the reconstruction by the chosen mixture component. Tlird column: the reconstruction by the
rst mixture component. Fourth column: the reconstruction by t he second mixture component; etc.
The mixture component that the manager chooses is indicated by a lne reconstruction. Notice that
each mixture component is, of course, specialized to one type of irgas, but has quite some exibility
by using di erent poses (distortion, geometric, and intensity). This allows for some creative attempts to
still somewhat reasonably reconstruct images that the compondrnis de nitely not specialized in.
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This system trains with only 25 labeled case¥. The rest of the information comes from the unlabeled
data, and the domain-speci ¢ knowledge that has been put into thedecoder section of the autoencoder.
Applied to the model described above, it gets a good error rate onhe task of MNIST classi cation. 11
runs with di erent random seeds gave a mean error rate of 1.74%, ith standard deviation = 0.4%, min
= 1.30%, and max = 2.59%. Given that it was trained with only 25 labeled cases, this is impressive.
It shows that the clustering, which is performed without any labeled data, closely matches the human
perception of how these images should be clustered.

This is not the rst method to attempt classi cation of the MNIST da taset with only a few labeled
cases. (Ranzato et al., 2007) trains multiple translation-invariant layers of feature detectors, unsuper-
vised. Supervised training can then be done on the learned repres@ations. When they train these
feature detectors on all of MNIST (unsupervised), and then tran a simple classi er on top (supervised,
using only 2,000 labeled training cases), that model achieves a 2.5%rer rate on the MNIST test
set. With 5,000 labeled training cases the error rate drops to 1.5%. Mre recently, (Bruna & Mallat,
2010) built a system of invariant feature detectors that achieveda 1.7% error rate on MNIST using
2,000 training cases, not using any additional unlabeled training data Although these numbers cannot
be compared directly to those that of the capsule-based autoemaler described in this work?, it does
become very clear that a 1.74% error rate with only 25 labels in the tréning data is excellent.

2.7 Experiments on the TFD

I ran roughly the same model on the images of faces from the Torda Face Database (Susskind et al.,
2010). However, face images don't come in 10 groups as naturally agit images do, so a mixture isn't
appropriate here. Instead, | used a single CC, with 10 distortion paameters and 20 ACs (a face consists
of more pieces than a digit). This task is more di cult than MNIST, sot o get reasonable reconstructions
with not too large a model, a dropout rate of 10% instead of 50% workd better.

The same gures can be made as for the MNIST experiment: Figure 20, Figure 2.21, and Figure
2.22.

Clearly, the system performed less well on the TFD than it did on MNIST. The reconstructions are
not totally unreasonable but are de nitely not as good as they wereon MNIST: TFD reconstruction
error is 29% of the data variance, compared to 10% for MNIST. Howver, the 10 degrees of freedom that
the model chooses as distortion variables are de nitely interestingsee Figure 2.22). Some of the ACs'
contributions correspond to identi able parts of a face, like the third last AC in Figure 2.20, but many
are not the very local and identi able \mouth" or \eye" kind of cont ribution that | was hoping to see.

What exactly causes the model to struggle with TFD is an open quesbn. Images of faces are far
more complexX* than images of digits, but | do not know exactly which of these complaities is the
problematic one. Whichever one it is, the result is that with the set-up that | investigated, very accurate
reconstructions are not achieved. In other words, there is sultantial under tting. This is also seen
when one compares performance on training data to performancen test data: there's no appreciable

22The system needs to pick a label for each of its 25 clusters, so it needs 25 labeled training cases: one representative
training case per cluster. In my experiments, getting a labe | for the training case that most con dently gets assigned to
the cluster is entirely su cient. | found that using labels f  or all training cases that go to a cluster, and then choosingt he
majority label as the label to stick on the cluster, results i n the same cluster labellings.

23 For one, the results described here are for 25 chosen labels.

24 An image of a face has lighting variations, it's truly real-v  alued as opposed to nearly binary, and it has many components
that can vary, either individually or together.
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Figure 2.20: The model's reconstructions of twenty images. Columns original image; reconstructed
image; mismatch; rst AC's contribution; second AC's contribution; etc. The squared reconstruction
error per pixel is 0.0061 (34% of data variance) with dropout and 0.053 (29% of data variance) without.

di erence, not even when the system is run without dropout.

A reasonable hypothesis is that it takes more than 10 numbers to d&ribe the speci cs of a face, so
with 10 distortion variables the model just isn't expressive enough. (Cootes et al., 2001) uses 55 pose
parameters. Adding more distortion variables is one of the rst things | want to explore next.

2.7.1 Multi-channel ACs

One concern is that the components of faces vary in more ways tlmgjust a ne transformations: lighting
variation causes di erences in shadow patterns and intensity, andthe simple ACs that | implemented
are not exible enough to model that well. To investigate if that was t he main stumbling block, | made a
di erent kind of ACs that can handle intensity gradients, and smooth blending of images: multi-channel
ACs.

A multi-channel AC contains more than one template (say 3), and fa each template, there is an



Chapter 2. Autoencoders with domain-specific decoders 69

Figure 2.21: The model's learned templates. Some of the templates @usually rotated, and are therefore
hard to recognize as parts of faces. Compare this gure to Figure.20.

intensity parameter in the AC's pose. In the rendering process, tie templates would be linearly combined,
weighted by their intensities. If there are three templates, then an AC has 9 pose parameters (6 geometric
and 3 intensity) instead of 7 (6 geometric and 1 intensity), i.e. a modst increasé®. It does, however,
provide signi cant additional exibility.

A multi-channel AC representing some three-dimensional object ould, for example, have three tem-
plates describing the appearance for three di erent positions of he light source. Interpolation between
those three templates would be a useful approximation to fully mod#ing appearance for every possible
light source. In computer graphics, a \directional light source" has not only an intensity but also two
degrees of freedom in its locatioff, which could be translated to these three intensity pose values by a
simple interpolation.

If the output model (see Section 2.3.3) is to simply add up the contritutions from all ACs, multi-
channel ACs could be emulated by simply having multiple ACs that alwaysproduce output together in
the same location. However, this emulation does not work with the maSemiSoft output model. Also,
replacing one three-channel AC with three single-channel ACs daeintroduce much more compute work
and many more pose variables (21 instead of 9, for the above exan®). Therefore, multi-channel ACs
could potentially make a big di erence.

In a toy experiment, multi-channel ACs showed that they can indeal learn to accurately model
intensity gradients. The dataset for this toy experiment consistal of images of one face (the same face
for the entire dataset), with an intensity gradient as well as an oveall intensity multiplier. Thus, there
are three degrees of freedom (the overall intensity multiplier, theintensity gradient direction, and the
intensity gradient slope). A single three-channel AC was trained tomodel this, and did so successfully
(see Figure 2.23).

However, when applied to the task of modeling the TFD images, threechannel ACs did not do
signi cantly better than the original single-channel ACs. Given the same amount of wall clock time,
they did worse, because rendering a multi-channel AC, and backmpagating derivatives through that
rendering process, takes more time than it does for a single-chaehAC. This suggests that the intensity
gradients in TFD images are not the main problem. However, negativaresults are always ambiguous,
hard to interpret, so until we have a positive result, such interpreation is essentially guesswork.

251t does make for signi cantly more template parameters, but  the number of decoder parameters does not appear to
be an issue, because a CC has many, many more and doesn't over t either.
26 There are only two degrees of freedom in its location, becaus e its distance is xed to be in nite.
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Figure 2.22: The e ect of changing individual distortion variables, for the one and only CC.

70
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Figure 2.23: Theintensity gradient toy experiment that con rmed that a three-channel AC can learn
simple intensity variations with three degrees of freedom. Left: 1Zamples of the dataset. If you squint,
they change from abstract art to faces. Right: the three chanels of the learned template.

2.7.2 Another output model: explicit depth modelling

Another hypothesis is that the output model is inappropri%te for modeling images of faces. There is
something unsatisfactory about the maxSemiSoftf) = w output model: if the image is
inverted (i.e. black ! white and white ! black), the output model would work quite di erently, and
possibly worse. For a more concrete example, notice how this outpumodel nicely allows drawing
bright foreground objects on a dark background (brightness dminates and thus becomes foreground),
but doesn't allow for drawing dark foreground objects on a bright background (the background would
dominate and hide the intended foreground objects). For MNIST this is ne, because in MNIST the
foreground is always of high intensity while the background is of low inensity?’, but not every type of
image is like that. In particular, for the TFD images it already feels much less natural. It gets even
more unpleasant when the images are in full colour instead of just gry scale.

A solution is that the output model could make the foreground vs. background issue explicit. The
idea is to add a second \template", much like in multi-channel ACs. This second template contains not
an image for display, but rather a pixel grid where each pixel indicats to what extent the corresponding
pixel of the template is considered to be foreground or backgrowh This added \template" could be
thought of as the depth (distance) value of the pixel. It is a poor man's implementation of 3-dimensional
occlusion, in an otherwise still 2-dimensional world.

Optionally, one could also add an extra pose parameter, that could radify this \depth" value,
additively or otherwise. This feature could also be integrated into the recursive CC structure, by
specifying that a CC's \depth" is automatically added to the depth of its component ACs.

With this output model, one can try to make the depths of di erent A C contributions so di erent
that the nal value of every reconstruction pixel is determined almost exclusively by just one of the ACs,
although it won't be the same AC for every pixel. That way, the image is segmented: every pixel is
assigned to one of the visual components (the ACs' outputs).

