
Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 13a
The ups and downs of backpropagation

A brief history of backpropagation

•  The backpropagation algorithm
for learning multiple layers of
features was invented several
times in the 70’s and 80’s:
–  Bryson & Ho (1969) linear
–  Werbos (1974)
–  Rumelhart et. al. in 1981
–  Parker (1985)
–  LeCun (1985)
–  Rumelhart et. al. (1985)

•  Backpropagation clearly had great
promise for learning multiple layers
of non-linear feature detectors.

•  But by the late 1990’s most serious
researchers in machine learning had
given up on it.
–  It was still widely used in

psychological models and in
practical applications such as
credit card fraud detection.

Why backpropagation failed

•  The popular explanation of why
backpropagation failed in the 90’s:
–  It could not make good use of

multiple hidden layers.
(except in convolutional nets)

–  It did not work well in recurrent
networks or deep auto-encoders.

–  Support Vector Machines worked
better, required less expertise,
produced repeatable results,
and had much fancier theory.

•  The real reasons it failed:
–  Computers were thousands

of times too slow.
–  Labeled datasets were

hundreds of times too small.
–  Deep networks were too small

and not initialized sensibly.
•  These issues prevented it from

being successful for tasks where
it would eventually be a big win.

A spectrum of machine learning tasks

•  Low-dimensional data
(e.g. less than 100 dimensions)

•  Lots of noise in the data.
•  Not much structure in the data.

The structure can be captured
by a fairly simple model.

•  The main problem is separating
true structure from noise.
–  Not ideal for non-Bayesian

neural nets. Try SVM or GP.

•  High-dimensional data (e.g. more
than 100 dimensions)

•  The noise is not the main problem.
•  There is a huge amount of structure

in the data, but its too complicated to
be represented by a simple model.

•  The main problem is figuring out a
way to represent the complicated
structure so that it can be learned.
–  Let backpropagation figure it out.

Typical Statistics---------------Artificial Intelligence

Why Support Vector Machines were never a good bet for
Artificial Intelligence tasks that need good representations

•  View 1: SVM’s are just a clever
reincarnation of Perceptrons.
–  They expand the input to a

(very large) layer of non-
linear non-adaptive features.

–  They only have one layer of
adaptive weights.

–  They have a very efficient
way of fitting the weights
that controls overfitting.

•  View 2: SVM’s are just a clever
reincarnation of Perceptrons.
–  They use each input vector in

the training set to define a
non-adaptive “pheature”.

•  The global match between a
test input and that training input.

–  They have a clever way of
simultaneously doing feature
selection and finding weights on
the remaining features.

Historical document from AT&T Adaptive Systems Research Dept., Bell Labs

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 13b
Belief Nets

What is wrong with back-propagation?

•  It requires labeled training
data.
–  Almost all data is

unlabeled.
•  The learning time does not

scale well
–  It is very slow in networks

with multiple hidden layers.
–  Why?

•  It can get stuck in poor local
optima.
–  These are often quite good,

but for deep nets they are
far from optimal.

–  Should we retreat to
models that allow convex
optimization?

Overcoming the limitations of back-propagation by using
unsupervised learning

•  Keep the efficiency and simplicity of

using a gradient method for adjusting
the weights, but use it for modeling
the structure of the sensory input.
–  Adjust the weights to maximize

the probability that a generative
model would have generated the
sensory input.

–  If you want to do computer vision,
first learn computer graphics.

•  The learning objective for a
generative model:
–  Maximise p(x) not p(y | x)

•  What kind of generative model
should we learn?
–  An energy-based model

like a Boltzmann machine?
–  A causal model made of

idealized neurons?
–  A hybrid of the two?

Artificial Intelligence and Probability

“Many ancient Greeks supported
Socrates opinion that deep,
inexplicable thoughts came from the
gods. Today’s equivalent to those
gods is the erratic, even probabilistic
neuron. It is more likely that
increased randomness of neural
behavior is the problem of the
epileptic and the drunk, not the
advantage of the brilliant.”
P.H. Winston, “Artificial Intelligence”,
1977. (The first AI textbook)

“All of this will lead to theories of
computation which are much less rigidly
of an all-or-none nature than past and
present formal logic ... There are
numerous indications to make us believe
that this new system of formal logic will
move closer to another discipline which
has been little linked in the past with logic.
This is thermodynamics primarily in the
form it was received from Boltzmann.”
John von Neumann, “The Computer and
the Brain”, 1958 (unfinished manuscript)

The marriage of graph theory and probability theory

•  In the 1980’s there was a lot
of work in AI that used bags
of rules for tasks such as
medical diagnosis and
exploration for minerals.
–  For practical problems,

they had to deal with
uncertainty.

–  They made up ways of
doing this that did not
involve probabilities!

•  Graphical models: Pearl, Heckerman,
Lauritzen, and many others showed
that probabilities worked better.
–  Graphs were good for representing

what depended on what.
–  Probabilities then had to be

computed for nodes of the graph,
given the states of other nodes.

•  Belief Nets: For sparsely connected,
directed acyclic graphs, clever
inference algorithms were discovered.

 Belief Nets
•  A belief net is a directed acyclic graph

composed of stochastic variables.
•  We get to observe some of the

variables and we would like to solve
two problems:

•  The inference problem: Infer the
states of the unobserved variables.

•  The learning problem: Adjust the
interactions between variables to
make the network more likely to
generate the training data.

stochastic hidden causes

visible effects

Graphical Models versus Neural Networks

•  Early graphical models
used experts to define the
graph structure and the
conditional probabilities.
–  The graphs were

sparsely connected.
–  Researchers initially

focused on doing
correct inference, not
on learning.

