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Lecture 10a 
Why it helps to combine models 



Combining networks: The bias-variance trade-off 

•  When the amount of training data is limited, we get overfitting.  
–  Averaging the predictions of many different models is a good way to 

reduce overfitting. 
–  It helps most when the models make very different predictions. 

•  For regression, the squared error can be decomposed into a “bias” term 
and a “variance” term. 
–  The bias term is big if the model has too little capacity to fit the data. 
–  The variance term is big if the model has so much capacity that it is 

good at fitting the sampling error in each particular training set. 
•  By averaging away the variance we can use individual models with high 

capacity. These models have high variance but low bias.   



How the combined predictor compares with the 
individual predictors 

•  On any one test case, some individual predictors may be 
better than the combined predictor.  
–  But different individual predictors will be better on different 

cases.  
•  If the individual predictors disagree a lot, the combined 

predictor is typically better than all of the individual predictors 
when we average over test cases. 
–  So we should try to make the individual predictors 

disagree (without making them much worse individually). 



Combining networks reduces variance 
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•  We want to compare two expected squared errors: Pick a predictor at 
random versus use the average of all the predictors: 

i is an index over the N models 

< (t − yi )
2 >i = < ((t − y )− (yi − y ))2 >i
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A picture  

•  The predictors that are further 
than average from t make bigger 
than average squared errors. 

•  The predictors that are nearer 
than average to t make smaller 
then average squared errors.  

•  The first effect dominates 
because squares work like that. 

•  Don’t try averaging if you want to 
synchronize a bunch of clocks! 
–  The noise is not Gaussian. 

   t  
target y 
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What about discrete distributions over class labels? 

•  Suppose that one model gives 
the correct label probability       
and the other model gives it 

•  Is it better to pick one model at 
random, or is it better to 
average the two probabilities?  
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Overview of ways to make predictors differ 

•  Rely on the learning algorithm 
getting stuck in different local 
optima. 
–  A dubious hack 
    (but worth a try). 

•  Use lots of different kinds of 
models, including ones that are 
not neural networks. 
–  Decision trees 
–  Gaussian Process models 
–  Support Vector Machines 
–  and many others. 

•  For neural network models, 
make them different by using: 
–  Different numbers of 

hidden layers. 
–  Different numbers of units 

per layer. 
–  Different types of unit. 
–  Different types or strengths 

of weight penalty. 
–  Different learning 

algorithms. 



Making models differ by changing their training data 

•  Bagging: Train different models on 
different subsets of the data. 
–  Bagging gets different training 

sets by using sampling with 
replacement:                   
a,b,c,d,e  à a c c d d 

–  Random forests use lots of 
different decision trees trained 
using bagging. They work well. 

•  We could use bagging with neural 
nets but its very expensive. 

•  Boosting: Train a sequence of low 
capacity models. Weight the 
training cases differently for each 
model in the sequence.  
–  Boosting up-weights cases 

that previous models got 
wrong. 

–   An early use of boosting was 
with neural nets for MNIST. 

–  It focused the computational 
resources on modeling the 
tricky cases. 
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Lecture 10b 
Mixtures of Experts 



Mixtures of Experts 
•  Can we do better that just averaging models in a way that does not 

depend on the particular training case? 
–  Maybe we can look at the input data for a particular case to help 

us decide which model to rely on. 
–  This may allow particular models to specialize in a subset of the 

training cases.  
–  They do not learn on cases for which they are not picked. So they 

can ignore stuff they are not good at modeling. Hurray for nerds! 
•  The key idea is to make each expert focus on predicting the right 

answer for the cases where it is already doing better than the other 
experts. 
–  This causes specialization. 



A spectrum of models 
Very local models 

–  e.g. Nearest neighbors 
•  Very fast to fit 

–  Just store training cases 
•  Local smoothing would obviously 

improve things. 

Fully global models 
–  e. g. A polynomial 

•  May be slow to fit and also unstable. 
–  Each parameter depends on all 

the data. Small changes to data 
can cause big changes to the fit. 

x 

y 
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Multiple local models 

•  Instead of using a single global model or lots of very local models, 
use several models of intermediate complexity. 
–  Good if the dataset contains several different regimes which 

have different relationships between input and output. 
•  e.g. financial data which depends on the state of the 

economy. 
•  But how do we partition the dataset into regimes?  



Partitioning based on input alone versus partitioning based 
on the input-output relationship 

•  We need to cluster the training 
cases into subsets, one for 
each local model.  
–  The aim of the clustering is 

NOT to find clusters of 
similar input vectors. 

–  We want each cluster to 
have a relationship 
between input and output 
that can be well-modeled 
by one local model. 

Partition 
based on the 
inputàoutput 
mapping                  

Partition 
based on the 
input alone                  
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A picture of why averaging models during training 
causes cooperation not specialization 

yi t y−i

Average of all the 
other predictors 

target 

Do we really want to move the output of 
model i away from the target value? 

output of 
i’th model 



An error function that encourages cooperation 

•  If we want to encourage cooperation, 
we compare the average of all the 
predictors with the target and train to 
reduce the discrepancy. 
–  This can overfit badly. It makes the 

model much more powerful than 
training each predictor separately. 