Experiments with this output model are in progress, but un nished and therefore not in the scope

27That is, if one interprets pen stroke as high intensity, whic h does not match reality but is nevertheless the standard
approach.
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of this thesis.

2.8 Comparison to similar models

2.8.1 Active Appearance Models

Active Appearance Models (AAM) (Cootes et al., 2001) have much in ommon with the approach de-
scribed here. Both AAMs and this autoencoder model several typs of variation that together determine
the reconstruction of the given image:

Global shape transformation. In an AAM, this is a similarity transfor mation, i.e. translation,
rotation, and uniform scaling (no shearing or axil-speci ¢ scaling). In the autoencoder, it's a full
a ne transformation (CC geometric pose).

Global intensity transformation. In an AAM, this is both multiplicative and additive. In the
autoencoder it's only multiplicative (CC intensity).

Local shape transformation. In an AAM, this is a linear transformation of the coordinates of
hand-picked anchor points like eye pupils and mouth corners for a fee, relative to the globally
transformed constellation. In the autoencoder this is an a ne transformation of the parts (the ACs)
relative to the constellation (the CC), with a natural representation of the a ne transformation
parameters being modeled by thalistortion ! AC-in-CC poses DNN whose input is the distortion
values.

Local intensity transformation. In an AAM, this is a linear transfor mation of texture pixel inten-
sities, before the shape transformation. In the autoencoder,tis is the ACs' intensity multiplier,

or more generally the channels' intensity multipliers in a multi-channel AC (Section 2.7.1). This
AC-in-CC intensity scalar is nonlinearly produced by the distortion ! AC-in-CC poses DNN.

Thus, both models are very direct implementations of the analysis-g-synthesis paradigm, and com-
parison is straightforward. There are signi cant di erences:

The encoder is completely di erent. In an AAM, the encoder is non-parametric, i.e. given a new
image, we start with a guess for the pose and optimize from there. Rere is no learned encoder.
On the one hand, this gives hope for more exibility and more case-seci ¢ ne-tuning of the pose;
on the other hand, it is slower.

The training set is di erent, too. An AAM uses a training set where th e same set of anchor points
is annotated in every training case. The autoencoder just uses inges.

Although for AAMs the training set is more expensive, for the autoencoder the training procedure
is expensive - that is the price of its exibility. An AAM is simple enough th at training takes

very little time. The autoencoder, on the other hand, must not only learn the details of its more
sophisticated decoder (i.e. create the code language), but mustlso learn an encoder to do the
code inference that for AAMs is part of the training data.

As mentioned above, the transformations in an AAM are linear functons of the pose, whereas the
autoencoder uses nonlinear (DNN) transformations.
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The background is handled di erently. An AAM doesn't try to model it ; the autoencoder does.
This is a major weakness of the autoencoder: if it cannot model thentire image, it will typically
also fail to model just the foreground. Perhaps the autoencodeshould be allowed to output
\background" pixels in its reconstruction, where instead of the reconstruction error there would
be a constant amount of loss per pixel. If this works, it could be a powrful segmentation method:
it looks at a large image, nds something it can model with few pose paameters, and marks the
rest of the image as \future work" (i.e. the algorithm can be repeaid).

AAMs are simpler and require more expensive training data, but they have been successfully
applied to images of a size and complexity that is not commonly handled vwh DNNs today. Thus,
AAM-like models are state of the art in practical computer vision, whereas the autoencoder is a
proof of concept, with less success today but more promise for éhfuture.

2.8.2 Recursive Compositional Models

Recursive Compositional Models (RCMs) (Zhu & Yuille, 2006; Zhu et al.,2008a; Zhu et al., 2011) go
further: they de ne a hierarchy consisting of an arbitrary number of layers.

RCMs are quite di erent from Active Appearance Models and the autoencoder, in two ways: they
are energy-based models with discrete variables and a Gibbs distriltieon over their states, and they
are conditional models, so they never generate the image. What #y do have in common with the
autoencoder is the compositional (hierarchical) set-up.

To create that hierarchy, the latent variables of an RCM are laid out in a tree?® con guration, with
the scope of the top unit (the root) being the entire object, and the scope of lower layer units being
parts and sub-parts. The connections between parents and chitén (and among siblings) make additive
contributions to a global energy function. In some RCMs, all latent variables have interactions with the
image; in other versions, only the leaves of the tree do so.

Energy-based models require more complicated inference than th&mple deterministic feedforward
networks of the autoencoder. However, with su cient restrictio ns, inference can be made quite doable.
RCMs do this by placing the nodes in a tree con guration and by allowingonly a discrete set of possible
values for each node. That way, dynamic programming becomes feible.

RCMs have a curious and exciting feature, very di erent from the autoencoders: in an RCM, the
nodes at di erent levels (in the autoencoder we would say theposesat di erent levels) are all of the
same type. In the autoencoder, higher level capsules have to havmore pose variables, but RCMs take
a di erent approach. In an RCM, the state of a high level unit does not fully describe the state of
everything in its subtree; rather, it summarizesit. Thus, RCMs elegantly address the issue of constant
length descriptions at di erent scales. The autoencoder cannot d that.

An RCM can work without the high level units fully describing the state of their entire subtree,
because RCMs are energy-based stochastic models. Thus, if a hilgivel unit doesn't describe every detall
of what\its" descendants are doing, the descendants can still deheir job. In a deterministic autoencoder
this is impossible: the state of the ancestor has to fully determine tle states of its descendants. Thus,
in the autoencoder, if more layers are to be added (see Section 2.9.the higher layer capsules will have

28 RCMs can also be set up with an almost-tree graph: all nodes th at share the same parent are fully interconnected. To
retain the e ciency that a tree enables, one must, in this cas e, demand that a node cannot have many children, e.g. no
more than 5.



Chapter 2. Autoencoders with domain-specific decoders 74

to have sizeable states, i.e. a large number of distortion values. This not ideal, but it's a consequence
of the deterministic nature. RCMs do not su er from that.

This summarization approach also explains how a discrete set of unit values can be su cig: they
are not expected to fully describe everything anyway.

The training data for RCMs varies between implementations. Some rquire the full state of all latent
variables to be speci ed in the training data; others require less: e.gonly the state of the bottom layer
of latent variables, or even just a collection of images of the same géct with di erent backgrounds (Zhu
et al., 2008b).

2.8.3 Breeder learning

Breeder learning (see Section 1.8.2 for an overview) uses a learnetteder and a fully hard-wired black
box decoder. After the concession that no part of the decoder igoing to get learned and that we won't be
able to backpropagate gradients through it to assist in training the encoder, it is of course very nice that
we can use any decoder that we want. Decoders that involve veryxéensive computations and discrete
choices (such asvhile loops) would be di cult to incorporate into the capsule-based autoencoder, but are
no problem at all for breeder learning. This means that breeder leating can handle more sophisticated
decoders, and do so at a lower cost in terms of software engineegin

It is not entirely satisfactory that no part of the breeder learning decoder can be learned. However,
we have excellent o -the-shelf generative models for many typesfaata, especially visual data. Breeder
learning could be applied with industrial scale computer graphics sysms today, and that certainly can't
be said of the capsule-based autoencoder.

There is, unfortunately, a limitation on the decoders that can be usd even in breeder learning: the
code has to be xed-size, and discrete code elements are a problefdowever, as the work in this thesis
shows, things that are discrete in nature can often be nicely appndmated in a continuous way.

2.9 Directions of further exploration

The modular set-up of the proposed autoencoders is quite exibleand allows for variations in many
places. Below are some ideas that | feel are worth exploring.

2.9.1 More decoder layers: applying CCs recursively

The most obvious extension is to make more extensive use of the fathat there's recursive structure in
this \computer graphics" decoder. Typical computer graphics systems certainly do make extensive use
of this.

Composite capsules could very well contain othercomposite capsules as components. The only
conceptual change is that a composite must then not only producéGeo poses for its components, but
also provide the distortion pose for each component. This is only a small change.

More di culties might arise from the fact that a composite-of-comp osites has more atomic pieces: if
the composite-of-composites contains 10 composites-of-atomsicand each of those contain 10 atomic cap-
sules, then rendering the composite-of-compaosites requires 100 = 100 ACs being rendered. Rendering
more ACs, and propagating gradients through that rendering pracess, could well become the compute
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time bottleneck. It is already a signi cant cost with 9 ACs. However, it may be possible to save quite a
bit on this expensive, as explained below.

2.9.2 Less learning, for ACs

A large fraction of the compute time is devoted to nding gradients for the templates. This will become
even more dominant with more ACs and larger outputs. However, tlere are ways to cut down on this
cost.

Conceptually the simplest approach is to use xed templates. They'dhave to be somewhat reason-
able, but perhaps this can be done. After all, in computer graphics pograms, the compaosite objects are
usually represented as, ultimately, collections of coloured trianglesWith the right componential set-up,
the atomic pieces can be quite simple.

Another approach would be to only compute the templates' gradies on some iterations of the
optimization, and to pretend that they are zero on other iterations. One such strategy would be to
compute the gradients for the rst 10% of the optimization, and th ereafter only once every ten iterations.
It seems reasonable to hope that the templates don't need to chaye very much any more, after a while.

2.9.3 More sophisticated computer graphics

The computer graphics-based decoder that was implemented fohis project was, of course, rather simple,
compared to mature computer graphics programs: it is only two-dinensional, it doesn't have complicated
lighting and atmospheric e ects, and it doesn't have occlusion. All ofthat could be implemented.

Most three-dimensional e ects, as well as lighting, are nicely di erentiable. Occlusion might present
some di culties. When one object passes through another that wa previously hiding it, and the two
objects have exactly the same surface normal, there is a non-direntiable change in the image.

