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Why probabilities?

I One of the hardest problems when building complex intelligent
systems is brittleness.

I How can we keep tiny irregularities from causing everything to
break?



Keeping all options open

I Probabilities are a great formalism for avoiding brittleness,
because they allow us to be explicit about uncertainties:

I Instead of representing values: Define distributions over
alternatives!

I Example: Instead of setting values strictly (’x = 4’), define all
of: p(x = 1), p(x = 2), p(x = 3), p(x = 4), p(x = 5)

I Great success story. Most powerful machine learning models
consider probabilities in some way.

I (Note that we could still express things like ’x = 4’. (How?))



”Not random, not a variable.”

I For p we need:
∑

x p(x) = 1 and p(x) ≥ 0

I Formally, the ’object taking on random values’ is called
random variable and p(·) is its distribution.

I Capital letters (’X ’) often used for random variables, small
letters (’x ’) for values it takes on.

I Sometimes we see p(X = x), but usually just p(x).

I In general, the symbol p is often heavily overloaded and the
argument decides.

I These are notational quirks that require a little time to get
used to, but make life easier later on.



Continuous random variables

I For continuous x we can replace
∑

by
∫

, but ...

I Things work somewhat differently for continuous x . For
example, we have p(X = value) = 0 for any value.

I Only things like p(X ∈ [−0.5, 0.7]) are reasonable.

I The reason is the integral...

I (Note, again, that p is overloaded.)



Summarizing properties

I The interesting properties of RVs are usually just properties
of their distributions (not surprisingly).

I Mean:
µ =

∑
x

p(x)x

I Variance:
σ2 =

∑
x

p(x)(x − µ)2

I (Standard deviation: σ =
√
σ2)
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Some standard distributions

Discrete

I Multinomial.....

I Bernoulli... px (1− p)1−x (x is zero or one)

I Binomial..... ’Sum of Bernoullis’ (unfortunate naming
confusion). Actually, also the multinomial is often defined as a
distribution over the sum of outcomes of our ’multinomial’
defined above.

I Poisson, uniform, geometric, ...

Continuous

I Uniform.....

I Gaussian... p(x) = 1√
2πσ

exp(− 1
2σ2 (x − µ)2)

I Etc...



Joints, conditionals, marginals

I Things get much more interesting if we allow for multiple
variables.

I Leads to several new concepts:

I The joint distribution p(x , y) is just a distribution defined on
vectors (here 2-d as example)...

I For discrete RVs, we can imagine a table.

I Everything else stays essentially the same. So in particular we
need ∑

x ,y

p(x , y) = 1, p(x , y) ≥ 0



Joints, conditionals, marginals

I All we need to know about a random vector can be derived
from the joint distribution. For example:

I Marginal distributions:

p(x) =
∑

y

p(x , y) and p(y) =
∑

x

p(x , y)

I Intuition: Collapse dimensions.

I Conditional distributions are defined as:

p(y |x) =
p(x , y)

p(x)
and p(x |y) =

p(x , y)

p(y)

I Intuition: New frame of reference.



Important formula

I Remember this:

p(y |x)p(x) = p(x , y) = p(x |y)p(y)

I Allows us, among other things, to compute p(x |y) from
p(y |x) (’Bayes rule’).

I Can be generalized to more variables. (’Chain-rule of
probability’).



Independence and conditional independence

I Two RVs are called independent, if

p(x , y) = p(x)p(y)

I Captures the intuition of ’independence’:

I Note, for example, that it implies p(x) = p(x |y).

I Related concept: x , y are called conditionally independent,
given z if

p(x , y |z) = p(x |z)p(y |z)



Independence is useful

I Say, we have some variables x1, x2, . . . , xK .

I Even just defining their joint (let alone doing computations
with it) is hopeless for large K .

I But what if all xi independent?

I Need to specify just K probabilities, since the joint is the
product!

I A more sophisticated version of this idea is to use conditional
independence. Large and active area of ’Graphical Models’.



Maximum Likelihood

I Another useful thing about independence.

I Task: Given some data (x1, . . . , xN) build a model of the
data-generating process. Useful for classification, novelty
detection, ’image manipulation’, and countless other things.

I Possible solution: Fit a parameterized model p(x ; w) to the
data.

I How? Maximize the probability of ’seeing’ the data under
your model!



Maximum Likelihood

I This is easy, if the examples are independent, ie. if

p(x1, . . . , xN ; w) =
∏

i

p(xi ; w)

I Note that instead of maximizing probability, we might as well
maximize log probability. (Since the ’log’ is monotonous.)

I So we can maximize:

L(w) = log
∏

i

p(xi ; w) =
∑

i

log p(xi ; w)

I Dealing with the sum of things is easy. (We wouldn’t have
gotten this, if we hadn’t assumed independence.)



Gaussian example

I What is the ML-estimate of the mean of a Gaussian?

I We need to maximize:

L(µ) =
∑

i

log p(xi ;µ) =
∑

i

(
− 1

2σ2
(xi − µ)2

)
+ const.

I The derivative is:

∂L(µ)

∂µ
=

1

σ2

∑
i

(xi − µ) =
1

σ2
(
∑

i

xi − Nµ)

I We set to zero and get:

µ =
1

N

∑
i

xi