E = (t − < yi >i )
2

Average of all 
the predictors 



An error function that encourages specialization 

•  If we want to encourage specialization 
we compare each predictor separately 
with the target. 

•  We also use a “manager” to determine 
the probability of picking each expert. 
–  Most experts end up ignoring most 

targets 
E = < pi(t − yi )

2>i

probability of the 
manager picking 
expert i for this case 



The mixture of experts architecture (almost) 

A simple cost function : 
 

E = pi(t − yi )
2

i
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Expert 1        Expert 2       Expert 3 

input 

Softmax gating network 

There is a better 
cost function based 
on a mixture model. 
 



The derivatives of the simple cost function 

•  If we differentiate w.r.t.                
the outputs of the                   
experts we get a signal               
for training each expert. 

•  If we differentiate w.r.t. the outputs 
of the gating network we get a 
signal for training the gating net. 
–  We want to raise p for all 

experts that give less than the 
average squared error of all 
the experts (weighted by p) 
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A better cost function for mixtures of experts 
(Jacobs, Jordan, Nowlan & Hinton, 1991) 

•  Think of each expert as making a prediction 
that is a Gaussian distribution around its 
output (with variance 1). 

•  Think of the manager as deciding on a scale 
for each of these Gaussians. The scale is 
called a “mixing proportion”. e.g {0.4 0.6}  

•  Maximize the log probability of the target 
value under this mixture of Gaussians model 
i.e. the sum of the two scaled Gaussians.       t                 

target value 
 

y2 y1 



The probability of the target under a mixture of Gaussians 

p(tc |MoE) = pi
c 1

2π
i
∑ e

− 12 (t
c−yi

c )2

prob. of 
target value 
on case c 
given the 
mixture. 

mixing proportion assigned to expert i 
for case c by the gating network 

output of 
expert i normalization 

term for a 
Gaussian 
with  12 =σ
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Lecture 10c 
The idea of full Bayesian learning 



Full Bayesian Learning 
•  Instead of trying to find the best single setting of the parameters (as 

in Maximum Likelihood or MAP) compute the full posterior 
distribution over all possible parameter settings. 
–  This is extremely computationally intensive for all but the 

simplest models (its feasible for a biased coin). 
•  To make predictions, let each different setting of the parameters 

make its own prediction and then combine all these predictions by 
weighting each of them by the posterior probability of that setting of 
the parameters. 
–  This is also very computationally intensive. 

•  The full Bayesian approach allows us to use complicated models 
even when we do not have much data. 



Overfitting: A frequentist illusion? 

•  If you do not have much data, 
you should use a simple 
model, because a complex one 
will overfit.  
–  This is true.  
–  But only if you assume that 

fitting a model means 
choosing a single best 
setting of the parameters.  

•  If you use the full posterior 
distribution over parameter 
settings, overfitting disappears. 
–  When there is very little 

data, you get very vague 
predictions because many 
different parameters 
settings have significant 
posterior probability. 



A classic example of overfitting 

•  Which model do you believe? 
–  The complicated model fits the 

data better. 
–  But it is not economical and it 

makes silly predictions. 
•  But what if we start with a reasonable 

prior over all fifth-order polynomials 
and use the full posterior distribution. 
–  Now we get vague and sensible 

predictions.  
•  There is no reason why the amount of 

data should influence our prior beliefs 
about the complexity of the model. 

 



Approximating full Bayesian learning in a neural net 
•  If the neural net only has a few parameters we could put a grid over 

the parameter space and evaluate p( W | D ) at each grid-point. 
–  This is expensive, but it does not involve any gradient descent 

and there are no local optimum issues. 
•  After evaluating each grid point we use all of them to make 

predictions on test data 
–  This is also expensive, but it works much better than ML learning 

when the posterior is vague or multimodal (this happens when 
data is scarce). 

p(ttest | inputtest ) = p(Wg
g ε grid
∑ |D) p(ttest | inputtest,Wg )



An example of full Bayesian learning 

•  Allow each of the 6 weights or biases to have the 9 
possible values   -2, -1.5, -1, -0.5, 0 ,0.5, 1, 1.5, 2 

–  There are       grid-points in parameter space   
•  For each grid-point compute the probability of the 

observed outputs of all the training cases.  
•  Multiply the prior for each grid-point by the 

likelihood term and renormalize to get the posterior 
probability for each grid-point. 

•  Make predictions by using the posterior 
probabilities to average the predictions made by 
the different grid-points.  

bias 

bias 

A neural net with 2 
inputs, 1 output 
and 6 parameters 

96
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Lecture 10d 
Making full Bayesian learning practical 



What can we do if there are too many parameters for a grid? 

•  The number of grid points is exponential in the number of parameters. 
–  So we cannot deal with more than a few parameters using a grid. 

•  If there is enough data to make most parameter vectors very unlikely, 
only a tiny fraction of the grid points make a significant contribution to 
the predictions. 
–  Maybe we can just evaluate this tiny fraction 

•  Idea: It might be good enough to just sample weight vectors according to 
their posterior probabilities. 