However, some intrinsically non-di erentiable e ects can be made di erentiable using a reasonable
approximation, as has been demonstrated with the mixture managein this work. Occlusion could be
handled similarly, by making its e ect \soft" and encouraging the system not to linger in the soft region
too long. It worked for the mixture manager, and it worked for (Salakhutdinov & Hinton, 2009b).

It should be noted that switching from a two-dimensional object model to a three-dimensional one
makes the space much larger but doesn't necessarily require hugetyore work. With surface meshes,
computer graphics systems can use roughly two-dimensional olges (curved a bit for the extra dimen-
sion) to show a three-dimensional world (on a two-dimensional retia).

However, implementing full graphics will require quite a bit more compue power, especially if it is
also to handle high resolution images.

2.9.4 Greedy layer-wise training

There are several options for training this system greedily, layer ¥ layer, like the systems discussed in
Section 1.3.

Training the encoder greedily

The simplest idea is to train the encoder using the now standard tricls mentioned in Section 1.3. For
example, one could rst train an RBM on the raw data; then train an R BM on the data representations
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in the hidden layer of the rst RBM; and then use the data represertations in the hidden layer of the
second RBM as input to the encoder in something like Figure 2.12, with pwithout ne-tuning the
weights of those two RBM's.

This is a reasonable idea and might be an improvement indeed. Howeveone of the motivations
for such pre-training is a worry about vanishing gradients, and these are already dealt with by the
skip-connections in Figure 2.2. Nevertheless, it might be a nice fast ay of initializing the system.

Training the decoder greedily

A pre-training strategy more in the data generation spirit of the proposed autoencoders is to focus on
the decoder.

One would rst train an autoencoder where the decoder contains aly ACs, like Figure 2.6, perhaps
on small patches of the raw data. This would produce some well-traiad ACs, i.e. good templates.

Next, we'd throw away everything but the ACs (the templates), and set up an autoencoder with
a two-stage decoder, like Figure 2.12, to be trained on the same rawata as before. However, the
templates for the ACs would be xed to the previously learned ones.This would avoid having to learn
everything from scratch, and it would have far less computation todo (see Section 2.9.2).

After that system has learned good CCs, we'd again throw away ewgthing but the learned capsules
(the CCs, i.e. their distortion ! AC-in-CC poses functions), and set up a system with a three-stage
decoder, where the capsules are recursive CCs (see Section 2.9cbntaining the previously learned CCs
as (xed) components. Etcetera.

Of course, this could be combined with pre-training the encoder, oone could choose to re-use (part
of) the trained encoders as initialization, instead of throwing them avay each time. Also, one could
choose between either ne-tuning the previously learned capsuleft the cost of more computation), or
freezing them entirely as suggested above.

2.9.5 Improving the encoder

Because of the nature of this project, most of the above suggtsns concern only the decoder. However,
the encoder could also be improved.

Standard tricks

The most obvious addition to the encoder would be some convolutiorastyle locality and weight sharing,
or perhaps slightly less weight sharing as is done in (Ranzato et al., 20). There is every reason to
believe that this would help.

Another addition that can be made to the encoder is a xed layer of @élge detectors. Good edge
detection systems are available, and one could insert one of thoses dahe rst layer of the encoder.
However, the job of the whole system is to reconstruct the entirénput, including all grey scale or colour
intensities, and edge detectors throw this away.

A way around this problem is to change the objective function: the target output could be the edges
of the image, as opposed to the image itself. That way, we are e edtely back to the algorithm as
described in this thesis; it's just that the data is now edge data insted of raw image data. The hope
would be that this edge data is easier to interpret and reconstructthan raw image data. That is an
interesting open question, and deserves a spot on the \future wi" list.
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One standard method that should probably be avoided is pooling with sbsampling?® after a convolu-
tional layer (see Section 1.8.2). The reason is that pooling deliberatg throws away some high-precision
location information, and that information is essential for accurate reconstruction.

Domain-speci ¢ tricks

One can also try to improve the encoder in more sophisticated wayshat rely on the structure of the
decoder and the code layer. If the decoder is a single CC, as it was ié presented experiments on
the TFD, one could demand that the encoder rst produce only the rst half of the pose: the iGeo
transformation. After the encoder provides that, the input image would be normalized by applying the
inverse of the given iGeo transformation. A second encoder wouldhen be tasked with deciding on the
distortion part of the pose, using the normalized image as input. Working with nemalized data is often
easier, so this might work better than requiring the encoder to deie on the iGeo transformation and
the distortion values in one go, from the raw input image.

One could go even further and allow the second encoder to slightly emnge the iGeo transformation,
if it feels that the rst encoder did an imperfect job. This can be made recursive, and it brings us closer
to the idea of a saccading fovea, as was explored in (Larochelle & Hiah, 2010). There is no reason why
we cannot proceed further in that direction, using explicitly represented geometric transformations as a
tool.

2.9.6 Model selection

The traditional approach to model selection in neural networks research is to train many models, in-
dependently, and to go with whichever one works best. See Sectioh.9 for more details about this -
especially the recent advances in automating this process.

It is also possible to do model selection during training: one can add oeliminate units whenever
that seems to be called for. This applies to both the atomic units and he capsules, even the composite
capsules. Section 2.4.5 describes that sometimes, the model fails tiee a capsulepy accident In that
case, a gentle pressure can correct the problem. However, if ttee are more capsules than are truly
needed, then it makes sense to stop using the spare ones) purpose The objective function as it is now
will always favour the use of more capsules, but something can be ddd to it to encourage the system to
stop using a capsule if that capsule really isn't helping. For example, oa could add a small L1 penalty
on the sum of the capsule's template pixels (for atomic capsules). Tén, if the capsule isn't helping
much, the template pixels will all go to 0. If that happens, the optimizer can detect that (if it checks for
such things every once in a while), and remove such discarded cages from the model. Similarly, if all
capsules are being used, the optimizer can go in and add a few more.his, the optimizer can choose
the number of capsules, over time. This is more satisfactory thannying ten models in parallel, which
only di er in their number of capsules.

29Unless there is a lot of overlap between the pools; ideally a s tride of just 1.
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2.10 Conclusion

2.10.1 Applicability

The proposed autoencoder relies on one central assumption: théhe visual scene is componential. The
more componential it is, the better the system can do.

Every image has some global attributes: the speci cs of the lighting the speci cs of the atmosphere,
and some general properties of the setting. Objects have globalttributes as well. For example, when
modelling a human face, the person's skin colour is a global attributeand their dominant emotion also
has e ects on more than just the mouth. A handwritten digit has a global stroke width. Such global
variables go against the assumption of componentiality. The model&n handle them by including a large
number of CC distortion variables, but it's not what the model is best at.

Therefore, modeling a person is probably more dicult than modeling a car. A car has fairly
independent components: the wheels (position & possibly decoratig, the frame (shape & colour), the
lights (on / 0), the passengers (present / absent).

Another type of image that is quite componential is the kind that people take and upload to social
media. People are uploading many images a day, and storing these ddube an issue. If the rate of
uploads increases quicker than the price of storage media decress then some day there would be a need
for better lossy compression than JPEG. This type of autoencodemight be that compression (the code
layer could be made into a small compressed description of the imageand fortunately, there would be
no shortage of training data.

In short, this model is probably best with data that is highly componential, i.e. where a part of the
image can be modelled with little knowledge about the rest of the image.

2.10.2 Take-home messages

The main idea of this approach is to train a data recognition system bycreating a data generation
system that's half engineered and half learned. The experiments wit MNIST and the TFD show that
this approach has potential: on these datasets, the learnable parof the data generation system did
indeed learn to work well, in the context of the engineered structue. The data recognition system
learned well, too. In the case of MNIST, a nice quantitative result vai ed that things can be done this
way that had not been achieved before: the model achieved goodassi cation performance, using only
25 labelled examples.

There are two take-home messages. The rst is that sophisticaté half engineered domain-speci c
knowledge can be put into a data generation system, which is oftenasier than placing it in a recognition
system. A recognition system can absorb the domain-speci ¢ knolgdge when it's trained jointly with
the generation system, with minimal danger of over tting. This approach is suitable for any type of data
where we can describe the structure that a good generation sysin would have. Visual data is not the
only domain where that is the case, but it may be the most promising oe, because we have very good
image generation systems. However, care must be taken to ensuthat the data generation framework
is su ciently exible for the type of data that it's asked to generate . The particular data generation
system used in this work seems to be more appropriate to the MNISTataset than to the TFD images.

The second take-home message is that learning and sophisticatedgineering can go together. Sys-
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tems with elaborate engineered componential structuré’ can be made, where the details are lled in by
learning. This requires that the e ect of learnable parameters alwgs be di erentiable, which isn't trivial
but not impossible either. With some engineering tricks, it's possible touse gradient-based learning for
intrinsically discrete choices, like those of a mixture manager.

30The function that computes the loss value from the input imag e and the learnable parameter vector consists of
945 atomic steps in a Python program. The word \atomic", here , only refers to the Python perspective: some of these
\atomic" components represent decidedly composite mathem atical functions like log-sum-exp, or the application of th e
geometric transformation. On the other hand, some of these ¢ omponents that in Python can be called atomic may feel so
insigni cant that one might want to call them sub-atomic in a semantic sense. Anyway, these 945 steps, whatever we call
them, can be categorized as 284 mathematical operations and 661 bits of \administration work", like reshaping matrices
The function that computes the gradient is automatically ge  nerated from this model function, and consists of 1063 steps .
The point is that this is a highly componential system.



