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1 restricted Boltzmann machines

A Boltzmann machine is a family of probability distributions over binary vectors
s of length K
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where Z = ) _exp(—E(s)) is the sum over all possible configurations of s.

A restricted Boltzmann machine (RBM) has a bipartite structure: partition
s into V visible bits v and H hidden bits h and set W;; to zero if it connects a
hidden bit to a hidden bit or a visible bit to a visible bit.
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The energy is a function of the configuration and parameters, but we omit the
parameters sometimes if the parameters are implied
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2 gradients

Fit an RBM to a data set of bit vectors (v1,...,vy) by following the average
gradient (with respect to the parameters W, b, ¢)
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We need the partial derivatives of
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We show how to derive the derivative of the first term. Recall,
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A similar trick works for the second term and we get the partial derivative
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For the RBM

log P(vy,) = E[hv;|v = v,,] — E [h;vy]
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This is how it corresponds to the notation in the lectures
Elhivj|v = vi] = (hiVj)data

That is the expected value under the model of the product of hidden unit j and
visible unit j when v is clamped to v,, and

E[hﬂ)]] = <hivj>model

is the expected number of times that h; and v; are both on if we sample from
the model. We can vectorize everything:

—E(v,h) = h"Wv +hTb +vTc
with gradients
VwlogP(v,) =E [th|v =v,| —E[hv"]

VylogP(v,) =E[h|v=v,] —E[h]
Ve IOgP(Vn) =E [V|V = Vn] —E [V}

Remember to get a gradient on a batch we have to average the individual gra-
dients!

3 computing gradients & contrastive divergence

In this section we talk about how to compute E [h;v;|v = v,,]| — E [h;v;] or ap-
proximations to it. For the positive statistic we are conditioning on v, so we
can take it out of the expected value:

E [hi|v = Vi) vnj
E [h;|v = v,] is just the probability that h; is on when v is clamped; this is
sometimes called the activation:
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Two quick notes about this



e o(z) =1/(1+ exp(—=x)) is called the logistic function

e I will use the convention that o(x) of a vector x is taken component-wise

So we can see that
E[hlv =v,]=0c(Wv, +)

The negative statistic is the real problem. With M true samples (v,,, h,,)
from the distribution defined by the RBM, we could approximate
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Can get these samples by initializing N independent Markov chain at each data
point v,, and running until convergence (v;°, hy°). Then,
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The type of Markov transition operator used most often is alternating Gibbs.

v =v,

h* ~ P(h|v = vF) for k>0
vF ~P(vilh=h*"1) for k > 1
and in pictures

k=0 k=1 k=2 k = infty
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Sampling from P(h|vF) is easy, compute E [h|v = v,,] and sample each bit in-
dependently with probability E [h;|v = v,,]. Similarly for P(v|h = h~1).

The idea behind contrastive divergence is to run the Markov chain for only
one step, get samples (v., hl) and hope that
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Because these estimates are often noisy, we use the following smoothed “recon-
structions” in their place in gradient calculations

v

n=E[v[p=h}] =o(W"h} +c)
h! = o(WE [v|hl] +b) = o(W¥}, +b)



In brief we compute the contrastive divergence gradients on data point v, as
follows:

h? ~P(h|v = v,,)
vl =o(WTh? +¢)
h! =o(Wv. +0b)
VGP logP(v,) = o(Wv, 4+ b)vE — hl¢lT
V§PlogP(vy,) = o(Wv,, +b) —h}
VP logP(vy) = vy, — V)

To get the gradient on a batch, just average these individual gradients.



