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1 restricted Boltzmann machines

A Boltzmann machine is a family of probability distributions over binary vectors
s of length K

P(s) = exp

 ∑
1≤i<j≤K

Wijsisj +

K∑
i=1

bisi

 /Z ≡ exp(−E(s))

Z
si ∈ {0, 1},Wij , bi ∈ R

where Z =
∑

s exp(−E(s)) is the sum over all possible configurations of s.
A restricted Boltzmann machine (RBM) has a bipartite structure: partition

s into V visible bits v and H hidden bits h and set Wij to zero if it connects a
hidden bit to a hidden bit or a visible bit to a visible bit.

Restricted Boltzmann Machines 
•  For many real-world problems, we need to introduce hidden variables.  

•  Our random variables will contain visible and hidden variables x=(v,h).  

The energy of the joint configuration:  

model parameters. 

Probability of the joint configuration is given by the Boltzmann distribution: 

are connected to stochastic binary 
hidden variables          .  

Stochastic binary visible variables 

Image  visible variables 

  hidden variables 

Bipartite  
Structure 

parOOon$funcOon$ potenOal$funcOons$

The energy is a function of the configuration and parameters, but we omit the
parameters sometimes if the parameters are implied

−E(v,h) =

H∑
i=1

V∑
j=1

Wijhivj +

n∑
i=1

bihi +

n∑
j=1

cjvj
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2 gradients

Fit an RBM to a data set of bit vectors (v1, . . . ,vN ) by following the average
gradient (with respect to the parameters W, b, c)

1

N

N∑
n=1

∇ log P(vn)

We need the partial derivatives of

log P(vn) = log

(∑
h

P(vn,h)

)

= log

(∑
h

exp(−E(vn,h))

Z

)

= log

(∑
h

exp(−E(vn,h))

)
− logZ

We show how to derive the derivative of the first term. Recall,

∂

∂θ
log f(θ) =

∂
∂θf(θ)

f(θ)

∂

∂θ
exp f(θ) = exp(f(θ))

∂

∂θ
f(θ)

So for parameter θ

∂

∂θ
log

(∑
h

exp(−E(vn,h))

)
=

1∑
h exp(−E(vn,h))

∂

∂θ

∑
h

exp(−E(vn,h))

=
1∑

h exp(−E(vn,h))

∑
h

exp(−E(vn,h))
∂

∂θ
− E(vn,h)

=
∑
h

P(h|v = vn)
∂

∂θ
− E(v,h)

= E
[
∂

∂θ
− E(v,h)

∣∣∣∣v = vn

]
A similar trick works for the second term and we get the partial derivative

∂

∂θ
log P(vn) =

positive statistic︷ ︸︸ ︷
E
[
∂

∂θ
− E(v,h)

∣∣∣∣v = vn

]
−E

[
∂

∂θ
− E(v,h)

]
︸ ︷︷ ︸

negative statistic
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For the RBM

∂

∂Wij
log P(vn) = E [hivj |v = vn]− E [hivj ]

∂

∂bi
log P(vn) = E [hi|v = vn]− E [hi]

∂

∂cj
log P(vn) = E [vj |v = vn]− E [vj ]

This is how it corresponds to the notation in the lectures

E[hivj |v = vn] = 〈hivj〉data

That is the expected value under the model of the product of hidden unit j and
visible unit j when v is clamped to vn and

E[hivj ] = 〈hivj〉model

is the expected number of times that hi and vj are both on if we sample from
the model. We can vectorize everything:

−E(v,h) = hTWv + hT b+ vT c

with gradients

∇W log P(vn) = E
[
hvT

∣∣v = vn
]
− E

[
hvT

]
∇b log P(vn) = E [h|v = vn]− E [h]

∇c log P(vn) = E [v|v = vn]− E [v]

Remember to get a gradient on a batch we have to average the individual gra-
dients!

3 computing gradients & contrastive divergence

In this section we talk about how to compute E [hivj |v = vn] − E [hivj ] or ap-
proximations to it. For the positive statistic we are conditioning on vn, so we
can take it out of the expected value:

E [hi|v = vn] vnj

E [hi|v = vn] is just the probability that hi is on when v is clamped; this is
sometimes called the activation:

E [hi|v = vn] =
1

1 + exp(−
∑
jWijvnj − bi)

Two quick notes about this
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• σ(x) = 1/(1 + exp(−x)) is called the logistic function

• I will use the convention that σ(x) of a vector x is taken component-wise

So we can see that
E [h|v = vn] = σ(Wvn + b)

The negative statistic is the real problem. With M true samples (vm,hm)
from the distribution defined by the RBM, we could approximate

E [hivj ] ≈
1

M

M∑
m=1

hmivmj

Can get these samples by initializing N independent Markov chain at each data
point vn and running until convergence (v∞n ,h

∞
n ). Then,

E [hivj ] ≈
1

N

N∑
n=1

h∞niv
∞
nj

The type of Markov transition operator used most often is alternating Gibbs.

v0
n = vn

hkn ∼ P(h|v = vkn) for k ≥ 0

vkn ∼ P(v|h = hk−1n ) for k ≥ 1

and in pictures
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Sampling from P(h|vkn) is easy, compute E [h|v = vn] and sample each bit in-
dependently with probability E [hi|v = vn]. Similarly for P(v|h = hk−1n ).

The idea behind contrastive divergence is to run the Markov chain for only
one step, get samples (v1

n,h
1
n), and hope that

E [hivj ] ≈
1

N

N∑
n=1

h1niv
1
nj

Because these estimates are often noisy, we use the following smoothed “recon-
structions” in their place in gradient calculations

v̂1
n = E

[
v
∣∣h = h0

n

]
= σ(WTh0

n + c)

ĥ1
n = σ(WE

[
v
∣∣h0
n

]
+ b) = σ(W v̂1

n + b)
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In brief we compute the contrastive divergence gradients on data point vn as
follows:

h0
n ∼ P(h|v = vn)

v̂1
n = σ(WTh0

n + c)

ĥ1
n = σ(W v̂1

n + b)

∇CDW log P(vn) = σ(Wvn + b)vTn − ĥ1
nv̂

1T
n

∇CDb log P(vn) = σ(Wvn + b)− ĥ1
n

∇CDc log P(vn) = vn − v̂1
n

To get the gradient on a batch, just average these individual gradients.
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