Chapter 3

Training undirected generative
models

3.1 Introduction

In this chapter | address the question of how to train undirected gaphical models, also known as energy-
based models. There are many interesting and successful applidans of these models, on a variety of
types of data, but here | focus on the question of how to train then, regardless what the type of data
and the details of the task are.

3.1.1 Focus on data log probability

The most common way to train generative models is to try to maximize he (log) probability of the
data under the probability distribution that the model de nes. This kind of training usually proceeds
iteratively by computing or estimating the gradient of the sum of log probability of the training data,
with respect to the learnable parameters, and changing the paramters in that direction®. That is the
approach taken in this chapter. Therefore, its central questionis how best to estimate the gradient of
the training data log probability. It should be made clear that there are other ways to train generative
models, like score matching (Hyvarinen & Dayan, 2005) or training the system to stay close to the training
data under some Markov Chain transition operator. However, thischapter is all about estimating the
data log probability gradient.

3.1.2 Likelihood gradient: two parts

The algorithms studied in this chapter are, roughly speaking, applicdle to any type of undirected
graphical model. The experiments were performed mostly on RBM'sfor which the positive part of the
gradient is fully tractable, but the algorithms can also be adapted to work on more general models; see
for example (Salakhutdinov & Hinton, 2009a).

As mentioned in Section 1.3.2, a typical training algorithm for an undirected graphical model consists
of gradient-based optimization, and the choice of approximation tothe negative part of the likelihood
gradient is the most distinctive part of the algorithm.

10r at least in a direction that has a positive dot product with that gradient.

80
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3.1.3 Global unlearning

In the past decade, two general types of such approximations he&e emerged. Intuitively the most
appealing one isglobal unlearning (see Section 1.3.2), where is estimated from attempted samples
from the model distribution, which are independent of the training data. This is appealing because
energy-based models arglobally normalized (see Section 1.5.2) so the most correct thing to do is to do
unlearning on con gurations taken from the global distribution.

3.1.4 Local unlearning

Global unlearning gradient estimators are philosophically appealing bt have signi cant weaknesses
compared to local unlearning gradient estimators, which have been popular for some time becaasof
their easy computation, low variance, and success in creating thewlding blocks for multilayer models;
see for example (Besag, 1986; Hinton, 2002; Hinton et al., 2006)n llocal unlearning algorithms, r

is estimated from con gurations that are somehow close to the tréning data. This could be very close,
as in pseudo likelihood (PL) (Besag, 1986), or somewhat close, as inD1, or in fact not that close at
all, as happens in CD-k for largek at the cost of more computation time. However, in all cases of local
unlearning the con gurations on which the negative gradient estimae is based are somehow tied to a
training case.

3.1.5 Outline of the chapter

This chapter investigates those two classes of training algorithms. First, Section 3.2 introduces two

global unlearning algorithms and their connections to other method like Herding. Next, Section 3.3

and Section 3.4 present a range of experiments comparing the vars algorithms. Section 3.5 goes over
some applications of the algorithms. Finally, Section 3.6 concludes thehapter by taking a step back

and looking at the bigger picture again.

3.2 Global unlearning algorithms

3.2.1 Persistent Contrastive Divergence

CD-1 is fast, has low variance, and is a reasonable approximation tohie likelihood gradient, but it is
still signi cantly di erent from the likelihood gradient when the mixing r ate is low. This can be seen by
drawing samples from the distribution that it learns (see Figure 3.2). CD-n for greater n produces more
accurate gradient estimates (in expectation) than CD-1 (Bengio &Delalleau, 2007), but requires more
computation by a factor of O(n). In (Neal, 1992), a solution to this problem is suggested for Sigmoid
Belief Networks and general (i.e. not Restricted) Boltzmann Machires. In the context of RBMs, the
idea is as follows.

What we need for approximating r is a sample from the model distribution. The standard way
to get it is by using a Markov Chain, but running a chain for many steps is too time-consuming. How-
ever, between parameter updates, the model changes only slight We can take advantage of that by
initializing a Markov Chain at the state in which it ended for the previous model. This initialization
is often fairly close to the model distribution, even though the modé has changed a bit in the param-
eter update. Neal uses this approach with Sigmoid Belief Networksd approximately sample from the
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posterior distribution over hidden layer states given the visible layerstate. For RBMs, the situation is
even better: there is only one distribution from which we need samplg, as opposed to one distribution
per training data point. Thus, the algorithm can be used to producegradient estimatesonline or using
mini-batches, using only a few training data points for the positive pat of each gradient estimate, and
only a few 'fantasy' points for the negative part. Each time a mini-batch is processed, the fantasy points
are updated by one or more full steps of the Markov Chain.

Of course this is still an approximation, because the model does cinge slightly with each parameter
update. With in nitesimally small learning rate it becomes exact, but it also seems to work well with
realistic learning rates.

In (Tieleman, 2008), which introduced the method to the researclcommunity investigating Restricted
Boltzmann Machines, | called this algorithm Persistent Contrastive Divergence(PCD), to emphasize that
the Markov Chain is not reset between parameter updates. This community was unaware that statisti-
cians have used essentially the same method for a lot longer under éhnamestochastic approximation
and have made thorough theoretical analyses; see (Robbins & Moo, 1951; Kushner & Clark, 1978).

(Salakhutdinov & Hinton, 2009a) uses the same approach for estiating r in a more complex
energy-based model: a multi-layer Boltzmann Machine. Because thiamodel is more complex, it also

* are still estimated separately.

requires an approximationtor *, but r andr

The PCD algorithm can be implemented in various ways. One could, for gample, choose to randomly
reset some of the Markov Chains at regular intervals. My initial expeiments showed that a reasonable
implementation is as follows: no Markov Chains get reset, ever; onaufi Gibbs update is done on each of
the Markov Chains for each gradient estimate; and the number of Mirkov Chains is equal to the number
of training data points in a mini-batch.

3.2.2 Why PCD works

As mentioned in Section 1.3.2, the training data likelihood objective furction for an RBM consists of two

components, * and , of which only the latter has an intractable gradient: r = E [r( E (¥;0)
wv,h P

+ +

is tractable: r = E [r ( E (v;h))]. D denotes the training data dis-
v D;h P (jv)

The gradient of

tribution.

Gradient estimation using the R distribution

There is another way of writing r . Let R be some distribution over the data space, that is used for
estimating r . For now, let R be the model's distribution P , as a constant, i.e. R will remain the
same when changes, though of coursd will change. With that particular choice of R, we can write
r =r (KL(RjjP) KL (DjjP)) (see Section 4.1 for a proof, assuming that speci c choice dR).

If we're using that perfect R, the sought gradientr is exactly equal tor (KL (RjjP ) KL (DjjP)),
but this is trivial because then KL (RjjP ) = 0, and it doesn't suggest an algorithm. What we can do,
however, is use a dierentR: we chooseR 6 P . In this case,r will not in general be equal to
r (KL (RjjP ) KL (DjjP )). However, because all the involved functions are smooth, iR is su ciently
close toP , then r (KL (RjjP ) KL (DjjP )) will be a useful approximation to r . If, in addition,
R is such that r (KL (RjjP ) KL (DjjP )) can be e ciently computed or approximated, we have an
algorithm for approximating r
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Many gradient approximation algorithms can indeed be described as sing an approximate R: one
that is not exactly the model distribution P . In CD-1, the approximate R is the distribution of
con gurations that we reach after performing one full Gibbs update from randomly chosen training data
cases. In pseudo-likelihood, the approximateR is the distribution reached by resampling one variable,
chosen uniformly at random. And in PCD, the approximate R is a mixture of delta distributions, one
for each of the persistent Markov Chains, also known as the fantsy particles. For example, if we have
100 persistent Markov Chains,R will be the probability distribution that has 1% of its probability mass
on each of the Markov Chains' states.

Learning makes the approximation worse

By changing the model parameters in the direction of r = r (KL (RjjP ) KL (DjjP )), using such
an approximate R, we tend to increaseKL (RjjP ) while decreasingKL (DjjP ).

DecreasingKL (DjjP ) is a very reasonable thing to do: we're reducing the di erence betwen the
training data distribution and the model distribution. This correspo nds to following the gradient of

IncreasingKL (RjjP ) is less obviously the right thing to do. We're pushing to makeR, our approx-
imation to P , as dierent from P as possible. This is in contrast to variational learning, which also
uses an approximating distribution: there, the e ect of learning is that the approximating distribution
becomes a better approximation. For PCD, however, the e ect oflearning is that the approximat-
ing distribution gets worse. The model distribution is trying to get away from R, which attempts to
approximate it.

The interaction between learning and the Gibbs transition o perator

Making R, our collection of, say, 100fantasy con gurations, a bad approximation to P , may seem
undesirable but has a bene cial side-e ect that can only be undertood by considering the interaction
of the learning and the Gibbs updates on the fantasy particles. Afer several weight updates have had
the e ect of making R and P quite di erent, the Gibbs updates on the R particles will become well
\motivated" to quickly move them towards P again. A Markov Chain that's in a low probability
con guration will typically change to quite a di erent con guration w hen it makes its next transition.
This means that the R particles are typically moving around at high speed, always chasing® that's
being made dierent from R by the KL (RjjP ) part of the gradient. This has the e ect that the R
particles are rapidly moving around the state space; much more raily than a regular Markov Chain
with Gibbs transitions would if there were no learning going on at the same time.