•  For neural nets, learning was
central. Hand-wiring the knowledge
was not cool (OK, maybe a little bit).
–  Knowledge came from learning

the training data.
•  Neural networks did not aim for

interpretability or sparse connectivity
to make inference easy.
–  Nevertheless, there are neural

network versions of belief nets.

Two types of generative neural network composed of
stochastic binary neurons

•  Energy-based: We connect
binary stochastic neurons
using symmetric
connections to get a
Boltzmann Machine.
–  If we restrict the

connectivity in a special
way, it is easy to learn a
Boltzmann machine.

–  But then we only have
one hidden layer.

•  Causal: We connect binary stochastic
neurons in a directed acyclic graph to
get a Sigmoid Belief Net (Neal 1992).

stochastic
hidden
causes

visible
effects

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 13c
Learning Sigmoid Belief Nets

 Learning Sigmoid Belief Nets

•  It is easy to generate an unbiased
example at the leaf nodes, so we can
see what kinds of data the network
believes in.

•  It is hard to infer the posterior
distribution over all possible
configurations of hidden causes.

•  It is hard to even get a sample from
the posterior.

•  So how can we learn sigmoid belief
nets that have millions of parameters?

stochastic hidden causes

visible effects

The learning rule for sigmoid belief nets

•  Learning is easy if we can get an
unbiased sample from the
posterior distribution over hidden
states given the observed data.

•  For each unit, maximize the log
prob. that its binary state in the
sample from the posterior would
be generated by the sampled
binary states of its parents.

pi ≡ p(si = 1) =
1

1+ exp −bi − s jwji)
j
∑

$

%
&
&

'

(
)
)

j

i
jiw

)(iijji pssw −=Δ ε

is

js

•  Even if two hidden causes are independent in the prior, they can become
dependent when we observe an effect that they can both influence.
–  If we learn that there was an earthquake it reduces the probability that

the house jumped because of a truck.

truck hits house earthquake

house jumps

20 20

-20

-10

p(1,1)=.0001
p(1,0)=.4999
p(0,1)=.4999
p(0,0)=.0001

 posterior
over hiddens

Explaining away (Judea Pearl)

-10

Why it’s hard to learn sigmoid belief nets one layer at a time

•  To learn W, we need to sample from the
posterior distribution in the first hidden layer.

•  Problem 1: The posterior is not factorial
because of “explaining away”.

•  Problem 2: The posterior depends on the prior
as well as the likelihood.
–  So to learn W, we need to know the weights in

higher layers, even if we are only approximating
the posterior. All the weights interact.

•  Problem 3: We need to integrate over all
possible configurations in the higher layers to
get the prior for first hidden layer. Its hopeless!

 data

hidden variables

hidden variables

hidden variables

W

prior

Some methods for learning deep belief nets

•  Monte Carlo methods can be
used to sample from the
posterior (Neal 1992).
–  But its painfully slow for

large, deep belief nets.
•  In the 1990’s people developed

variational methods for learning
deep belief nets.
–  These only get approximate

samples from the posterior.

•  Learning with samples from the
wrong distribution:
–  Maximum likelihood learning

requires unbiased samples from
the posterior.

•  What happens if we sample from the
wrong distribution but still use the
maximum likelihood learning rule?
–  Does the learning still work or

does it do crazy things?

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 13d
The wake-sleep algorithm

An apparently crazy idea

•  It’s hard to learn complicated
models like Sigmoid Belief
Nets.

•  The problem is that it’s hard to
infer the posterior distribution
over hidden configurations
when given a datavector.
–  Its hard even to get a

sample from the posterior.

•  Crazy idea: do the inference wrong.
–  Maybe learning will still work.
–  This turns out to be true for

SBNs.
•  At each hidden layer, we assume

(wrongly) that the posterior over
hidden configurations factorizes into
a product of distributions for each
separate hidden unit.

Factorial distributions

•  In a factorial distribution, the probability of a whole vector is just the
product of the probabilities of its individual terms:

•  A general distribution over binary vectors of length N has 2^N
degrees of freedom (actually 2^N-1 because the probabilities must
add to 1). A factorial distribution only has N degrees of freedom.

0.3 0.6 0.8

p(1, 0, 1) = 0.3× (1− 0.6)×0.8

individual probabilities of
three hidden units in a layer

probability that the hidden
units have state 1,0,1 if the
distribution is factorial.

The wake-sleep algorithm (Hinton et. al. 1995)

•  Wake phase: Use recognition weights
to perform a bottom-up pass.
–  Train the generative weights to

reconstruct activities in each layer
from the layer above.

•  Sleep phase: Use generative weights
to generate samples from the model.
–  Train the recognition weights to

reconstruct activities in each layer
from the layer below.

 h2

 data

 h1

 h3

W2

W1R1

R2

W3R3

•  The recognition weights are trained to invert the generative
model in parts of the space where there is no data.
–  This is wasteful.

•  The recognition weights do not follow the gradient of the log
probability of the data. They only approximately follow the
gradient of the variational bound on this probability.
–  This leads to incorrect mode-averaging

•  The posterior over the top hidden layer is very far from
independent because of explaining away effects.

•  Nevertheless, Karl Friston thinks this is how the brain works.

The flaws in the wake-sleep algorithm

-10 -10

 +20 +20

 -20

Mode averaging
•  If we generate from the model, half the

instances of a 1 at the data layer will be
caused by a (1,0) at the hidden layer
and half will be caused by a (0,1).
–  So the recognition weights will learn

to produce (0.5, 0.5)
–  This represents a distribution that

puts half its mass on 1,1 or 0,0: very
improbable hidden configurations.

•  Its much better to just pick one mode.
–  This is the best recognition model

you can get if you assume that the
posterior over hidden states
factorizes.

a better
solution mode

averaging true
bimodal
posterior

1

? ?

