Tutorial:
 restricted Boltzmann machines

Chris J. Maddison

March 27, 2014

1 restricted Boltzmann machines

A Boltzmann machine is a family of probability distributions over binary vectors s of length K
$\mathrm{P}(\mathbf{s})=\exp \left(\sum_{1 \leq i<j \leq K} W_{i j} s_{i} s_{j}+\sum_{i=1}^{K} b_{i} s_{i}\right) / Z \equiv \frac{\exp (-E(\mathbf{s}))}{Z} \quad s_{i} \in\{0,1\}, W_{i j}, b_{i} \in \mathbb{R}$
where $Z=\sum_{\mathbf{s}} \exp (-E(\mathbf{s}))$ is the sum over all possible configurations of \mathbf{s}.
A restricted Boltzmann machine (RBM) has a bipartite structure: partition \mathbf{s} into V visible bits \mathbf{v} and H hidden bits \mathbf{h} and set $W_{i j}$ to zero if it connects a hidden bit to a hidden bit or a visible bit to a visible bit.

The energy is a function of the configuration and parameters, but we omit the parameters sometimes if the parameters are implied

$$
-E(\mathbf{v}, \mathbf{h})=\sum_{i=1}^{H} \sum_{j=1}^{V} W_{i j} h_{i} v_{j}+\sum_{i=1}^{n} b_{i} h_{i}+\sum_{j=1}^{n} c_{j} v_{j}
$$

2 gradients

Fit an RBM to a data set of bit vectors $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{N}\right)$ by following the average gradient (with respect to the parameters W, b, c)

$$
\frac{1}{N} \sum_{n=1}^{N} \nabla \log \mathrm{P}\left(\mathbf{v}_{n}\right)
$$

We need the partial derivatives of

$$
\begin{aligned}
\log \mathrm{P}\left(\mathbf{v}_{n}\right) & =\log \left(\sum_{\mathbf{h}} \mathrm{P}\left(\mathbf{v}_{n}, \mathbf{h}\right)\right) \\
& =\log \left(\sum_{\mathbf{h}} \frac{\exp \left(-E\left(\mathbf{v}_{n}, \mathbf{h}\right)\right)}{Z}\right) \\
& =\log \left(\sum_{\mathbf{h}} \exp \left(-E\left(\mathbf{v}_{n}, \mathbf{h}\right)\right)\right)-\log Z
\end{aligned}
$$

We show how to derive the derivative of the first term. Recall,

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \log f(\theta) & =\frac{\frac{\partial}{\partial \theta} f(\theta)}{f(\theta)} \\
\frac{\partial}{\partial \theta} \exp f(\theta) & =\exp (f(\theta)) \frac{\partial}{\partial \theta} f(\theta)
\end{aligned}
$$

So for parameter θ

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \log \left(\sum_{\mathbf{h}} \exp \left(-E\left(\mathbf{v}_{n}, \mathbf{h}\right)\right)\right) & =\frac{1}{\sum_{\mathbf{h}} \exp \left(-E\left(\mathbf{v}_{n}, \mathbf{h}\right)\right)} \frac{\partial}{\partial \theta} \sum_{\mathbf{h}} \exp \left(-E\left(\mathbf{v}_{n}, \mathbf{h}\right)\right) \\
& =\frac{1}{\sum_{\mathbf{h}} \exp \left(-E\left(\mathbf{v}_{n}, \mathbf{h}\right)\right)} \sum_{\mathbf{h}} \exp \left(-E\left(\mathbf{v}_{n}, \mathbf{h}\right)\right) \frac{\partial}{\partial \theta}-E\left(\mathbf{v}_{n}, \mathbf{h}\right) \\
& =\sum_{\mathbf{h}} \mathrm{P}\left(\mathbf{h} \mid \mathbf{v}=\mathbf{v}_{n}\right) \frac{\partial}{\partial \theta}-E(\mathbf{v}, \mathbf{h}) \\
& =\mathbb{E}\left[\left.\frac{\partial}{\partial \theta}-E(\mathbf{v}, \mathbf{h}) \right\rvert\, \mathbf{v}=\mathbf{v}_{n}\right]
\end{aligned}
$$

A similar trick works for the second term and we get the partial derivative

$$
\frac{\partial}{\partial \theta} \log \mathrm{P}\left(\mathbf{v}_{n}\right)=\overbrace{\mathbb{E}\left[\left.\frac{\partial}{\partial \theta}-E(\mathbf{v}, \mathbf{h}) \right\rvert\, \mathbf{v}=\mathbf{v}_{n}\right]}^{\text {positive statistic }}-\underbrace{\mathbb{E}\left[\frac{\partial}{\partial \theta}-E(\mathbf{v}, \mathbf{h})\right]}_{\text {negative statistic }}
$$