The energy landscape

Another way to explain the phenomenon is by looking at the energy ladscape that the RBM de nes. The
R particles are located somewhere, and th&L (RjjP ) part of the gradient has the e ect of increasing
the energy in and neaf those places. After the energy has been raised somewhat and tipgobability
therefore reduced, theR particles quickly move on to another place of higher probability, i.e. they're
\rolling" downhill in the energy landscape.

2Con gurations that are similar to a specic R particle will a Iso tend to see their energy increase. In an RBM, a
con guration is a highly distributed object. The energy, be ing a sum of typically small terms based on which interaction s
are \on" in a con guration, tends to vary only a little betwee n very two similar con gurations. Thus, when the energy of
an R particle is increased, the energy of similar con gurati ons tends to increase as well.
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This analysis explains several previously unexplained phenomena ofGD:

The R particles of the PCD algorithm are always moving much more rapidly than one would
expect if one looked at a Markov Chain on a static energy landscape.e. after the model has been
trained.

PCD never seemed to be very good at ne-tuning weights with a smalllearning rate: when the
learning rate is reduced, the arti cially enhanced \mixing rate" of th e fantasy particles is equally
reduced.

PCD performs much worse when one addmomentum to the optimizer. The above analysis reveals
why it is important that be able to change quickly, and not move sluggishly in one direction,
which is the e ect of momentum. If it takes a long time to stop raising the energy in a location

where many R particles were not too long ago, then the favourable interaction baveen learning

and optimization is slowed down.

3.2.3 Fast PCD: the main idea
Rapid \mixing" and a small learning rate

The arti cially large \mixing rate" that is created by the interaction b etween learning and the transition
operator of the Markov Chain is exploited more explicitly in the \Fast P CD" (FPCD) algorithm. In
PCD, this large \mixing rate" is much reduced when the learning rate is reduced, and that is what
FPCD is designed to remedy.

Introducing fast weights

In FPCD, there are two energy landscapes. The rst one is that ofthe evolving that we're trying to
learn, and it changes relatively slowly, because learning is somethingotdo carefully. We call this the
\slow model" with its \slow energy landscape", de ned by the \slow we ights" (called or gow).

The other energy landscape is changing more rapidly. It is not the oa that we're trying to learn, and
it is discarded when the algorithm terminates. Its sole purpose is to povide a stream of approximate
samples from the \slow" model, and it achieves that in roughly the way Herding works (see Section
3.2.5). We call this other model the \fast model", de ned by the \fa st weights".

The fast model learns with a large learning rate, so as to capitalize orthe favourable interaction
between learning and the Markov Chains, but it is also strongly \pulled back" (decayed) towards the
slow model. This way, the approximate samples that it provides remainclose to the distribution of the
slow model. After the publication of FPCD, it has even been suggestéthat this arti cial \mixing rate"
is so good that it should be used to draw samples from trained modelsBfeuleux et al., 2010; Breuleux

et al., 2011).
A natural way to implement this pair of models is to explicitly represent both the slow weights
= gow and the di erence = fast slow Detween the fast weights and the slow weights. We call

this the \fast overlay”, because it represents a relatively thin overlay on the energy landscape: the
fast energy landscape is equal to the slow landscape with the oveslaadded on top. The fast weights
fast are not explicitly represented, but are instead a function of the slev weights and the fast overlay,

3Those sampling methods use a training set, and are thus a mix o f two ideas: sampling from a model, and herding
(which can be thought of as sampling from a distribution that is implied by the given dataset).
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as fst = sow + . With this framework, instead of saying that the fast weights decay towards the
slow weights, we say that the overlay decays towards zero - but céely this is just a matter of notation,
because the e ect is the same.

3.2.4 Fast PCD: pseudocode

Below is a pseudocode description of the FPCD algorithm. For simplicity considerations such as mo-
mentum and weight decay (on the slow model) have been left out, buthese are easy to incorporate.

Program parameters:

A schedule of slow (a.k.a. regular) learning
rates, used in step 6 below.

A schedule of fast learning rates, used in
step 7 below. A constant fast learning rate
is recommended.

A decay rate < 1for . Recommended

19

value: = 55

The number N; of fantasy particles. The
recommended value here is the same as the|
mini-batch size, which in my case was 100.

Initialization:
Initialize  ¢ow to small random values.
Initialize to all zeros.

Initialize the N Markov Chains Vv
Zero states.

to all

Then repeat:
1. Get the next batch of training data, v*.

2. Calculate H* = P (hjv*; gow), i.e. acti-
vation probabilities inferred using the slow
model. Calculate the positive gradient
g-=v The .

3. Calculate ™ = P(hjV ; siow + ), i.e.
activation probabilities inferred using the
fast model. Calculate the negative gradient
g =V T H .

4. Update v- = sample from P(vjH ; sow +

), i.e. one full Gibbs update on the neg-
ative data, using the fast weights.

5. Calculate the full gradient g=g¢g* g .
6. Update slow = sow  t 0

regular learning rate for this iteration.
7. Update = + g
fast learning rate for this iteration.
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Notice that when the fast learning rate is zero, we get the original 2D algorithm. This means that
one can interpolate between the two algorithms by choosing a smallfast learning rate".

What value for N¢ (the number of fantasy particles) is optimal is an open question. Tk above
recommendation is based solely on the fact that it is simple and it workd - | have not thoroughly
explored alternatives. There is something to be said for having a larg number of fantasy particles:
only a large ensemble can hope to approximate the model distributiorwell. On the other hand, it also
requires more compute time: using 1 particle and performing 100 upates on it at every step clearly has
advantages over using 100 particles with just 1 update at a time. 1 article with 100 updates can move
further in each iteration, and if 100 particles with 1 update end up staying close together, 1 particle with
100 updates is clearly preferable. On the other hand, with Moore's kv having turned towards greater
parallelism rather than greater clock speed, 100 particles also havan obvious advantage. A second
reason to prefer 100 particles with 1 update per iteration is that usng 1 particle with 100 updates per
update might not be much better than 1 particle with just 1 update: this algorithm is for models that
are so sti that a regular Markov Chain essentially gets nowhere, anl that is what 100 updates without
changing would be. However, this is simply an open question.

3.2.5 Related algorithms
Herding

PCD is closely related to a process called \Herding" (Welling, 2009b; W#ing, 2009a). If one replaces
the Gibbs transition operator in PCD with a transition operator that deterministically goes to the
greatest probability (i.e. lowest energy) con guration, the resulting process is Herding. Herding has
been shown to also work with less rigorously energy-minimizing transion operators (Welling, 2009a),
and may therefore be helpful in analyzing what is happening to the fatasy particles of PCD.

Herding is quite di erent from learning a parametric model. In Herding, the weights are always
changing rapidly and are not the object of interest. Instead, we ecord the R states over time, and the
distribution of that collection is, in a sense, the way the model archiecture perceives the training data.
Some basic statistics of the distribution are guaranteed to match hose of the training data exactly, in
the limit of long herding sequences.

Two-timescale stochastic approximation algorithms

PCD is an instance of the broad class of systems that is known in thetatistics literature as \stochastic
approximation" (Robbins & Monro, 1951; Bharath & Borkar, 1999). FPCD is an instance of the \two-
timescale" variety of stochastic approximation algorithms. In two-timescale stochastic approximation
algorithms, two random variables evolve simultaneously: one slowly ath one rapidly. In the case of
FPCD, the slow one is gy and the rapidly moving evolving one is fast = siow +

In idealized mathematical analysis aiming to prove almost sure conveyence, the rapidly evolving
variable, viewed from the perspective of the slowly evolving one, will €nd, in the limit of the process,
towards evolving so rapidly that it approaches equilibrium. Conversdy, in the limit, from the perspective
of the rapidly evolving variable, the slowly evolving variable will tend to zero movement, i.e. it becomes
static. FPCD, being an algorithm for a practical purpose, instead d a mathematical analysis for a
theory purpose, has nolimit and the slowly learning model need not come entirely to a halt. Howeuwg
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it should start to move at least somewhat more slowly over time, i.e. the \regular" learning rate should
decay.

The Wang-Landau algorithm

PCD and FPCD are also related to the Wang-Landau (WL) algorithm.

WL serves not for learning a model, but for analyzing a xed probability distribution. However, it
doesn't do this by producing samples of the distribution. Rather, it aims to estimate the size of di erent
regions of the probability space. What connects it to PCD, FPCD, ard Herding, is its use of a random
walk that develops aversion to areas where it spends much time, in der to keep moving around rapidly.

WL is described in (Wang & Landau, 2001) in a way that takes advantagge of the discrete energy
levels of simple Potts and Ising models. The authors note that althogh they apply a random walk to
energy space, the same type of walk could be applied to any other pameterization of space. Thus
generalized, the idea is as follows.

The algorithm starts by dividing the probability space in a number of regions (in the original paper,
every energy level is a region). It expects to visit each region, antb keep some data about each region,
so the number cannot be too large, but it can be in the thousands. Te algorithm then sets up an
aversion scalar for each region; these scalars are all initialized to 1.

Then it runs a modi ed Markov Chain on the probability distribution. Th e modi cation is that it
makes its transition decisions not based on the original probability ofthe various points, but instead
based on their probability divided by the aversion scalar of the regionto which the point belongs. After
every transition, the region in which this random walk currently nds itself gets more aversion: its
aversion scalar is multiplied by a small constant greater than 1. As in Hrding/PCD/FPCD, this has
the e ect of encouraging the random walk to move to another partof the space relatively soon, and thus
ensures better exploration.