),|()|(),|( itest
i

testitesttest WinputypDWpDinputyp ∑=

Sample weight vectors 
with this probability 



Sampling weight vectors 

•  In standard backpropagation 
we keep moving the weights in 
the direction that decreases 
the cost. 
–  i.e. the direction that 

increases the log likelihood 
plus the log prior, summed 
over all training cases. 

–  Eventually, the weights 
settle into a local minimum 
or get stuck on a plateau  
or just move so slowly that 
we run out of patience. 

weight 
space 



One method for sampling weight vectors 

•  Suppose we add some 
Gaussian noise to the weight 
vector after each update. 
–  So the weight vector never 

settles down. 
–  It keeps wandering around, 

but it tends to prefer low 
cost regions of the weight 
space. 

–  Can we say anything about 
how often it will visit each 
possible setting of the 
weights?  

weight 
space 

Save the weights after every 10,000 steps. 



The wonderful property of Markov Chain Monte Carlo 

•  Amazing fact: If we use just the right 
amount of noise, and if we let the 
weight vector wander around for long 
enough before we take a sample, we 
will get an unbiased sample from the 
true posterior over weight vectors. 
–  This is called a “Markov Chain 

Monte Carlo” method. 
–  MCMC makes it feasible to use 

full Bayesian learning with 
thousands of parameters.  

•  There are related MCMC 
methods that are more 
complicated but more 
efficient: 
–  We don’t need to let the 

weights wander around 
for so long before we get 
samples from the 
posterior.  



Full Bayesian learning with mini-batches 

•  If we compute the gradient of 
the cost function on a random 
mini-batch we will get an 
unbiased estimate with 
sampling noise. 
–  Maybe we can use the 

sampling noise to provide 
the noise that an MCMC 
method needs! 

•  Ahn, Korattikara &Welling 
(ICML 2012) showed how to 
do this fairly efficiently. 
–  So full Bayesian learning is 

now possible with lots of 
parameters. 
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Lecture 10e 
Dropout: an efficient way to combine neural nets  



Two ways to average models 

•  MIXTURE: We can combine 
models by averaging their 
output probabilities: 

•  PRODUCT: We can combine 
models by taking the geometric 
means of their output 
probabilities: 

 
Model A:    .3   .2   .5 
Model B:    .1   .8   .1 
Combined  .2   .5   .3 

Model A:    .3     .2     .5 
Model B:    .1     .8     .1 

Combined   .03   .16   .05   /sum 



Dropout: An efficient way to average many large 
neural nets (http://arxiv.org/abs/1207.0580) 

•  Consider a neural net with one hidden 
layer. 

•  Each time we present a training 
example, we randomly omit each 
hidden unit with probability 0.5. 

•  So we are randomly sampling from 
2^H different architectures. 
–  All architectures share weights. 



Dropout as a form of model averaging 

•  We sample from 2^H models. So only a few of the models ever get 
trained, and they only get one training example. 
–  This is as extreme as bagging can get. 

•  The sharing of the weights means that every model is very strongly 
regularized. 
–  It’s a much better regularizer than L2 or L1 penalties that pull the 

weights towards zero. 



But what do we do at test time? 

•  We could sample many different architectures and take the 
geometric mean of their output distributions. 

•  It better to use all of the hidden units, but to halve their outgoing 
weights. 
–  This exactly computes the geometric mean of the predictions of 

all 2^H models. 



What if we have more hidden layers? 

•  Use dropout of 0.5 in every layer. 
•  At test time, use the “mean net” that has all the outgoing weights 

halved. 
–  This is not exactly the same as averaging all the separate 

dropped out models, but it’s a pretty good approximation, and its 
fast. 

•  Alternatively, run the stochastic model several times on the same 
input.  
–  This gives us an idea of the uncertainty in the answer. 



What about the input layer? 

•  It helps to use dropout there too, but with a higher probability of 
keeping an input unit. 
–  This trick is already used by the “denoising autoencoders” 

developed by Pascal Vincent, Hugo Larochelle and Yoshua 
Bengio. 



How well does dropout work? 

•  The record breaking object recognition net developed by Alex 
Krizhevsky (see lecture 5) uses dropout and it helps a lot. 

•  If your deep neural net is significantly overfitting, dropout will usually 
reduce the number of errors by a lot. 
–  Any net that uses “early stopping” can do better by using dropout 

(at the cost of taking quite a lot longer to train).  
•  If your deep neural net is not overfitting you should be using a 

bigger one! 



Another way to think about dropout 

•  If a hidden unit knows which 
other hidden units are present, it 
can co-adapt to them on the 
training data.  
–  But complex co-adaptations 

are likely to go wrong on new 
test data. 

–  Big, complex conspiracies 
are not robust. 

•  If a hidden unit has to work 
well with combinatorially many 
sets of co-workers, it is more 
likely to do something that is 
individually useful. 
–  But it will also tend to do 

something that is 
marginally useful given 
what its co-workers 
achieve.  