For the RBM

$$
\begin{aligned}
\frac{\partial}{\partial W_{i j}} \log \mathrm{P}\left(\mathbf{v}_{n}\right) & =\mathbb{E}\left[h_{i} v_{j} \mid \mathbf{v}=\mathbf{v}_{n}\right]-\mathbb{E}\left[h_{i} v_{j}\right] \\
\frac{\partial}{\partial b_{i}} \log \mathrm{P}\left(\mathbf{v}_{n}\right) & =\mathbb{E}\left[h_{i} \mid \mathbf{v}=\mathbf{v}_{n}\right]-\mathbb{E}\left[h_{i}\right] \\
\frac{\partial}{\partial c_{j}} \log \mathrm{P}\left(\mathbf{v}_{n}\right) & =\mathbb{E}\left[v_{j} \mid \mathbf{v}=\mathbf{v}_{n}\right]-\mathbb{E}\left[v_{j}\right]
\end{aligned}
$$

This is how it corresponds to the notation in the lectures

$$
\mathbb{E}\left[h_{i} v_{j} \mid \mathbf{v}=\mathbf{v}_{n}\right]=\left\langle h_{i} v_{j}\right\rangle_{d a t a}
$$

That is the expected value under the model of the product of hidden unit j and visible unit j when \mathbf{v} is clamped to \mathbf{v}_{n} and

$$
\mathbb{E}\left[h_{i} v_{j}\right]=\left\langle h_{i} v_{j}\right\rangle_{\text {model }}
$$

is the expected number of times that h_{i} and v_{j} are both on if we sample from the model. We can vectorize everything:

$$
-E(\mathbf{v}, \mathbf{h})=\mathbf{h}^{T} W \mathbf{v}+\mathbf{h}^{T} b+\mathbf{v}^{T} c
$$

with gradients

$$
\begin{aligned}
\nabla_{W} \log \mathrm{P}\left(\mathbf{v}_{n}\right) & =\mathbb{E}\left[\mathbf{h} \mathbf{v}^{T} \mid \mathbf{v}=\mathbf{v}_{n}\right]-\mathbb{E}\left[\mathbf{h} \mathbf{v}^{T}\right] \\
\nabla_{b} \log \mathrm{P}\left(\mathbf{v}_{n}\right) & =\mathbb{E}\left[\mathbf{h} \mid \mathbf{v}=\mathbf{v}_{n}\right]-\mathbb{E}[\mathbf{h}] \\
\nabla_{c} \log \mathrm{P}\left(\mathbf{v}_{n}\right) & =\mathbb{E}\left[\mathbf{v} \mid \mathbf{v}=\mathbf{v}_{n}\right]-\mathbb{E}[\mathbf{v}]
\end{aligned}
$$

Remember to get a gradient on a batch we have to average the individual gradients!

3 computing gradients \& contrastive divergence

In this section we talk about how to compute $\mathbb{E}\left[h_{i} v_{j} \mid \mathbf{v}=\mathbf{v}_{n}\right]-\mathbb{E}\left[h_{i} v_{j}\right]$ or approximations to it. For the positive statistic we are conditioning on \mathbf{v}_{n}, so we can take it out of the expected value:

$$
\mathbb{E}\left[h_{i} \mid \mathbf{v}=\mathbf{v}_{n}\right] v_{n j}
$$

$\mathbb{E}\left[h_{i} \mid \mathbf{v}=\mathbf{v}_{n}\right]$ is just the probability that h_{i} is on when \mathbf{v} is clamped; this is sometimes called the activation:

$$
\mathbb{E}\left[h_{i} \mid \mathbf{v}=\mathbf{v}_{n}\right]=\frac{1}{1+\exp \left(-\sum_{j} W_{i j} v_{n j}-b_{i}\right)}
$$

Two quick notes about this

- $\sigma(x)=1 /(1+\exp (-x))$ is called the logistic function
- I will use the convention that $\sigma(\mathbf{x})$ of a vector \mathbf{x} is taken component-wise

So we can see that

$$
\mathbb{E}\left[\mathbf{h} \mid \mathbf{v}=\mathbf{v}_{n}\right]=\sigma\left(W \mathbf{v}_{n}+b\right)
$$