The e ect of this policy is that in the end, all regions are visited roughly equally often. When
that is accomplished, we can estimate the relative sizes of the regisrunder the original probability
distribution : the recorded aversions are used as those estimates. While havimggood estimate of the
marginal probabilities of the regions doesn't provide samples, it doeprovide much valuable insight.

Note that after the random walk, WL no longer has any interest in the visited states - this in contrast
to PCD/FPCD/Herding.

For more details and analysis, see the original publication (Wang & Lamlau, 2001).

A variation, more like FPCD, is described in (Zhou et al., 2006). It eliminates the requirement that
the state space be small enough to visit every point with a random wk. It does this by developing
aversion to a localized region around the point that's visited. Howeve, this means that computing the
aversion (as the sum of regional aversions) now takes time linear irhe number of iterations, as opposed
to being an O(1) look-up. Another problem is that to produce the sane kind of estimates of the region
sizes as the original WL algorithm does, one still needs a loop over alligstrete points in the spacé.

4The authors only mention that \we calculate the thermodynam  ic quantities (...) with numerical integral". However,
| cannot think of a way this might be done exactly without such a loop. The authors demonstrate their algorithm on a
task where the sampled space is small enough that such a loop i s indeed feasible.
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Di erences and similarities

All of these algorithms capitalize on the rapid exploration that a random walk is forced into when it
develops aversion to wherever it is. However, there are signi cantli erences.

Random walk histogram One distinguishing factor is in the type of random walk state histogram
that these methods aim for. WL is based on a at histogram, where # regions are visited roughly
equally often. Herding and FPCD, on the other hand, aim for a histogam like that of the given model
or data. Thus, Herding and FPCD are much more like traditional Mark ov Chain Monte Carlo algorithms
than WL.

Relation to datasets The second major di erence between these various algorithms is in hat the
algorithm is trying to analyze. WL and FPCD seek to analyze a probability distribution that's de ned
by, in the case of neural networks, learned weights of a parameit model. Herding, on the other hand,
analyzes a dataset.

However, FPCD also depends on a dataset WL is the only one of these algorithms that does not
use a dataset. FPCD's dependence on a dataset means that it is a liad sampler, and the same applies
to (Breuleux et al., 2011). FPCD's fast model runs a learning algoritrm (roughly speaking PCD) with
that dataset, and as a result, its \samples" will be biased towards hat dataset®. Even if that biasing
training data set would be equal to the model distribution, the psewlo-samples that FPCD would collect
(with the \slow learning rate" set to zero) would still be biased, except in the limit of a vanishing \fast
learning rate", but there the advantage of the algorithm is lost. FPCD's sampling method is inherently
approximate; its main justi cation is that it seems to work in practice , despite being approximate.

The strengths and weaknesses of binning WL creates a smaller search space by binning: every
bin of states in the original space becomes a state in the reduced ape. Aversion is then applied to
speci ¢ bins (Wang & Landau, 2001), or local regions of neighbourig bins (Zhou et al., 2006). If all
goes well, the random walk will properly explore each bin, and the algathm produces good estimates
of the size of each bin.

However, if the bins are too large, the lack of aversion-based expiation within a bin becomes
problematic. If the bins are too small, the random walk (which needs o visit them all) takes too much
time.

Applying aversion to local regions of bins, instead of single bins, can iprove exploration, as (Zhou
et al., 2006) found. However, runtime remains at the very least lineain the number of bins.

Herding and FPCD can be thought of as applying aversion to quite a lage area, instead of just
one bin or a group of neighbouring bins, as pointed out by (Breuleux tal., 2011). For example, if the
random walk visits the con guration where all units are on (in a binary RBM), every con guration in
the whole search space will receive aversion proportional to the maber of units and pairs of units that

5The dataset dependence of FPCD's fast model could perhaps be eliminated. We could replace the positive gradient
estimate for the fast model by a slowly decaying historical a verage of the negative gradient estimates. The same could be
tried with (Breuleux et al., 2011). However, this is only spe culation; | have not attempted it in practice.

6 A highly informal argument suggests that this might not be ap  roblem in practice, just like CD-1 can produce a highly
biased gradient estimate but still tend to move roughly in th e right direction. The problem is that the \negative gradien  t"
estimate is computed with pseudo-samples that are not quite  samples from the model but are somewhat biased towards the
training data. However, the \positive gradient" estimate w ill still be based on data that's even closer to the training s et,
namely the training set itself. Thus, the di erence between the \positive gradient" estimate and the \negative gradien t"
estimate may still point in approximately the right directi on.
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are on in the con guration. Thus, Herding and FPCD avoid the need for binning to create a small space.
FPCD pays for this by giving up on all interesting theoretical correctness guarantees.

Conclusion  The approximate sampling component of the FPCD algorithm di ers from Herding in
that it's for sampling from a model with weights, albeit (slowly) evolving weights. It di ers from the
WL algorithm in that it aims for the standard Markov Chain histogram ( instead of a at histogram),
in that its aversion e ect is highly distributed, and in that it does not p roduce estimates of the size of
designated chunks of the probability distribution. Thus, these three algorithms use the same principle
of aversion-for-exploration in very di erent ways and to di erent ends.

3.3 Experiments: global unlearning vs. local unlearning

| start this section with its simple conclusion: experiments show cledly that for training an undirected
model that is going to have to achieve results on its own (instead of eing combined with other models),
global unlearning is preferable to local unlearning.

What follows is the details of a series of experiments with di erent tasks, di erent image data sets,
di erent undirected models, and di erent local and global unlearning algorithms, all of which point to
the above conclusion.

3.3.1 General set-up of the experiments

For all experiments | used the mini-batch learning procedure, usingl00 training cases for each gradient
estimate.

The learning rates used in the experiments are not constant. In pectice, decaying learning rates
often work better. In these experiments, the learning rate was lirarly decayed from some initial learning
rate to zero, over the duration of the learning. Preliminary experiments showed that this often works
better than the tl schedule suggested in (Robbins & Monro, 1951), which is preferablhen in nitely
much time is available for the optimization.

Some experiment parameters, such as the number of hidden unitsnd the size of the mini-batches,
were xed. However, the initial learning rate was chosen using a validtion set, as was weight decay
for the (short) experiments on the MNIST patches and arti cial d ata. For each algorithm, each task,
and each training duration, 30 runs were performed with evaluationon validation data, trying to nd
the settings that worked best. Then a choice of initial learning rate and, for the shorter experiments,
weight decay, were made, and with those chosen settings, 10 morans were performed, evaluating on
test data. This resulted in 10 test performance numbers, which wee summarized by their average and
standard deviation (shown as error bars).

The local unlearning algorithms that | used are several variations a the CD algorithm (CD-1, CD-10,
and MF CD) as introduced in Section 1.3.2, and the pseudo-likelihood (B) algorithm (Besag, 1986).
The global unlearning algorithms used here are PCD and FPCD.



Chapter 3. Training undirected generative models 90

-120
-130

-140 t

-150 |-

test data log likelihood per case

70 L L L L L L L L L L L 1
32s 64s 128s 4m 8m 17m34m68m 2h 4h 9h 18h
training time (logarithmic)

-160

Figure 3.1: Modeling MNIST data with 25 hidden units (exact log likelihood)

3.3.2 Evaluating data likelihood exactly
Task

There are several ways of evaluating how well an RBM has been tragd, but the most natural one is
the data likelihood function. That is, after all, the objective functio n of which we attempt to nd the
gradient with a reasonable approximation. Data likelihood can be compted exactly for small models
(up to about 25 hidden units), and can be estimated for larger modks. For this rst series of experiments
| wanted to have exact evaluation, so | used an RBM with 25 binary hidden units.

Data

The data set for this task was the MNIST dataset of handwritten digit images (LeCun & Cortes, 1998).
The images are 28 by 28 pixels, and the data set consists of 60,00@&ining cases and 10,000 test cases.
To have a validation set, | split the o cial training set of 60,000 cases into a training set of 50,000 cases
and a validation set of 10,000 cases. To have binary data, | treat th pixel intensities as probabilities.
Each time a binary data point is required, a real-valued MNIST image is bnarized by sampling from the
given Bernoulli distribution for each pixel. Thus, in e ect, the data s et is a mixture of 70,000 factorial
distributions: one for each of the data points in the MNIST data set The visible layer of the RBM
consists of 784 binary units.

Results

The results are shown in Figure 3.1, and are quite clear: if we're trainig a globally normalized model
like an RBM, global unlearning is the way to go. Of the local unlearning dgorithms, CD-10 performs
best, probably because it is the least local in its unlearning.

Samples

We can also draw samples from a trained model, to get a feeling for whalistribution it learned. This
gives a subjective, inexact evaluation, but is nevertheless usefuln Figure 3.2, samples are shown from
two di erent models: one trained with PCD (global unlearning), and one trained with CD-1 (local
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Figure 3.2: Samples from an RBM that was trained using PCD (left) and an RB M that was trained using CD-1
(right). Clearly, CD-1 did not produce an accurate model of t he MNIST digits. Notice, however, that some of
the CD-1 samples vaguely resemble a three.

unlearning). Both models had 500 binary hidden units. Again, the mogkl that was trained with global
unlearning is clearly doing a better job.

3.3.3 Using an RBM for classi cation

Another way to compare training algorithms is to look at what happens if we turn the generative model
into a classi cation engine. This can be done with an RBM by adding a viside unit that represents the
label. The result is called a classi cation RBM; see (Hinton et al., 2006; larochelle & Bengio, 2008). The
label unit is a multinomial unit, and its conditional probability distributio n is computed by the softmax
function. During training, the right value for this unit is included in the (labeled) training set. At test
time, we perform classi cation by computing which of the possible clases has the greatest conditional
probability, given the regular input values.

