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Lecture 13a 
The ups and downs of backpropagation 



A brief history of backpropagation 

•  The backpropagation algorithm 
for learning multiple layers of 
features was invented several 
times in the 70’s and 80’s:  
–  Bryson & Ho (1969) linear 
–  Werbos (1974) 
–  Rumelhart  et. al. in 1981 
–  Parker (1985) 
–  LeCun (1985) 
–  Rumelhart et. al. (1985) 

•  Backpropagation clearly had  great 
promise for learning  multiple layers 
of non-linear feature detectors.  

•  But by the late 1990’s most serious 
researchers in machine learning had 
given up on it. 
–  It was still widely used in 

psychological models and in 
practical applications such as 
credit card fraud detection. 



Why backpropagation failed 

•  The popular explanation of why 
backpropagation failed in the 90’s: 
–  It could not make good use of 

multiple hidden layers.        
(except in convolutional nets) 

–  It did not work well in recurrent 
networks or deep auto-encoders. 

–  Support Vector Machines worked 
better, required less expertise, 
produced repeatable results,  
and had much fancier theory. 

•  The real reasons it failed: 
–  Computers were thousands  

of times too slow. 
–  Labeled datasets were 

hundreds of times too small. 
–  Deep networks were too small  

and not initialized sensibly.  
•  These issues prevented it from 

being successful for tasks where 
it would eventually be a big win. 



A spectrum of machine learning tasks 

•  Low-dimensional data            
(e.g. less than 100 dimensions) 

•  Lots of noise in the data.  
•  Not much structure in the data. 

The structure can be captured 
by a fairly simple model. 

•  The main problem is separating 
true structure from noise.  
–  Not ideal for non-Bayesian 

neural nets. Try SVM or GP. 

•  High-dimensional data (e.g. more 
than 100 dimensions) 

•  The noise is not the main problem. 
•  There is a huge amount of structure 

in the data, but its too complicated to 
be represented by a simple model. 

•  The main problem is figuring out a 
way to represent the complicated 
structure so that it can be learned. 
–  Let backpropagation figure it out. 

Typical Statistics---------------Artificial Intelligence 



Why Support Vector Machines were never a good bet for 
Artificial Intelligence tasks that need good representations 

•  View 1: SVM’s are just a clever 
reincarnation of Perceptrons.  
–  They expand the input to a 

(very large) layer of  non-
linear non-adaptive features. 

–  They only have one layer of 
adaptive weights. 

–  They have a very efficient 
way of fitting the weights 
that controls overfitting.  

•  View 2: SVM’s are just a clever 
reincarnation of Perceptrons. 
–  They use each input vector in 

the training set to define a     
non-adaptive “pheature”. 

•   The global match between a 
test input and that training input. 

–   They have a clever way of 
simultaneously doing feature 
selection and finding weights on 
the remaining features.    



Historical document from AT&T Adaptive Systems Research Dept., Bell Labs  
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Lecture 13b 
Belief Nets 



What is wrong with back-propagation? 

•  It requires labeled training 
data. 
–  Almost all data is 

unlabeled.   
•  The learning time does not 

scale well 
–  It is very slow in networks 

with multiple hidden layers.  
–  Why? 

•  It can get stuck in poor local 
optima. 
–  These are often quite good, 

but for deep nets they are 
far from optimal. 

–  Should we retreat to 
models that allow convex 
optimization? 



Overcoming the limitations of  back-propagation by using 
unsupervised learning 

 
•  Keep the efficiency and simplicity of 

using a gradient method for adjusting 
the weights, but use it for modeling 
the structure of the sensory input. 
–  Adjust the weights to maximize 

the probability that a generative 
model would have generated the 
sensory input.  

–  If you want to do computer vision, 
first learn computer graphics. 

•  The learning objective for a 
generative model: 
–  Maximise p(x) not  p(y | x) 

•  What kind of generative model 
should we learn? 
–  An energy-based model 

like a Boltzmann machine? 
–  A causal model made of 

idealized neurons? 
–  A hybrid of the two? 



