Tutorial:
restricted Boltzmann machines

Chris J. Maddison
March 27, 2014

1 restricted Boltzmann machines

A Boltzmann machine is a family of probability distributions over binary vectors
s of length K

K
-F
P(S) = exp Z Wijsisj + Zblsl /Z = %(S)) S; € {07 1}7W¢j,bi eR
1<i<j<K i=1

where Z =) _exp(—E(s)) is the sum over all possible configurations of s.

A restricted Boltzmann machine (RBM) has a bipartite structure: partition
s into V visible bits v and H hidden bits h and set W;; to zero if it connects a
hidden bit to a hidden bit or a visible bit to a visible bit.

hidden variables

() C)

\/ /Il \ Bipartite

Structure

IS
lie

',

Image visible variables

The energy is a function of the configuration and parameters, but we omit the
parameters sometimes if the parameters are implied

H V n n
—E(v,h) = Z Z Wiihiv; + Z bihi + Z CjVj
i=1 j=1

i=1 j=1

2 gradients

Fit an RBM to a data set of bit vectors (v1,...,vy) by following the average
gradient (with respect to the parameters W, b, ¢)

N

Z log P(vy,)

We need the partial derivatives of
log P(v,) = log (Z P(vp,h
ﬁqgm?m)
= log (Z exp(—E (v,))) —logZ

We show how to derive the derivative of the first term. Recall,
9 50/ (0)
—log f(0) = 2
0

O exp 1160) = exp(1(0)) o5 1(0)

So for parameter 6

o Y nexp(—FE -

d
=> P(hlv= Vi) 55 = B(v.h)

.

A similar trick works for the second term and we get the partial derivative

0
=E [36 E(v,h)|v =

positive statistic

B R

negative statistic

0 0
20 logP(v,) =E {39 — E(v,h)

For the RBM

log P(vy,) = E[hv;|v = v,,] — E [h;vy]

oW,
4 logP(vy,) =E[h|v =v,] —E[h]
ob; & " o '
0
a—cj log P(vy) = E [vj]v = v,] — E [v;]

This is how it corresponds to the notation in the lectures
Elhivj|v = vi] = (hiVj)data

That is the expected value under the model of the product of hidden unit j and
visible unit j when v is clamped to v,, and

E[hﬂ)]] = <hivj>model

is the expected number of times that h; and v; are both on if we sample from
the model. We can vectorize everything:

—E(v,h) = h"Wv +hTb +vTc
with gradients
VwlogP(v,) =E [th|v =v,| —E[hv"]

VylogP(v,) =E[h|v=v,] —E[h]
Ve IOgP(Vn) =E [V|V = Vn] —E [V}

Remember to get a gradient on a batch we have to average the individual gra-
dients!

3 computing gradients & contrastive divergence

In this section we talk about how to compute E [h;v;|v = v,,]| — E [h;v;] or ap-
proximations to it. For the positive statistic we are conditioning on v, so we
can take it out of the expected value:

E [hi|v = Vi) vnj
E [h;|v = v,] is just the probability that h; is on when v is clamped; this is
sometimes called the activation:

1

E . = =
[hilv = val 1+ exp(= 25 Wijvn; — b;)

Two quick notes about this

e o(z) =1/(1+ exp(—=x)) is called the logistic function

e I will use the convention that o(x) of a vector x is taken component-wise

So we can see that
E[hlv =v,]=0c(Wv, +)

The negative statistic is the real problem. With M true samples (v,,, h,,)
from the distribution defined by the RBM, we could approximate

E [hiv;] =~ R Ui
.7 M Z J

Can get these samples by initializing N independent Markov chain at each data
point v,, and running until convergence (v;°, hy°). Then,

h 1}] Z hnz nj

The type of Markov transition operator used most often is alternating Gibbs.

v =v,

h* ~ P(h|v = vF) for k>0
vF ~P(vilh=h*"1) for k > 1
and in pictures

k=0 k=1 k=2 k = infty

OO0l OO 0O 00O

N [(C)O))0 0)0

Sampling from P(h|vF) is easy, compute E [h|v = v,,] and sample each bit in-
dependently with probability E [h;|v = v,,]. Similarly for P(v|h = h~1).

The idea behind contrastive divergence is to run the Markov chain for only
one step, get samples (v., hl) and hope that

hv] Nizhnz Unj

Because these estimates are often noisy, we use the following smoothed “recon-
structions” in their place in gradient calculations

v

n=E[v[p=h}] =o(W"h} +c)
h! = o(WE [v|hl] +b) = o(W¥}, +b)

In brief we compute the contrastive divergence gradients on data point v, as
follows:

h? ~P(h|v = v,,)
vl =o(WTh? +¢)
h! =o(Wv. +0b)
VGP logP(v,) = o(Wv, 4+ b)vE — hl¢lT
V§PlogP(vy,) = o(Wv,, +b) —h}
VP logP(vy) = vy, — V)

To get the gradient on a batch, just average these individual gradients.