This model can be used for classi cation, and at the same time it buildsa generative model of the
input/label combinations in the training set. When one is only interested in classi cation, the fact that a
generative model is also built has the pleasant e ect of being a goodegularizer. For these experiments,
| only measure classi cation performance: the fraction of test caes that are correctly classi ed.

These experiments, too, were run on the MNIST data set.

The results are shown in Figure 3.3 and again show that global unleaiing does a better job at this
task than local unlearning.

3.3.4 A fully visible model
Task

The third model is signi cantly di erent: a fully visible, fully connected Markov Random Field (MRF)
(see for example (Wainwright & Jordan, 2003)). One can use the PO algorithm on it, although it looks
a bit di erent in this case. To have exact test data log likelihood measuements, | used a small model,
with only 25 units.

The data set for these experiments was obtained by taking small paghes of 5 by 5 pixels, from the
MNIST images. To have somewhat smooth-looking data, | binarized i thresholding at 1/2. The 70,000
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Figure 3.3: Classi cation of MNIST data

MNIST data points were thus turned into 70,000 times (28 5+ 1)2 = 4;032 000 patches. This data
set was split into training (60%), validation (20%), and test (20%) sds.

Algorithms

Three di erent training algorithms were compared:

Pseudo-likelihood.

Persistent Contrastive Divergence. PCD for fully visible MRFs is a bit di erent from PCD for
RBMs. A pleasant di erence is that, because there are no hidden uits, % is constant, so it can
be precomputed for the entire training set. Thus, no variance reslts from the use of mini-batches,
and the training set can be discarded after@@—+ is computed over it. An unpleasant di erence
is that the Markov Chain de ned by Gibbs sampling has slower mixing: MRFs with connections
between the visible units lack the pleasant property of RBMs that all visible units can be updated
at the same time (see, however, (Martens & Sutskever, 2010), lich explores a way to overcome

this weakness).

Training by following the exact training data likelihood gradient. This is v ery slow, and just barely
feasible for this toy model experiment, but gives a reasonable uppeébound on how well training
could work. It is not an exact upper bound, for a variety of reasors, but if runtime were not an
issue, most researchers would prefer it to all algorithms that are sed in practice.

Results

Pseudo-Likelihood (PL) training works reasonably well on this data ®t, but it does not produce the best
probability models. This is probably because PL optimizes a di erent obective function. As a result,

PL needed early stopping to avoid departing too much from the datalikelihood objective function: the
optimal learning rate was always more or less inversely proportionaio the duration of the optimization.

Even with only a few seconds of training time, the best test data likelitood is already achieved: 5:35
(nats per data case).
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Figure 3.4: Training a fully visible MRF

PCD training does go more in the direction of the data likelihood function - in the limit of the
learning rate going to zero, it gives its exact gradient. Thus, PCD didpro t from having more time to
run. Figure 3.4 shows the performance. The asymptotic test datdog likelihood for PCD is 5:15.

Training based on the exact training data likelihood gradient (slow but possible to compute) also
ended up with a test data log likelihood of 5:15, supporting the idea that in the limit of enough training
time, PCD has the same result as this almost best-possible algorithmit just takes less time in practice.

This value of 5:15 \nats" per case is, however, quite di erent from the entropy of the training data
distribution, which is approximately 4 :78 nats’. This di erence is likely due to the fact that the model
has insu cient complexity to completely learn the training data distrib ution.

As a side-note, the training data log likelihood is only Q004 nats better than the test data log
likelihood. This small di erence is not a great surprise, because the dta set is large and the model is
small.

3.3.5 Evaluating data likelihood under a full-size model
Approximating likelihood

Comparing data likelihood under toy models is important, and nice becase one has exact results, but
is not entirely satisfactory. However, likelihood under a full-size moel is intractable because it requires
one to compute the normalization constantZ of the RBM. To still have some sort of comparison, | used a
procedure for estimating the normalization constantZ, that was developed in our group (Salakhutdinov
& Murray, 2008). The algorithm works for any number of hidden units, but it comes with few guarantees
in practice. Nonetheless, it can be used to complement other resust

Data

For these experiments, an arti cial data set was created by comining the outlines of rectangles and
triangles in an image. Because this data set is arti cially generated, bere is, in practice, an unlimited

"This estimate was obtained by treating the dataset of 4,032, 000 cases as a mixture of 4,032,000 delta distributions.
There is great overlap: some input patterns appear many time s. Therefore, calculating entropy this way has some
justi cation. However, it is inevitably an underestimate o f the number that would be found if MNIST had had more cases.
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Figure 3.5: Modeling arti cial data. Shown on the y axis is approximate test data log likelihood.

amount of it, which has the bene t of shedding some light on the reasns for using weight decay.

Model

The model for this task was a fully binary RBM with 100 hidden units.

Results

In Figure 3.5 we see essentially the same as what happened on the MBIl tasks. MF CD is clearly
the worst of the algorithms, CD-1 works better, and CD-10 and P work best, with CD-10 being
preferable when little time is available and PCD being better if more time isavailable.

Weight decay

This data set was arti cially generated, so there was an in nite amount of data available. Thus, one
might think that the use of weight decay serves no purpose. Howear, all four algorithms did work best
with some weight decay. One reason for this is probably that weight écay regularization can help to
keep the model somewhat reasonable, which can be important wheitis trained with a poor gradient
approximation. Another reason is that all of these algorithms are smewhat dependent on the mixing
rate of the Markov Chain de ned by the Gibbs sampler, and that mixin g rate is usually higher when the
parameters of the model are smaller (if the parameters would be siply scaled down, the mixing rate is
guaranteed to be higher). Thus, weight decay keeps the model ming reasonably well, and makes all of
these algorithms work better.

MF CD, which is in a sense the most approximate algorithm of them all, n@ds most weight decay,
probably to keep its oddities under control. MF CD worked best with a weight decay strength of
10 3.

CD-1 does introduce some noise in the update procedure, which itfehas a regularizing e ect
(Hinton et al., 2012). As a result it required less weight decay: 310 “.

CD-10 performs more updates, and can therefore still do somevel of a decent job when mixing
is poorer. The best weight decay value for CD-10 turned out to be pproximately 1:3 10 4.
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Figure 3.6: Classifying MNIST data (the number of hidden units is chogn using validation data).

Finally, the mixing mechanism used by PCD is even better, but it is still based on the Gibbs
sampler, so it, too, works better with some weight decay. The bestveight decay strength for PCD
was approximately 25 10 5.

3.4 Experiments: FPCD vs. PCD

This section presents some comparisons of the performance of PGnd FPCD. Both use global unlearn-
ing, and they are similar in spirit, but FPCD was designed to be faster ly allowing a large \fast learning
rate" which ensures that the fantasy particles rapidly explore the state space. The general impression
is indeed that FPCD is faster, but otherwise quite similar to PCD. The greatest di erence in learning
speed is observed when the amount of training time is small, relative tadhe size of the model. This
suggests that FPCD should be a particularly good choice for traininglarge models, where one expects
training time to be a major bottleneck.

For some other experiments that investigate what meta-parameer settings work well for FPCD, see
the paper that introduced it (Tieleman & Hinton, 2009).

3.4.1 Comparisons with xed model architecture

Figure 3.1 and Figure 3.3 show FPCD generally outperforming PCD, thaigh most clearly so with little
runtime and a large model. Training the toy model for two hours appers not to be such a situation:
there, the FPCD performance becomes a bit less predictable.

3.4.2 Comparison with di erent architectures

This task was again classi cation of the MNIST images, but for theseexperiments, the number of hidden
units was not xed, but was chosen using the validation set. The initial learning rate was also chosen
using the validation set. The additional FPCD parameters were set ing the heuristically chosen values
mentioned in (Tieleman & Hinton, 2009). The result is displayed in Figure 3.6.

As was observed on the smaller tasks, FPCD takes, on average, abt one quarter of the time required
by PCD to get the same performance.
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It is interesting to see what number of hidden units worked best forPCD versus FPCD. Given
the same amount of training time, more hidden units means fewer paameter updates - the product
of these two numbers has to be approximately constant. It turnel out that for FPCD, the optimal
number of hidden units is signi cantly larger than for PCD. For examp le, given 9 hours of training time,
FPCD worked best with about 1200 hidden units, while PCD worked bes with about 700 hidden units.
This ratio of close to 2 was fairly consistent for di erent amounts of training time. The most natural
explanation is that FPCD has the greatest advantage when fewer grameter updates can be done. That
is why FPCD works best with a more powerful model, even though tha means fewer parameter updates.
PCD needs many parameter updates, and thus cannot a ord manyhidden units. Again, this supports
the hypothesis that FPCD is particularly advantageous for large tasks, where the amount of training
time is a bottleneck.

3.5 Survey of models that use FPCD

FPCD has been used in a variety of projects, most of them models afmages.

(Ranzato et al., 2010; Ranzato et al., 2011) describe a sophisticadeand e ective model of images in
their raw representation: pixel intensity arrays. It uses two types of hidden units: units that a ect only
the mean of the image pixels and units that a ect only the covarianceof the image pixels. Both types
can be marginalized out to produce an unnormalized probability of an inage vector. Hybrid Monte
Carlo on this proposed image vector is then used as the transition agrator®. Their model is very sti,
so FPCD was needed to make the \negative phase" exploration workvell. Ranzato mentioned that
FPCD was the only training method that produced models from which he could sample well (personal
communication, 2011). (Kivinen & Williams, 2012) uses a variation on this model for learning models
of regular texture images. It adds a few units that are used to swith between di erent textures, in the
same model.