Artificial Intelligence and Probability  

“Many ancient Greeks supported 
Socrates opinion that deep, 
inexplicable thoughts came from the 
gods. Today’s equivalent to those 
gods is the erratic, even probabilistic 
neuron. It is more likely that 
increased randomness of neural 
behavior is the problem of the 
epileptic and the drunk, not the 
advantage of the brilliant.” 
P.H. Winston, “Artificial Intelligence”, 
1977. (The first AI textbook) 

“All of this will lead to theories of 
computation which are much less rigidly  
of an all-or-none nature than past and 
present formal logic ...     There are 
numerous indications to make us believe 
that this new system of formal logic will 
move closer to another discipline which 
has been little linked in the past with logic. 
This is thermodynamics primarily in the 
form it was received from Boltzmann.” 
John von Neumann, “The Computer and 
the Brain”, 1958 (unfinished manuscript) 



The marriage of graph theory and probability theory  

•  In the 1980’s there was a lot 
of work in AI that used bags 
of rules for tasks such as 
medical diagnosis and 
exploration for minerals. 
–  For practical problems, 

they had to deal with 
uncertainty. 

–  They made up ways of 
doing this that did not 
involve probabilities!  

•  Graphical models:  Pearl, Heckerman, 
Lauritzen, and many others showed 
that probabilities worked better. 
–  Graphs were good for representing 

what depended on what.  
–  Probabilities then had to be 

computed for nodes of the graph, 
given the states of other nodes. 

•  Belief Nets: For sparsely connected, 
directed acyclic graphs, clever 
inference algorithms were discovered. 



 Belief Nets 
•  A belief net is a directed acyclic graph 

composed of stochastic variables. 
•  We get to observe some of the 

variables and we would like to solve 
two problems: 

•  The inference problem: Infer the 
states of the unobserved variables. 

•  The learning problem: Adjust the 
interactions between variables to 
make the network more likely to 
generate the training data. 

stochastic hidden causes 

visible effects 



Graphical Models   versus    Neural Networks 

•  Early graphical models 
used experts to define the 
graph structure and the 
conditional probabilities. 
–  The graphs were 

sparsely connected. 
–  Researchers initially 

focused on doing 
correct inference, not 
on learning. 

•  For neural nets, learning was 
central. Hand-wiring the knowledge 
was not cool (OK, maybe a little bit). 
–  Knowledge came from learning 

the training data. 
•  Neural networks did not aim for 

interpretability or sparse connectivity 
to make inference easy.  
–  Nevertheless, there are neural 

network versions of belief nets.  



Two types of generative neural network composed of 
stochastic binary neurons 

•  Energy-based: We connect 
binary stochastic neurons 
using symmetric 
connections to get a 
Boltzmann Machine. 
–  If we restrict the 

connectivity in a special 
way, it is easy to learn a 
Boltzmann machine. 

–  But then we only have 
one hidden layer. 

•  Causal: We connect binary stochastic 
neurons in a directed acyclic graph to 
get a Sigmoid Belief Net (Neal 1992). 

stochastic  
hidden  
causes 

visible 
effects 
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Lecture 13c 
Learning Sigmoid Belief Nets 



 Learning Sigmoid Belief Nets 

•  It is easy to generate an unbiased 
example at the leaf nodes, so we can 
see what kinds of data the network 
believes in.  

•  It is hard to infer the posterior 
distribution over all  possible 
configurations of hidden causes. 

•  It is hard to even get  a sample from 
the posterior. 

•  So how can we learn sigmoid belief 
nets that have millions of parameters? 

stochastic hidden causes 

visible effects 



The learning rule for sigmoid belief nets 

•  Learning is easy if we can get an 
unbiased sample from the 
posterior distribution over hidden 
states given the observed data. 

•  For each unit, maximize the log 
prob. that its binary state in the 
sample from the posterior would 
be generated by the sampled 
binary states of its parents. 
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•  Even if two hidden causes are independent in the prior, they can become 
dependent when we observe an effect that they can both influence.  
–  If we learn that there was an earthquake it reduces the probability that 

the house jumped because of a truck. 

truck hits house earthquake 

house jumps 
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Explaining away (Judea Pearl) 

-10 



Why it’s hard to learn sigmoid belief nets one layer at a time 

•  To learn W, we need to sample from the 
posterior distribution in the first hidden layer. 