The negative statistic is the real problem. With M true samples $\left(\mathbf{v}_{m}, \mathbf{h}_{m}\right)$ from the distribution defined by the RBM, we could approximate

$$
\mathbb{E}\left[h_{i} v_{j}\right] \approx \frac{1}{M} \sum_{m=1}^{M} h_{m i} v_{m j}
$$

Can get these samples by initializing N independent Markov chain at each data point \mathbf{v}_{n} and running until convergence $\left(\mathbf{v}_{n}^{\infty}, \mathbf{h}_{n}^{\infty}\right)$. Then,

$$
\mathbb{E}\left[h_{i} v_{j}\right] \approx \frac{1}{N} \sum_{n=1}^{N} h_{n i}^{\infty} v_{n j}^{\infty}
$$

The type of Markov transition operator used most often is alternating Gibbs.

$$
\begin{aligned}
& \mathbf{v}_{n}^{0}=\mathbf{v}_{n} \\
& \mathbf{h}_{n}^{k} \sim \mathrm{P}\left(\mathbf{h} \mid \mathbf{v}=\mathbf{v}_{n}^{k}\right) \text { for } k \geq 0 \\
& \mathbf{v}_{n}^{k} \sim \mathrm{P}\left(\mathbf{v} \mid \mathbf{h}=\mathbf{h}_{n}^{k-1}\right) \text { for } k \geq 1
\end{aligned}
$$

and in pictures

Sampling from $\mathrm{P}\left(\mathbf{h} \mid \mathbf{v}_{n}^{k}\right)$ is easy, compute $\mathbb{E}\left[\mathbf{h} \mid \mathbf{v}=\mathbf{v}_{n}\right]$ and sample each bit independently with probability $\mathbb{E}\left[h_{i} \mid \mathbf{v}=\mathbf{v}_{n}\right]$. Similarly for $\mathrm{P}\left(\mathbf{v} \mid \mathbf{h}=\mathbf{h}_{n}^{k-1}\right)$.

The idea behind contrastive divergence is to run the Markov chain for only one step, get samples $\left(\mathbf{v}_{n}^{1}, \mathbf{h}_{n}^{1}\right)$, and hope that

$$
\mathbb{E}\left[h_{i} v_{j}\right] \approx \frac{1}{N} \sum_{n=1}^{N} h_{n i}^{1} v_{n j}^{1}
$$

Because these estimates are often noisy, we use the following smoothed "reconstructions" in their place in gradient calculations

$$
\begin{aligned}
& \hat{\mathbf{v}}_{n}^{1}=\mathbb{E}\left[\mathbf{v} \mid \mathbf{h}=\mathbf{h}_{n}^{0}\right]=\sigma\left(W^{T} \mathbf{h}_{n}^{0}+c\right) \\
& \hat{\mathbf{h}}_{n}^{1}=\sigma\left(W \mathbb{E}\left[\mathbf{v} \mid \mathbf{h}_{n}^{0}\right]+b\right)=\sigma\left(W \hat{\mathbf{v}}_{n}^{1}+b\right)
\end{aligned}
$$

In brief we compute the contrastive divergence gradients on data point \mathbf{v}_{n} as follows:

$$
\begin{aligned}
\mathbf{h}_{n}^{0} & \sim \mathrm{P}\left(\mathbf{h} \mid \mathbf{v}=\mathbf{v}_{n}\right) \\
\hat{\mathbf{v}}_{n}^{1} & =\sigma\left(W^{T} \mathbf{h}_{n}^{0}+c\right) \\
\hat{\mathbf{h}}_{n}^{1} & =\sigma\left(W \hat{\mathbf{v}}_{n}^{1}+b\right) \\
\nabla_{W}^{C D} \log \mathrm{P}\left(\mathbf{v}_{n}\right) & =\sigma\left(W \mathbf{v}_{n}+b\right) \mathbf{v}_{n}^{T}-\hat{\mathbf{h}}_{n}^{1} \hat{\mathbf{v}}_{n}^{1 T} \\
\nabla_{b}^{C D} \log \mathrm{P}\left(\mathbf{v}_{n}\right) & =\sigma\left(W \mathbf{v}_{n}+b\right)-\hat{\mathbf{h}}_{n}^{1} \\
\nabla_{c}^{C D} \log \mathrm{P}\left(\mathbf{v}_{n}\right) & =\mathbf{v}_{n}-\hat{\mathbf{v}}_{n}^{1}
\end{aligned}
$$

To get the gradient on a batch, just average these individual gradients.