Another approach is presented by (Ngiam et al., 2011). It, too, uss FPCD with a Hybrid Monte
Carlo transition operator, but on a simple Restricted Boltzmann Machine. The model also uses image
encoding units, but they are not part of the RBM.

The spike-and-slab RBM (Courville et al., 2011b) has also been succssilly trained using FPCD
(Luo et al., 2012). Again, FPCD's strength was most visible when dealiig with sti models.

The failings of FPCD have also been investigated. (Fischer & Igel, 200) echoes the conclusion
of Section 3.3.5 by highlighting the need for regularization, even for pwerful methods like FPCD.
(Desjardins et al., 2010) points out the inherently approximate nature of the sampling in FPCD: the
weights of the fast model can be quite di erent from those of the egular model (even though only
temporarily so), and while this allows good exploration, it can also lead b \negative particle" states that
are not representative of the training data and presumably not ofthe model distribution. (Salakhutdinov,
2010) voices the same concern.

3.6 Conclusion

Creating a good generative model of images is not easy. Generatingiages of handwritten symbols of
just 10 classes, monochrome, with most pixels being saturated, in iages of 28x28, is doable, but is not

8This is in contrast to my own experiments, which use Gibbs sam pling and do not integrate out the hidden units.
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exactly the ultimate goal. High resolution colour images of many di erent types of scenes, with many
objects in them and many di erent lighting conditions, is quite a step up. Despite some exciting progress
(Ranzato et al., 2010; Courville et al., 2011a), at this time that task is still beyond what we can do well

by just learning.

One of the problems in creating a model of such data is that only a tinyfraction of the state space
deserves to have any signi cant probability. In practice, that means that we're usually stuck with either
a poor model, or a model with Markov Chains that mix extremely slowly. It has to be a very sti
model, allowing its variables little freedom, and such a thing is never god for mixing rates (Bengio
et al., 2013a).

FPCD seems like it is still one of the best tools that we have for this tag, today. With a large \fast
learning rate", its rapidly changing exploratory energy function can quickly cover great distances in the
state space, without destroying anything permanently becausehe \slow model" is not changing much
at all. (Ranzato et al., 2010) uses FPCD on such a sti model, with decet results.

However, there is an alternative method. Layer-by-layer trainingof deep models, as is done in (Hinton
et al., 2006), may be better suited for this task after all. The lower layers can learn to re-encode the data
in a space where the restrictions are less rigid, where the correlatis are weaker. Then, the higher layers
will have a far easier job (Bengio et al., 2013a). In this set-up, the laer layers do not have to build a
generative model of the data; only the top layer has to do so. In tis situation, CD-1 has shown itself
to be an excellent training algorithm for the lower layers, although the top layer still has to be trained
with a global unlearning algorithm. CD-1, being much like autoencodertraining, is good at preserving
a lot of information in the hidden units. Preserving information is not im portant for the top layer, but
it is essential in the lower layers.

In Section 3.3.5 | reported that weight decay tends to help even whe over tting is not a possibility.
This adds to the suspicion that no matter how good the exploration $rategy of an algorithm is, sti
models with hard-to-cross energy barriers are still going to causproblems. That strengthens the argu-
ment for rst transforming the data space in a learned way, using geedy layerwise training of a deep
architecture, before attempting to model it.

In conclusion, | must therefore make very clear that my experimets have only shown global unlearn-
ing to be superior for tasks where the model will have to perform wi on its own. If a model has a job
to do in conjunction with other models, as happens in greedy sectiofy-section training algorithms, the
situation is more complicated, and such set-ups may be the best hapfor a generative model of realistic
images.
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Appendix: detailed derivations

4.1 Rewriting the RBM training objective function

This section details the rewriting of r ~ for energy-based models as = r (KL (RjjP ) KL (DjjP )).
Here,R is equal toP , for the value at whichwe seekk = r (). Ris a constant: it does not change
when changes,i.er R r R=0.

D stands for the training data distribution.

4.1.1 Informal derivation

An elegant but slightly informal way to show that r = r (KL (RjjP ) KL (DjjP )) is as follows.

Clearly, at the given value for , KL (RjjP ) = 0. When changes,P will change but R will not,
so we can writeKL (RjjP ) as a function of : f( ) KL (RjjP ). Itis a dierentiable function, and
its minimum is at the given : there, f = 0, and everywhere elsef 0. Because is a minimum of
f,rf =0at . Therefore,r KL (RjjP ) =0, so the claimr = r (KL (RjjP) KL (DjjP )) can be
simpliedto r = KL (DjjP)).

Because () = ED[Iog P (x¥)]and KL (DjjP ) = ED[IogD(x) logP (%¥)]= H(D)+ ED[ logP ()]
x x %
andr H(D) =0, the claimed equality is clearly true.

4.1.2 More formal derivation

A more rigorous derivation is as follows.

Step one is to show thatr KL (RjjP ) =0, in a more formal way.

98
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r KL (RjjP )
=r ER[Iog R(»%) logP (%] By the de nition of KL
x
=r( HR)) r ER[IogP (39] Splitting the di erentiation
x
=r ER[IogP (9] R is constant, w.r.t.
%
= ER [r logP ()] R is constant, w.r.t.
x
1 o .
= xER P—(x)r P (%) Derivative rule for logarithms
= EP P—:(Lx)r P (%) R = P, when we're not taking its derivative
X 1
= P (x)P (X)r P (%) De nition of discrete expectation
X
= r P (%) Cancellation
*X
= P (%) Exchange di erentiation and nite summation
x
=r 1 Probability distributions sum to 1
=0
Now it remains to be shown thatr = r ( KL (DjjP )), which is a shorter derivation:

r (KL (DjP))

=r( *ED [logD (%) logP ()] By the de nition of KL
=r (H(D)+ XED[IogP (9] Splitting the expectation
=rH(D)+r xED [logP (3] Splitting the di erentiation
=r xED [logP (%] D does not depend on
=r By the de nition of

Those two derivations together show thatr = r (KL (RjjP ) KL (DjjP)).

4.2 The positive gradient for RBMs

This section describes thepositive part of the gradient for RBMs: rst for general energy-based nmodels,
and second speci cally for binary RBMs.
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4.2.1 For general energy-based models

#

100

P
" isdenedas ()= ED log exp( E (v;n)) . Below is the derivation for the gradient of *
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f
. It's a fairly straightforward application of standard di erentiatio n rules:

+

By the de nition of

Rearranging

Derivative of log
Rearranging

Derivative of exp
Divide by i—

By de nition of P (v;h)

By de nition of P (v)
Rearranging

Conditional probability

Discrete expectation
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4.2.2 For binary RBMs

For a binary RBM, the above simpli es to % = ED [vi P (h; =1j%)], as shown below. The key
¥

insight is that @%7\,;";“) =[vi =1~ h; =1], by the de nition of the energy for a binary RBM.

" " #i#
@ = E E w See previous section
@y ¥ nop(jv @w 4
= E E [vi=17h =1] By the de nition of E
¥ D onopP(jv
= ED [P(vi=1"h; =1jv)] Expectation of an indicator variable
¥
= ED [vi P (hj =1jv)] v; is binary
¥

Following a very similar line of reasoning, one nds that% =Py p(vy =1)and % = Ey o [P (h) =1jw)].

+

Informally, the conclusion is that increasing
pairs (vi; h;) that are often both on, with v D.

corresponds to strengthening the connections between

The above can be easily computed as a sum over the training casegdauseP (h; = 1jv) is tractable:
itissimply P (h; =1j%)= (b + ;vi w;), where (x)

N S
i 1+exp( Xx)-*

4.3 The negative gradient for RBMs

The derivation of the negative part of the gradient is a bit simpler but relies on the same ideas as the
positive part.

4.3.1 For general energy-based models

P
isdenedas ()=logZ =log exp( E (v;h)). This section shows how the gradient w.r.t.
h vl
comes out asr = E r( E (v;n) .
wv,h P
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r =r logz By the de nition of
r = Zir z Derivative of log
1 X
r = Z—r exp( E (w;h)) By the de nition of Z
v; h
X
r = 7 r exp( E (v;h) Rearranging
v;h
1 X
r = 7 exp( E (w;h))r (  E (w;h)) Derivative of exp
v;h
X .
r = wr ( E (v;n) Rearranging
5v<"r1
r = P (v;h)r ( E (v;h)) By the de nition of P (w;h)
T i
r = E r ( E (v;n) By the de nition discrete expectation
wh P

Informally, the conclusion is that increasing corresponds to decreasinde (v;h) for (v;h) pairs
that have great probability.

4.3.2 For binary RBMs

h [
In a binary RBM, r = ﬁE . r ( E (v;n)) comes out asg—w =P (vi=1;h =1).
¥, |
We start with g—w from the general form: @@))—\M = E @éiw .

v,h P
Because of the de nition of E (v;h) for a binary RBM, @éivé‘"h) =[vi =17 h; =1], i.e. that
derivative is 1 if visible unit #i and hidden unit #j are both on, and O othe rwise. We can proceed as

follows:

) #
@— = E w This is the general form
@W v,h P @W
= E [vi=1"h; =1] From the de nition of E
wv.h P
=P(vi=1"h =1) Expectation of an indicator variable

Essentially the same argument leads to the conclusion tha% =P (v =1)and @@—a =P (h =1).
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