•  Problem 1: The posterior is not factorial 
because of “explaining away”. 

•  Problem 2: The posterior depends on the prior 
as well as the likelihood.  
–  So to learn W, we need to know the weights in 

higher layers, even if we are only approximating 
the posterior. All the weights interact. 

•  Problem 3: We need to integrate over all 
possible configurations in the higher layers to 
get the prior for first hidden layer. Its hopeless! 

 
          data 

hidden variables 

hidden variables 

hidden variables 

W 

prior 



Some methods for learning deep belief nets 

•  Monte Carlo methods can be 
used to sample from the 
posterior (Neal 1992). 
–  But its painfully slow for 

large, deep belief nets. 
•  In the 1990’s people developed 

variational methods for learning 
deep belief nets. 
–  These only get approximate 

samples from the posterior.  

•  Learning with samples from the 
wrong distribution: 
–  Maximum likelihood learning 

requires unbiased samples from 
the posterior. 

•  What happens if we sample from the 
wrong distribution but still use the 
maximum likelihood learning rule? 
–  Does the learning still work or 

does it do crazy things? 
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Lecture 13d 
The wake-sleep algorithm 



An apparently crazy idea 

•  It’s hard to learn complicated 
models like Sigmoid Belief 
Nets. 

•  The problem is that it’s hard to 
infer the posterior distribution 
over hidden configurations 
when given a datavector. 
–  Its hard even to get a 

sample from the posterior. 

•  Crazy idea: do the inference wrong. 
–  Maybe learning will still work. 
–  This turns out to be true for 

SBNs. 
•  At each hidden layer, we assume   

(wrongly) that the posterior over 
hidden configurations factorizes into 
a product of distributions for each 
separate hidden unit. 



Factorial distributions 

•  In a factorial distribution, the probability of a whole vector is just the 
product of the probabilities of its individual terms: 

•  A general distribution over binary vectors of length N has 2^N 
degrees of freedom (actually 2^N-1 because the probabilities must 
add to 1). A factorial distribution only has N degrees of freedom. 

0.3 0.6 0.8

p(1, 0, 1) = 0.3× (1− 0.6)×0.8

individual probabilities of 
three hidden units in a  layer 
 
probability that the hidden 
units have state 1,0,1 if the 
distribution is factorial. 



The wake-sleep algorithm (Hinton et. al. 1995) 

•  Wake phase: Use recognition weights 
to perform a bottom-up pass.  
–  Train the generative weights to 

reconstruct activities in each layer 
from the layer above. 

•  Sleep phase: Use generative weights 
to generate samples from the model.  
–  Train the recognition weights to 

reconstruct activities in each layer 
from the layer below. 
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•  The recognition weights are trained to invert the generative 
model in parts of the space where there is no data.  
–  This is wasteful. 

•  The recognition weights do not follow the gradient of the log 
probability of the data. They only approximately follow the 
gradient of the variational bound on this probability. 
–  This leads to incorrect mode-averaging  

•  The posterior over the top hidden layer is very far from 
independent because of explaining away effects. 

•  Nevertheless, Karl Friston thinks this is how the brain works. 

The flaws in the wake-sleep algorithm 
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Mode averaging 
•  If we generate from the model, half the 

instances of a 1 at the data layer will be 
caused by a (1,0) at the hidden layer 
and half will be caused by a (0,1). 
–  So the recognition weights will learn 

to produce (0.5, 0.5)  
–  This represents a distribution that 

puts half its mass on 1,1 or 0,0: very 
improbable hidden configurations. 

•  Its much better to just pick one mode. 
–  This is the best recognition model 

you can get if you assume that the 
posterior over hidden states 
factorizes. 

a better 
solution mode 

averaging true 
bimodal 
posterior 

1 

? ? 


