
By Kevin Swersky.
This is more mathematical than most of the course, but see if you can follow

it.
Assume that the true class is j so the target t is zero everywhere except for

a 1 in the jth index. The cost function for this is going to be:

C = −
∑

i ti log
expwT

i x∑
k exp(wT

k x)

So when we actually put in the t I mentioned above, this simplifies to:

C = − log
expwT

j x∑
k exp(wT

k x)
= −wT

j x + log
(∑

k exp(wT
k x)

)
Now suppose we look at some specific dimension of x. For example, the first

dimension. Let’s say that the first element of x is x1.
What happens if we differentiate the cross-entropy with respect to w1j?

Remember, w is a matrix here so this is the parameter from the first dimension
of the input to the jth output neuron.

The derivative is:

∂C

∂w1j
=− x1 +

1∑
k exp(wT

k x)

(
exp(wT

j x)x1

)
=

(
−1 +

exp(wT
j x)∑

k exp(wT
k x)

)
x1

= (P (x belongs to class j)− 1)x1

Notice how a) the softmax appears in the derivative and b) the derivative
is 0 when the probability under the softmax is the same as the target? So
the derivative is trying to change the weights to match the neural network
probabilities to the target probabilities.

Alright, we’re not quite done. Let’s take some other class i 6= j and try its
derivative as well:

∂C

∂w1i
=0 +

1∑
k exp(wT

k x)

(
exp(wT

i x)x1

)
=

(
0 +

exp(wT
i x)∑

k exp(wT
k x)

)
x1

= (P (x belongs to class i)− 0)x1

I left the 0 in there so that it’s completely clear what this is doing. Again,
the derivative is 0 when the probability under the network matches the target.
So for the second case, it’s trying to make the probability 0 since the target is
0.

Hopefully you can see from this that the cross-entropy does indeed seem to
be doing the right thing.

1


